ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  unitgrp GIF version

Theorem unitgrp 14045
Description: The group of units is a group under multiplication. (Contributed by Mario Carneiro, 2-Dec-2014.)
Hypotheses
Ref Expression
unitgrp.1 𝑈 = (Unit‘𝑅)
unitgrp.2 𝐺 = ((mulGrp‘𝑅) ↾s 𝑈)
Assertion
Ref Expression
unitgrp (𝑅 ∈ Ring → 𝐺 ∈ Grp)

Proof of Theorem unitgrp
Dummy variables 𝑥 𝑦 𝑧 𝑚 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 unitgrp.1 . . . 4 𝑈 = (Unit‘𝑅)
21a1i 9 . . 3 (𝑅 ∈ Ring → 𝑈 = (Unit‘𝑅))
3 unitgrp.2 . . . 4 𝐺 = ((mulGrp‘𝑅) ↾s 𝑈)
43a1i 9 . . 3 (𝑅 ∈ Ring → 𝐺 = ((mulGrp‘𝑅) ↾s 𝑈))
5 ringsrg 13976 . . 3 (𝑅 ∈ Ring → 𝑅 ∈ SRing)
62, 4, 5unitgrpbasd 14044 . 2 (𝑅 ∈ Ring → 𝑈 = (Base‘𝐺))
7 eqid 2209 . . . 4 (mulGrp‘𝑅) = (mulGrp‘𝑅)
8 eqid 2209 . . . 4 (.r𝑅) = (.r𝑅)
97, 8mgpplusgg 13853 . . 3 (𝑅 ∈ Ring → (.r𝑅) = (+g‘(mulGrp‘𝑅)))
10 basfn 13057 . . . . 5 Base Fn V
11 elex 2791 . . . . 5 (𝑅 ∈ Ring → 𝑅 ∈ V)
12 funfvex 5620 . . . . . 6 ((Fun Base ∧ 𝑅 ∈ dom Base) → (Base‘𝑅) ∈ V)
1312funfni 5399 . . . . 5 ((Base Fn V ∧ 𝑅 ∈ V) → (Base‘𝑅) ∈ V)
1410, 11, 13sylancr 414 . . . 4 (𝑅 ∈ Ring → (Base‘𝑅) ∈ V)
15 eqidd 2210 . . . . 5 (𝑅 ∈ Ring → (Base‘𝑅) = (Base‘𝑅))
1615, 2, 5unitssd 14038 . . . 4 (𝑅 ∈ Ring → 𝑈 ⊆ (Base‘𝑅))
1714, 16ssexd 4203 . . 3 (𝑅 ∈ Ring → 𝑈 ∈ V)
187mgpex 13854 . . 3 (𝑅 ∈ Ring → (mulGrp‘𝑅) ∈ V)
194, 9, 17, 18ressplusgd 13128 . 2 (𝑅 ∈ Ring → (.r𝑅) = (+g𝐺))
201, 8unitmulcl 14042 . 2 ((𝑅 ∈ Ring ∧ 𝑥𝑈𝑦𝑈) → (𝑥(.r𝑅)𝑦) ∈ 𝑈)
21 eqidd 2210 . . . . 5 ((𝑅 ∈ Ring ∧ (𝑥𝑈𝑦𝑈𝑧𝑈)) → (Base‘𝑅) = (Base‘𝑅))
221a1i 9 . . . . 5 ((𝑅 ∈ Ring ∧ (𝑥𝑈𝑦𝑈𝑧𝑈)) → 𝑈 = (Unit‘𝑅))
235adantr 276 . . . . 5 ((𝑅 ∈ Ring ∧ (𝑥𝑈𝑦𝑈𝑧𝑈)) → 𝑅 ∈ SRing)
24 simpr1 1008 . . . . 5 ((𝑅 ∈ Ring ∧ (𝑥𝑈𝑦𝑈𝑧𝑈)) → 𝑥𝑈)
2521, 22, 23, 24unitcld 14037 . . . 4 ((𝑅 ∈ Ring ∧ (𝑥𝑈𝑦𝑈𝑧𝑈)) → 𝑥 ∈ (Base‘𝑅))
26 simpr2 1009 . . . . 5 ((𝑅 ∈ Ring ∧ (𝑥𝑈𝑦𝑈𝑧𝑈)) → 𝑦𝑈)
2721, 22, 23, 26unitcld 14037 . . . 4 ((𝑅 ∈ Ring ∧ (𝑥𝑈𝑦𝑈𝑧𝑈)) → 𝑦 ∈ (Base‘𝑅))
28 simpr3 1010 . . . . 5 ((𝑅 ∈ Ring ∧ (𝑥𝑈𝑦𝑈𝑧𝑈)) → 𝑧𝑈)
2921, 22, 23, 28unitcld 14037 . . . 4 ((𝑅 ∈ Ring ∧ (𝑥𝑈𝑦𝑈𝑧𝑈)) → 𝑧 ∈ (Base‘𝑅))
3025, 27, 293jca 1182 . . 3 ((𝑅 ∈ Ring ∧ (𝑥𝑈𝑦𝑈𝑧𝑈)) → (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅) ∧ 𝑧 ∈ (Base‘𝑅)))
31 eqid 2209 . . . 4 (Base‘𝑅) = (Base‘𝑅)
3231, 8ringass 13945 . . 3 ((𝑅 ∈ Ring ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅) ∧ 𝑧 ∈ (Base‘𝑅))) → ((𝑥(.r𝑅)𝑦)(.r𝑅)𝑧) = (𝑥(.r𝑅)(𝑦(.r𝑅)𝑧)))
3330, 32syldan 282 . 2 ((𝑅 ∈ Ring ∧ (𝑥𝑈𝑦𝑈𝑧𝑈)) → ((𝑥(.r𝑅)𝑦)(.r𝑅)𝑧) = (𝑥(.r𝑅)(𝑦(.r𝑅)𝑧)))
34 eqid 2209 . . 3 (1r𝑅) = (1r𝑅)
351, 341unit 14036 . 2 (𝑅 ∈ Ring → (1r𝑅) ∈ 𝑈)
36 eqidd 2210 . . . 4 ((𝑅 ∈ Ring ∧ 𝑥𝑈) → (Base‘𝑅) = (Base‘𝑅))
371a1i 9 . . . 4 ((𝑅 ∈ Ring ∧ 𝑥𝑈) → 𝑈 = (Unit‘𝑅))
385adantr 276 . . . 4 ((𝑅 ∈ Ring ∧ 𝑥𝑈) → 𝑅 ∈ SRing)
39 simpr 110 . . . 4 ((𝑅 ∈ Ring ∧ 𝑥𝑈) → 𝑥𝑈)
4036, 37, 38, 39unitcld 14037 . . 3 ((𝑅 ∈ Ring ∧ 𝑥𝑈) → 𝑥 ∈ (Base‘𝑅))
4131, 8, 34ringlidm 13952 . . 3 ((𝑅 ∈ Ring ∧ 𝑥 ∈ (Base‘𝑅)) → ((1r𝑅)(.r𝑅)𝑥) = 𝑥)
4240, 41syldan 282 . 2 ((𝑅 ∈ Ring ∧ 𝑥𝑈) → ((1r𝑅)(.r𝑅)𝑥) = 𝑥)
43 eqidd 2210 . . . . 5 ((𝑅 ∈ Ring ∧ 𝑥𝑈) → (1r𝑅) = (1r𝑅))
44 eqidd 2210 . . . . 5 ((𝑅 ∈ Ring ∧ 𝑥𝑈) → (∥r𝑅) = (∥r𝑅))
45 eqidd 2210 . . . . 5 ((𝑅 ∈ Ring ∧ 𝑥𝑈) → (oppr𝑅) = (oppr𝑅))
46 eqidd 2210 . . . . 5 ((𝑅 ∈ Ring ∧ 𝑥𝑈) → (∥r‘(oppr𝑅)) = (∥r‘(oppr𝑅)))
4737, 43, 44, 45, 46, 38isunitd 14035 . . . 4 ((𝑅 ∈ Ring ∧ 𝑥𝑈) → (𝑥𝑈 ↔ (𝑥(∥r𝑅)(1r𝑅) ∧ 𝑥(∥r‘(oppr𝑅))(1r𝑅))))
4839, 47mpbid 147 . . 3 ((𝑅 ∈ Ring ∧ 𝑥𝑈) → (𝑥(∥r𝑅)(1r𝑅) ∧ 𝑥(∥r‘(oppr𝑅))(1r𝑅)))
49 eqidd 2210 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝑥𝑈) → (.r𝑅) = (.r𝑅))
5036, 44, 38, 49, 40dvdsr2d 14024 . . . . 5 ((𝑅 ∈ Ring ∧ 𝑥𝑈) → (𝑥(∥r𝑅)(1r𝑅) ↔ ∃𝑦 ∈ (Base‘𝑅)(𝑦(.r𝑅)𝑥) = (1r𝑅)))
51 eqid 2209 . . . . . . . 8 (oppr𝑅) = (oppr𝑅)
5251, 31opprbasg 14004 . . . . . . 7 (𝑅 ∈ Ring → (Base‘𝑅) = (Base‘(oppr𝑅)))
5352adantr 276 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝑥𝑈) → (Base‘𝑅) = (Base‘(oppr𝑅)))
5451opprring 14008 . . . . . . . 8 (𝑅 ∈ Ring → (oppr𝑅) ∈ Ring)
55 ringsrg 13976 . . . . . . . 8 ((oppr𝑅) ∈ Ring → (oppr𝑅) ∈ SRing)
5654, 55syl 14 . . . . . . 7 (𝑅 ∈ Ring → (oppr𝑅) ∈ SRing)
5756adantr 276 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝑥𝑈) → (oppr𝑅) ∈ SRing)
58 eqidd 2210 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝑥𝑈) → (.r‘(oppr𝑅)) = (.r‘(oppr𝑅)))
5953, 46, 57, 58, 40dvdsr2d 14024 . . . . 5 ((𝑅 ∈ Ring ∧ 𝑥𝑈) → (𝑥(∥r‘(oppr𝑅))(1r𝑅) ↔ ∃𝑚 ∈ (Base‘𝑅)(𝑚(.r‘(oppr𝑅))𝑥) = (1r𝑅)))
6050, 59anbi12d 473 . . . 4 ((𝑅 ∈ Ring ∧ 𝑥𝑈) → ((𝑥(∥r𝑅)(1r𝑅) ∧ 𝑥(∥r‘(oppr𝑅))(1r𝑅)) ↔ (∃𝑦 ∈ (Base‘𝑅)(𝑦(.r𝑅)𝑥) = (1r𝑅) ∧ ∃𝑚 ∈ (Base‘𝑅)(𝑚(.r‘(oppr𝑅))𝑥) = (1r𝑅))))
61 reeanv 2681 . . . . 5 (∃𝑦 ∈ (Base‘𝑅)∃𝑚 ∈ (Base‘𝑅)((𝑦(.r𝑅)𝑥) = (1r𝑅) ∧ (𝑚(.r‘(oppr𝑅))𝑥) = (1r𝑅)) ↔ (∃𝑦 ∈ (Base‘𝑅)(𝑦(.r𝑅)𝑥) = (1r𝑅) ∧ ∃𝑚 ∈ (Base‘𝑅)(𝑚(.r‘(oppr𝑅))𝑥) = (1r𝑅)))
62 eqidd 2210 . . . . . . . . . . . 12 ((((𝑅 ∈ Ring ∧ 𝑥𝑈) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ (𝑚 ∈ (Base‘𝑅) ∧ ((𝑦(.r𝑅)𝑥) = (1r𝑅) ∧ (𝑚(.r‘(oppr𝑅))𝑥) = (1r𝑅)))) → (Base‘𝑅) = (Base‘𝑅))
63 eqidd 2210 . . . . . . . . . . . 12 ((((𝑅 ∈ Ring ∧ 𝑥𝑈) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ (𝑚 ∈ (Base‘𝑅) ∧ ((𝑦(.r𝑅)𝑥) = (1r𝑅) ∧ (𝑚(.r‘(oppr𝑅))𝑥) = (1r𝑅)))) → (∥r𝑅) = (∥r𝑅))
6438ad2antrr 488 . . . . . . . . . . . 12 ((((𝑅 ∈ Ring ∧ 𝑥𝑈) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ (𝑚 ∈ (Base‘𝑅) ∧ ((𝑦(.r𝑅)𝑥) = (1r𝑅) ∧ (𝑚(.r‘(oppr𝑅))𝑥) = (1r𝑅)))) → 𝑅 ∈ SRing)
65 eqidd 2210 . . . . . . . . . . . 12 ((((𝑅 ∈ Ring ∧ 𝑥𝑈) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ (𝑚 ∈ (Base‘𝑅) ∧ ((𝑦(.r𝑅)𝑥) = (1r𝑅) ∧ (𝑚(.r‘(oppr𝑅))𝑥) = (1r𝑅)))) → (.r𝑅) = (.r𝑅))
66 simprl 529 . . . . . . . . . . . 12 ((((𝑅 ∈ Ring ∧ 𝑥𝑈) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ (𝑚 ∈ (Base‘𝑅) ∧ ((𝑦(.r𝑅)𝑥) = (1r𝑅) ∧ (𝑚(.r‘(oppr𝑅))𝑥) = (1r𝑅)))) → 𝑚 ∈ (Base‘𝑅))
6740ad2antrr 488 . . . . . . . . . . . 12 ((((𝑅 ∈ Ring ∧ 𝑥𝑈) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ (𝑚 ∈ (Base‘𝑅) ∧ ((𝑦(.r𝑅)𝑥) = (1r𝑅) ∧ (𝑚(.r‘(oppr𝑅))𝑥) = (1r𝑅)))) → 𝑥 ∈ (Base‘𝑅))
6862, 63, 64, 65, 66, 67dvdsrmuld 14025 . . . . . . . . . . 11 ((((𝑅 ∈ Ring ∧ 𝑥𝑈) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ (𝑚 ∈ (Base‘𝑅) ∧ ((𝑦(.r𝑅)𝑥) = (1r𝑅) ∧ (𝑚(.r‘(oppr𝑅))𝑥) = (1r𝑅)))) → 𝑚(∥r𝑅)(𝑥(.r𝑅)𝑚))
69 simplll 533 . . . . . . . . . . . . . 14 ((((𝑅 ∈ Ring ∧ 𝑥𝑈) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ (𝑚 ∈ (Base‘𝑅) ∧ ((𝑦(.r𝑅)𝑥) = (1r𝑅) ∧ (𝑚(.r‘(oppr𝑅))𝑥) = (1r𝑅)))) → 𝑅 ∈ Ring)
70 simplr 528 . . . . . . . . . . . . . 14 ((((𝑅 ∈ Ring ∧ 𝑥𝑈) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ (𝑚 ∈ (Base‘𝑅) ∧ ((𝑦(.r𝑅)𝑥) = (1r𝑅) ∧ (𝑚(.r‘(oppr𝑅))𝑥) = (1r𝑅)))) → 𝑦 ∈ (Base‘𝑅))
7131, 8ringass 13945 . . . . . . . . . . . . . 14 ((𝑅 ∈ Ring ∧ (𝑦 ∈ (Base‘𝑅) ∧ 𝑥 ∈ (Base‘𝑅) ∧ 𝑚 ∈ (Base‘𝑅))) → ((𝑦(.r𝑅)𝑥)(.r𝑅)𝑚) = (𝑦(.r𝑅)(𝑥(.r𝑅)𝑚)))
7269, 70, 67, 66, 71syl13anc 1254 . . . . . . . . . . . . 13 ((((𝑅 ∈ Ring ∧ 𝑥𝑈) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ (𝑚 ∈ (Base‘𝑅) ∧ ((𝑦(.r𝑅)𝑥) = (1r𝑅) ∧ (𝑚(.r‘(oppr𝑅))𝑥) = (1r𝑅)))) → ((𝑦(.r𝑅)𝑥)(.r𝑅)𝑚) = (𝑦(.r𝑅)(𝑥(.r𝑅)𝑚)))
73 simprrl 539 . . . . . . . . . . . . . 14 ((((𝑅 ∈ Ring ∧ 𝑥𝑈) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ (𝑚 ∈ (Base‘𝑅) ∧ ((𝑦(.r𝑅)𝑥) = (1r𝑅) ∧ (𝑚(.r‘(oppr𝑅))𝑥) = (1r𝑅)))) → (𝑦(.r𝑅)𝑥) = (1r𝑅))
7473oveq1d 5989 . . . . . . . . . . . . 13 ((((𝑅 ∈ Ring ∧ 𝑥𝑈) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ (𝑚 ∈ (Base‘𝑅) ∧ ((𝑦(.r𝑅)𝑥) = (1r𝑅) ∧ (𝑚(.r‘(oppr𝑅))𝑥) = (1r𝑅)))) → ((𝑦(.r𝑅)𝑥)(.r𝑅)𝑚) = ((1r𝑅)(.r𝑅)𝑚))
7539ad2antrr 488 . . . . . . . . . . . . . . . 16 ((((𝑅 ∈ Ring ∧ 𝑥𝑈) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ (𝑚 ∈ (Base‘𝑅) ∧ ((𝑦(.r𝑅)𝑥) = (1r𝑅) ∧ (𝑚(.r‘(oppr𝑅))𝑥) = (1r𝑅)))) → 𝑥𝑈)
76 eqid 2209 . . . . . . . . . . . . . . . . 17 (.r‘(oppr𝑅)) = (.r‘(oppr𝑅))
7731, 8, 51, 76opprmulg 14000 . . . . . . . . . . . . . . . 16 ((𝑅 ∈ Ring ∧ 𝑚 ∈ (Base‘𝑅) ∧ 𝑥𝑈) → (𝑚(.r‘(oppr𝑅))𝑥) = (𝑥(.r𝑅)𝑚))
7869, 66, 75, 77syl3anc 1252 . . . . . . . . . . . . . . 15 ((((𝑅 ∈ Ring ∧ 𝑥𝑈) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ (𝑚 ∈ (Base‘𝑅) ∧ ((𝑦(.r𝑅)𝑥) = (1r𝑅) ∧ (𝑚(.r‘(oppr𝑅))𝑥) = (1r𝑅)))) → (𝑚(.r‘(oppr𝑅))𝑥) = (𝑥(.r𝑅)𝑚))
79 simprrr 540 . . . . . . . . . . . . . . 15 ((((𝑅 ∈ Ring ∧ 𝑥𝑈) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ (𝑚 ∈ (Base‘𝑅) ∧ ((𝑦(.r𝑅)𝑥) = (1r𝑅) ∧ (𝑚(.r‘(oppr𝑅))𝑥) = (1r𝑅)))) → (𝑚(.r‘(oppr𝑅))𝑥) = (1r𝑅))
8078, 79eqtr3d 2244 . . . . . . . . . . . . . 14 ((((𝑅 ∈ Ring ∧ 𝑥𝑈) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ (𝑚 ∈ (Base‘𝑅) ∧ ((𝑦(.r𝑅)𝑥) = (1r𝑅) ∧ (𝑚(.r‘(oppr𝑅))𝑥) = (1r𝑅)))) → (𝑥(.r𝑅)𝑚) = (1r𝑅))
8180oveq2d 5990 . . . . . . . . . . . . 13 ((((𝑅 ∈ Ring ∧ 𝑥𝑈) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ (𝑚 ∈ (Base‘𝑅) ∧ ((𝑦(.r𝑅)𝑥) = (1r𝑅) ∧ (𝑚(.r‘(oppr𝑅))𝑥) = (1r𝑅)))) → (𝑦(.r𝑅)(𝑥(.r𝑅)𝑚)) = (𝑦(.r𝑅)(1r𝑅)))
8272, 74, 813eqtr3d 2250 . . . . . . . . . . . 12 ((((𝑅 ∈ Ring ∧ 𝑥𝑈) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ (𝑚 ∈ (Base‘𝑅) ∧ ((𝑦(.r𝑅)𝑥) = (1r𝑅) ∧ (𝑚(.r‘(oppr𝑅))𝑥) = (1r𝑅)))) → ((1r𝑅)(.r𝑅)𝑚) = (𝑦(.r𝑅)(1r𝑅)))
8331, 8, 34ringlidm 13952 . . . . . . . . . . . . 13 ((𝑅 ∈ Ring ∧ 𝑚 ∈ (Base‘𝑅)) → ((1r𝑅)(.r𝑅)𝑚) = 𝑚)
8469, 66, 83syl2anc 411 . . . . . . . . . . . 12 ((((𝑅 ∈ Ring ∧ 𝑥𝑈) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ (𝑚 ∈ (Base‘𝑅) ∧ ((𝑦(.r𝑅)𝑥) = (1r𝑅) ∧ (𝑚(.r‘(oppr𝑅))𝑥) = (1r𝑅)))) → ((1r𝑅)(.r𝑅)𝑚) = 𝑚)
8531, 8, 34ringridm 13953 . . . . . . . . . . . . 13 ((𝑅 ∈ Ring ∧ 𝑦 ∈ (Base‘𝑅)) → (𝑦(.r𝑅)(1r𝑅)) = 𝑦)
8669, 70, 85syl2anc 411 . . . . . . . . . . . 12 ((((𝑅 ∈ Ring ∧ 𝑥𝑈) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ (𝑚 ∈ (Base‘𝑅) ∧ ((𝑦(.r𝑅)𝑥) = (1r𝑅) ∧ (𝑚(.r‘(oppr𝑅))𝑥) = (1r𝑅)))) → (𝑦(.r𝑅)(1r𝑅)) = 𝑦)
8782, 84, 863eqtr3d 2250 . . . . . . . . . . 11 ((((𝑅 ∈ Ring ∧ 𝑥𝑈) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ (𝑚 ∈ (Base‘𝑅) ∧ ((𝑦(.r𝑅)𝑥) = (1r𝑅) ∧ (𝑚(.r‘(oppr𝑅))𝑥) = (1r𝑅)))) → 𝑚 = 𝑦)
8868, 87, 803brtr3d 4093 . . . . . . . . . 10 ((((𝑅 ∈ Ring ∧ 𝑥𝑈) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ (𝑚 ∈ (Base‘𝑅) ∧ ((𝑦(.r𝑅)𝑥) = (1r𝑅) ∧ (𝑚(.r‘(oppr𝑅))𝑥) = (1r𝑅)))) → 𝑦(∥r𝑅)(1r𝑅))
8969, 52syl 14 . . . . . . . . . . . 12 ((((𝑅 ∈ Ring ∧ 𝑥𝑈) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ (𝑚 ∈ (Base‘𝑅) ∧ ((𝑦(.r𝑅)𝑥) = (1r𝑅) ∧ (𝑚(.r‘(oppr𝑅))𝑥) = (1r𝑅)))) → (Base‘𝑅) = (Base‘(oppr𝑅)))
90 eqidd 2210 . . . . . . . . . . . 12 ((((𝑅 ∈ Ring ∧ 𝑥𝑈) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ (𝑚 ∈ (Base‘𝑅) ∧ ((𝑦(.r𝑅)𝑥) = (1r𝑅) ∧ (𝑚(.r‘(oppr𝑅))𝑥) = (1r𝑅)))) → (∥r‘(oppr𝑅)) = (∥r‘(oppr𝑅)))
9169, 56syl 14 . . . . . . . . . . . 12 ((((𝑅 ∈ Ring ∧ 𝑥𝑈) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ (𝑚 ∈ (Base‘𝑅) ∧ ((𝑦(.r𝑅)𝑥) = (1r𝑅) ∧ (𝑚(.r‘(oppr𝑅))𝑥) = (1r𝑅)))) → (oppr𝑅) ∈ SRing)
92 eqidd 2210 . . . . . . . . . . . 12 ((((𝑅 ∈ Ring ∧ 𝑥𝑈) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ (𝑚 ∈ (Base‘𝑅) ∧ ((𝑦(.r𝑅)𝑥) = (1r𝑅) ∧ (𝑚(.r‘(oppr𝑅))𝑥) = (1r𝑅)))) → (.r‘(oppr𝑅)) = (.r‘(oppr𝑅)))
9389, 90, 91, 92, 70, 67dvdsrmuld 14025 . . . . . . . . . . 11 ((((𝑅 ∈ Ring ∧ 𝑥𝑈) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ (𝑚 ∈ (Base‘𝑅) ∧ ((𝑦(.r𝑅)𝑥) = (1r𝑅) ∧ (𝑚(.r‘(oppr𝑅))𝑥) = (1r𝑅)))) → 𝑦(∥r‘(oppr𝑅))(𝑥(.r‘(oppr𝑅))𝑦))
9431, 8, 51, 76opprmulg 14000 . . . . . . . . . . . . 13 ((𝑅 ∈ Ring ∧ 𝑥𝑈𝑦 ∈ (Base‘𝑅)) → (𝑥(.r‘(oppr𝑅))𝑦) = (𝑦(.r𝑅)𝑥))
9569, 75, 70, 94syl3anc 1252 . . . . . . . . . . . 12 ((((𝑅 ∈ Ring ∧ 𝑥𝑈) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ (𝑚 ∈ (Base‘𝑅) ∧ ((𝑦(.r𝑅)𝑥) = (1r𝑅) ∧ (𝑚(.r‘(oppr𝑅))𝑥) = (1r𝑅)))) → (𝑥(.r‘(oppr𝑅))𝑦) = (𝑦(.r𝑅)𝑥))
9695, 73eqtrd 2242 . . . . . . . . . . 11 ((((𝑅 ∈ Ring ∧ 𝑥𝑈) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ (𝑚 ∈ (Base‘𝑅) ∧ ((𝑦(.r𝑅)𝑥) = (1r𝑅) ∧ (𝑚(.r‘(oppr𝑅))𝑥) = (1r𝑅)))) → (𝑥(.r‘(oppr𝑅))𝑦) = (1r𝑅))
9793, 96breqtrd 4088 . . . . . . . . . 10 ((((𝑅 ∈ Ring ∧ 𝑥𝑈) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ (𝑚 ∈ (Base‘𝑅) ∧ ((𝑦(.r𝑅)𝑥) = (1r𝑅) ∧ (𝑚(.r‘(oppr𝑅))𝑥) = (1r𝑅)))) → 𝑦(∥r‘(oppr𝑅))(1r𝑅))
981a1i 9 . . . . . . . . . . 11 ((((𝑅 ∈ Ring ∧ 𝑥𝑈) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ (𝑚 ∈ (Base‘𝑅) ∧ ((𝑦(.r𝑅)𝑥) = (1r𝑅) ∧ (𝑚(.r‘(oppr𝑅))𝑥) = (1r𝑅)))) → 𝑈 = (Unit‘𝑅))
99 eqidd 2210 . . . . . . . . . . 11 ((((𝑅 ∈ Ring ∧ 𝑥𝑈) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ (𝑚 ∈ (Base‘𝑅) ∧ ((𝑦(.r𝑅)𝑥) = (1r𝑅) ∧ (𝑚(.r‘(oppr𝑅))𝑥) = (1r𝑅)))) → (1r𝑅) = (1r𝑅))
100 eqidd 2210 . . . . . . . . . . 11 ((((𝑅 ∈ Ring ∧ 𝑥𝑈) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ (𝑚 ∈ (Base‘𝑅) ∧ ((𝑦(.r𝑅)𝑥) = (1r𝑅) ∧ (𝑚(.r‘(oppr𝑅))𝑥) = (1r𝑅)))) → (oppr𝑅) = (oppr𝑅))
10198, 99, 63, 100, 90, 64isunitd 14035 . . . . . . . . . 10 ((((𝑅 ∈ Ring ∧ 𝑥𝑈) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ (𝑚 ∈ (Base‘𝑅) ∧ ((𝑦(.r𝑅)𝑥) = (1r𝑅) ∧ (𝑚(.r‘(oppr𝑅))𝑥) = (1r𝑅)))) → (𝑦𝑈 ↔ (𝑦(∥r𝑅)(1r𝑅) ∧ 𝑦(∥r‘(oppr𝑅))(1r𝑅))))
10288, 97, 101mpbir2and 949 . . . . . . . . 9 ((((𝑅 ∈ Ring ∧ 𝑥𝑈) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ (𝑚 ∈ (Base‘𝑅) ∧ ((𝑦(.r𝑅)𝑥) = (1r𝑅) ∧ (𝑚(.r‘(oppr𝑅))𝑥) = (1r𝑅)))) → 𝑦𝑈)
103102, 73jca 306 . . . . . . . 8 ((((𝑅 ∈ Ring ∧ 𝑥𝑈) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ (𝑚 ∈ (Base‘𝑅) ∧ ((𝑦(.r𝑅)𝑥) = (1r𝑅) ∧ (𝑚(.r‘(oppr𝑅))𝑥) = (1r𝑅)))) → (𝑦𝑈 ∧ (𝑦(.r𝑅)𝑥) = (1r𝑅)))
104103rexlimdvaa 2629 . . . . . . 7 (((𝑅 ∈ Ring ∧ 𝑥𝑈) ∧ 𝑦 ∈ (Base‘𝑅)) → (∃𝑚 ∈ (Base‘𝑅)((𝑦(.r𝑅)𝑥) = (1r𝑅) ∧ (𝑚(.r‘(oppr𝑅))𝑥) = (1r𝑅)) → (𝑦𝑈 ∧ (𝑦(.r𝑅)𝑥) = (1r𝑅))))
105104expimpd 363 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝑥𝑈) → ((𝑦 ∈ (Base‘𝑅) ∧ ∃𝑚 ∈ (Base‘𝑅)((𝑦(.r𝑅)𝑥) = (1r𝑅) ∧ (𝑚(.r‘(oppr𝑅))𝑥) = (1r𝑅))) → (𝑦𝑈 ∧ (𝑦(.r𝑅)𝑥) = (1r𝑅))))
106105reximdv2 2609 . . . . 5 ((𝑅 ∈ Ring ∧ 𝑥𝑈) → (∃𝑦 ∈ (Base‘𝑅)∃𝑚 ∈ (Base‘𝑅)((𝑦(.r𝑅)𝑥) = (1r𝑅) ∧ (𝑚(.r‘(oppr𝑅))𝑥) = (1r𝑅)) → ∃𝑦𝑈 (𝑦(.r𝑅)𝑥) = (1r𝑅)))
10761, 106biimtrrid 153 . . . 4 ((𝑅 ∈ Ring ∧ 𝑥𝑈) → ((∃𝑦 ∈ (Base‘𝑅)(𝑦(.r𝑅)𝑥) = (1r𝑅) ∧ ∃𝑚 ∈ (Base‘𝑅)(𝑚(.r‘(oppr𝑅))𝑥) = (1r𝑅)) → ∃𝑦𝑈 (𝑦(.r𝑅)𝑥) = (1r𝑅)))
10860, 107sylbid 150 . . 3 ((𝑅 ∈ Ring ∧ 𝑥𝑈) → ((𝑥(∥r𝑅)(1r𝑅) ∧ 𝑥(∥r‘(oppr𝑅))(1r𝑅)) → ∃𝑦𝑈 (𝑦(.r𝑅)𝑥) = (1r𝑅)))
10948, 108mpd 13 . 2 ((𝑅 ∈ Ring ∧ 𝑥𝑈) → ∃𝑦𝑈 (𝑦(.r𝑅)𝑥) = (1r𝑅))
1106, 19, 20, 33, 35, 42, 109isgrpde 13521 1 (𝑅 ∈ Ring → 𝐺 ∈ Grp)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  w3a 983   = wceq 1375  wcel 2180  wrex 2489  Vcvv 2779   class class class wbr 4062   Fn wfn 5289  cfv 5294  (class class class)co 5974  Basecbs 12998  s cress 12999  .rcmulr 13077  Grpcgrp 13499  mulGrpcmgp 13849  1rcur 13888  SRingcsrg 13892  Ringcrg 13925  opprcoppr 13996  rcdsr 14015  Unitcui 14016
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 713  ax-5 1473  ax-7 1474  ax-gen 1475  ax-ie1 1519  ax-ie2 1520  ax-8 1530  ax-10 1531  ax-11 1532  ax-i12 1533  ax-bndl 1535  ax-4 1536  ax-17 1552  ax-i9 1556  ax-ial 1560  ax-i5r 1561  ax-13 2182  ax-14 2183  ax-ext 2191  ax-coll 4178  ax-sep 4181  ax-nul 4189  ax-pow 4237  ax-pr 4272  ax-un 4501  ax-setind 4606  ax-cnex 8058  ax-resscn 8059  ax-1cn 8060  ax-1re 8061  ax-icn 8062  ax-addcl 8063  ax-addrcl 8064  ax-mulcl 8065  ax-addcom 8067  ax-addass 8069  ax-i2m1 8072  ax-0lt1 8073  ax-0id 8075  ax-rnegex 8076  ax-pre-ltirr 8079  ax-pre-lttrn 8081  ax-pre-ltadd 8083
This theorem depends on definitions:  df-bi 117  df-3an 985  df-tru 1378  df-fal 1381  df-nf 1487  df-sb 1789  df-eu 2060  df-mo 2061  df-clab 2196  df-cleq 2202  df-clel 2205  df-nfc 2341  df-ne 2381  df-nel 2476  df-ral 2493  df-rex 2494  df-reu 2495  df-rmo 2496  df-rab 2497  df-v 2781  df-sbc 3009  df-csb 3105  df-dif 3179  df-un 3181  df-in 3183  df-ss 3190  df-nul 3472  df-pw 3631  df-sn 3652  df-pr 3653  df-op 3655  df-uni 3868  df-int 3903  df-iun 3946  df-br 4063  df-opab 4125  df-mpt 4126  df-id 4361  df-xp 4702  df-rel 4703  df-cnv 4704  df-co 4705  df-dm 4706  df-rn 4707  df-res 4708  df-ima 4709  df-iota 5254  df-fun 5296  df-fn 5297  df-f 5298  df-f1 5299  df-fo 5300  df-f1o 5301  df-fv 5302  df-riota 5927  df-ov 5977  df-oprab 5978  df-mpo 5979  df-tpos 6361  df-pnf 8151  df-mnf 8152  df-ltxr 8154  df-inn 9079  df-2 9137  df-3 9138  df-ndx 13001  df-slot 13002  df-base 13004  df-sets 13005  df-iress 13006  df-plusg 13089  df-mulr 13090  df-0g 13257  df-mgm 13355  df-sgrp 13401  df-mnd 13416  df-grp 13502  df-minusg 13503  df-cmn 13789  df-abl 13790  df-mgp 13850  df-ur 13889  df-srg 13893  df-ring 13927  df-oppr 13997  df-dvdsr 14018  df-unit 14019
This theorem is referenced by:  unitabl  14046  unitsubm  14048  invrfvald  14051  unitinvcl  14052  unitinvinv  14053  unitlinv  14055  unitrinv  14056  rdivmuldivd  14073  rhmunitinv  14107  subrgugrp  14169  expghmap  14536
  Copyright terms: Public domain W3C validator