ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  unitgrp GIF version

Theorem unitgrp 13612
Description: The group of units is a group under multiplication. (Contributed by Mario Carneiro, 2-Dec-2014.)
Hypotheses
Ref Expression
unitgrp.1 𝑈 = (Unit‘𝑅)
unitgrp.2 𝐺 = ((mulGrp‘𝑅) ↾s 𝑈)
Assertion
Ref Expression
unitgrp (𝑅 ∈ Ring → 𝐺 ∈ Grp)

Proof of Theorem unitgrp
Dummy variables 𝑥 𝑦 𝑧 𝑚 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 unitgrp.1 . . . 4 𝑈 = (Unit‘𝑅)
21a1i 9 . . 3 (𝑅 ∈ Ring → 𝑈 = (Unit‘𝑅))
3 unitgrp.2 . . . 4 𝐺 = ((mulGrp‘𝑅) ↾s 𝑈)
43a1i 9 . . 3 (𝑅 ∈ Ring → 𝐺 = ((mulGrp‘𝑅) ↾s 𝑈))
5 ringsrg 13543 . . 3 (𝑅 ∈ Ring → 𝑅 ∈ SRing)
62, 4, 5unitgrpbasd 13611 . 2 (𝑅 ∈ Ring → 𝑈 = (Base‘𝐺))
7 eqid 2193 . . . 4 (mulGrp‘𝑅) = (mulGrp‘𝑅)
8 eqid 2193 . . . 4 (.r𝑅) = (.r𝑅)
97, 8mgpplusgg 13420 . . 3 (𝑅 ∈ Ring → (.r𝑅) = (+g‘(mulGrp‘𝑅)))
10 basfn 12676 . . . . 5 Base Fn V
11 elex 2771 . . . . 5 (𝑅 ∈ Ring → 𝑅 ∈ V)
12 funfvex 5571 . . . . . 6 ((Fun Base ∧ 𝑅 ∈ dom Base) → (Base‘𝑅) ∈ V)
1312funfni 5354 . . . . 5 ((Base Fn V ∧ 𝑅 ∈ V) → (Base‘𝑅) ∈ V)
1410, 11, 13sylancr 414 . . . 4 (𝑅 ∈ Ring → (Base‘𝑅) ∈ V)
15 eqidd 2194 . . . . 5 (𝑅 ∈ Ring → (Base‘𝑅) = (Base‘𝑅))
1615, 2, 5unitssd 13605 . . . 4 (𝑅 ∈ Ring → 𝑈 ⊆ (Base‘𝑅))
1714, 16ssexd 4169 . . 3 (𝑅 ∈ Ring → 𝑈 ∈ V)
187mgpex 13421 . . 3 (𝑅 ∈ Ring → (mulGrp‘𝑅) ∈ V)
194, 9, 17, 18ressplusgd 12746 . 2 (𝑅 ∈ Ring → (.r𝑅) = (+g𝐺))
201, 8unitmulcl 13609 . 2 ((𝑅 ∈ Ring ∧ 𝑥𝑈𝑦𝑈) → (𝑥(.r𝑅)𝑦) ∈ 𝑈)
21 eqidd 2194 . . . . 5 ((𝑅 ∈ Ring ∧ (𝑥𝑈𝑦𝑈𝑧𝑈)) → (Base‘𝑅) = (Base‘𝑅))
221a1i 9 . . . . 5 ((𝑅 ∈ Ring ∧ (𝑥𝑈𝑦𝑈𝑧𝑈)) → 𝑈 = (Unit‘𝑅))
235adantr 276 . . . . 5 ((𝑅 ∈ Ring ∧ (𝑥𝑈𝑦𝑈𝑧𝑈)) → 𝑅 ∈ SRing)
24 simpr1 1005 . . . . 5 ((𝑅 ∈ Ring ∧ (𝑥𝑈𝑦𝑈𝑧𝑈)) → 𝑥𝑈)
2521, 22, 23, 24unitcld 13604 . . . 4 ((𝑅 ∈ Ring ∧ (𝑥𝑈𝑦𝑈𝑧𝑈)) → 𝑥 ∈ (Base‘𝑅))
26 simpr2 1006 . . . . 5 ((𝑅 ∈ Ring ∧ (𝑥𝑈𝑦𝑈𝑧𝑈)) → 𝑦𝑈)
2721, 22, 23, 26unitcld 13604 . . . 4 ((𝑅 ∈ Ring ∧ (𝑥𝑈𝑦𝑈𝑧𝑈)) → 𝑦 ∈ (Base‘𝑅))
28 simpr3 1007 . . . . 5 ((𝑅 ∈ Ring ∧ (𝑥𝑈𝑦𝑈𝑧𝑈)) → 𝑧𝑈)
2921, 22, 23, 28unitcld 13604 . . . 4 ((𝑅 ∈ Ring ∧ (𝑥𝑈𝑦𝑈𝑧𝑈)) → 𝑧 ∈ (Base‘𝑅))
3025, 27, 293jca 1179 . . 3 ((𝑅 ∈ Ring ∧ (𝑥𝑈𝑦𝑈𝑧𝑈)) → (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅) ∧ 𝑧 ∈ (Base‘𝑅)))
31 eqid 2193 . . . 4 (Base‘𝑅) = (Base‘𝑅)
3231, 8ringass 13512 . . 3 ((𝑅 ∈ Ring ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅) ∧ 𝑧 ∈ (Base‘𝑅))) → ((𝑥(.r𝑅)𝑦)(.r𝑅)𝑧) = (𝑥(.r𝑅)(𝑦(.r𝑅)𝑧)))
3330, 32syldan 282 . 2 ((𝑅 ∈ Ring ∧ (𝑥𝑈𝑦𝑈𝑧𝑈)) → ((𝑥(.r𝑅)𝑦)(.r𝑅)𝑧) = (𝑥(.r𝑅)(𝑦(.r𝑅)𝑧)))
34 eqid 2193 . . 3 (1r𝑅) = (1r𝑅)
351, 341unit 13603 . 2 (𝑅 ∈ Ring → (1r𝑅) ∈ 𝑈)
36 eqidd 2194 . . . 4 ((𝑅 ∈ Ring ∧ 𝑥𝑈) → (Base‘𝑅) = (Base‘𝑅))
371a1i 9 . . . 4 ((𝑅 ∈ Ring ∧ 𝑥𝑈) → 𝑈 = (Unit‘𝑅))
385adantr 276 . . . 4 ((𝑅 ∈ Ring ∧ 𝑥𝑈) → 𝑅 ∈ SRing)
39 simpr 110 . . . 4 ((𝑅 ∈ Ring ∧ 𝑥𝑈) → 𝑥𝑈)
4036, 37, 38, 39unitcld 13604 . . 3 ((𝑅 ∈ Ring ∧ 𝑥𝑈) → 𝑥 ∈ (Base‘𝑅))
4131, 8, 34ringlidm 13519 . . 3 ((𝑅 ∈ Ring ∧ 𝑥 ∈ (Base‘𝑅)) → ((1r𝑅)(.r𝑅)𝑥) = 𝑥)
4240, 41syldan 282 . 2 ((𝑅 ∈ Ring ∧ 𝑥𝑈) → ((1r𝑅)(.r𝑅)𝑥) = 𝑥)
43 eqidd 2194 . . . . 5 ((𝑅 ∈ Ring ∧ 𝑥𝑈) → (1r𝑅) = (1r𝑅))
44 eqidd 2194 . . . . 5 ((𝑅 ∈ Ring ∧ 𝑥𝑈) → (∥r𝑅) = (∥r𝑅))
45 eqidd 2194 . . . . 5 ((𝑅 ∈ Ring ∧ 𝑥𝑈) → (oppr𝑅) = (oppr𝑅))
46 eqidd 2194 . . . . 5 ((𝑅 ∈ Ring ∧ 𝑥𝑈) → (∥r‘(oppr𝑅)) = (∥r‘(oppr𝑅)))
4737, 43, 44, 45, 46, 38isunitd 13602 . . . 4 ((𝑅 ∈ Ring ∧ 𝑥𝑈) → (𝑥𝑈 ↔ (𝑥(∥r𝑅)(1r𝑅) ∧ 𝑥(∥r‘(oppr𝑅))(1r𝑅))))
4839, 47mpbid 147 . . 3 ((𝑅 ∈ Ring ∧ 𝑥𝑈) → (𝑥(∥r𝑅)(1r𝑅) ∧ 𝑥(∥r‘(oppr𝑅))(1r𝑅)))
49 eqidd 2194 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝑥𝑈) → (.r𝑅) = (.r𝑅))
5036, 44, 38, 49, 40dvdsr2d 13591 . . . . 5 ((𝑅 ∈ Ring ∧ 𝑥𝑈) → (𝑥(∥r𝑅)(1r𝑅) ↔ ∃𝑦 ∈ (Base‘𝑅)(𝑦(.r𝑅)𝑥) = (1r𝑅)))
51 eqid 2193 . . . . . . . 8 (oppr𝑅) = (oppr𝑅)
5251, 31opprbasg 13571 . . . . . . 7 (𝑅 ∈ Ring → (Base‘𝑅) = (Base‘(oppr𝑅)))
5352adantr 276 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝑥𝑈) → (Base‘𝑅) = (Base‘(oppr𝑅)))
5451opprring 13575 . . . . . . . 8 (𝑅 ∈ Ring → (oppr𝑅) ∈ Ring)
55 ringsrg 13543 . . . . . . . 8 ((oppr𝑅) ∈ Ring → (oppr𝑅) ∈ SRing)
5654, 55syl 14 . . . . . . 7 (𝑅 ∈ Ring → (oppr𝑅) ∈ SRing)
5756adantr 276 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝑥𝑈) → (oppr𝑅) ∈ SRing)
58 eqidd 2194 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝑥𝑈) → (.r‘(oppr𝑅)) = (.r‘(oppr𝑅)))
5953, 46, 57, 58, 40dvdsr2d 13591 . . . . 5 ((𝑅 ∈ Ring ∧ 𝑥𝑈) → (𝑥(∥r‘(oppr𝑅))(1r𝑅) ↔ ∃𝑚 ∈ (Base‘𝑅)(𝑚(.r‘(oppr𝑅))𝑥) = (1r𝑅)))
6050, 59anbi12d 473 . . . 4 ((𝑅 ∈ Ring ∧ 𝑥𝑈) → ((𝑥(∥r𝑅)(1r𝑅) ∧ 𝑥(∥r‘(oppr𝑅))(1r𝑅)) ↔ (∃𝑦 ∈ (Base‘𝑅)(𝑦(.r𝑅)𝑥) = (1r𝑅) ∧ ∃𝑚 ∈ (Base‘𝑅)(𝑚(.r‘(oppr𝑅))𝑥) = (1r𝑅))))
61 reeanv 2664 . . . . 5 (∃𝑦 ∈ (Base‘𝑅)∃𝑚 ∈ (Base‘𝑅)((𝑦(.r𝑅)𝑥) = (1r𝑅) ∧ (𝑚(.r‘(oppr𝑅))𝑥) = (1r𝑅)) ↔ (∃𝑦 ∈ (Base‘𝑅)(𝑦(.r𝑅)𝑥) = (1r𝑅) ∧ ∃𝑚 ∈ (Base‘𝑅)(𝑚(.r‘(oppr𝑅))𝑥) = (1r𝑅)))
62 eqidd 2194 . . . . . . . . . . . 12 ((((𝑅 ∈ Ring ∧ 𝑥𝑈) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ (𝑚 ∈ (Base‘𝑅) ∧ ((𝑦(.r𝑅)𝑥) = (1r𝑅) ∧ (𝑚(.r‘(oppr𝑅))𝑥) = (1r𝑅)))) → (Base‘𝑅) = (Base‘𝑅))
63 eqidd 2194 . . . . . . . . . . . 12 ((((𝑅 ∈ Ring ∧ 𝑥𝑈) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ (𝑚 ∈ (Base‘𝑅) ∧ ((𝑦(.r𝑅)𝑥) = (1r𝑅) ∧ (𝑚(.r‘(oppr𝑅))𝑥) = (1r𝑅)))) → (∥r𝑅) = (∥r𝑅))
6438ad2antrr 488 . . . . . . . . . . . 12 ((((𝑅 ∈ Ring ∧ 𝑥𝑈) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ (𝑚 ∈ (Base‘𝑅) ∧ ((𝑦(.r𝑅)𝑥) = (1r𝑅) ∧ (𝑚(.r‘(oppr𝑅))𝑥) = (1r𝑅)))) → 𝑅 ∈ SRing)
65 eqidd 2194 . . . . . . . . . . . 12 ((((𝑅 ∈ Ring ∧ 𝑥𝑈) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ (𝑚 ∈ (Base‘𝑅) ∧ ((𝑦(.r𝑅)𝑥) = (1r𝑅) ∧ (𝑚(.r‘(oppr𝑅))𝑥) = (1r𝑅)))) → (.r𝑅) = (.r𝑅))
66 simprl 529 . . . . . . . . . . . 12 ((((𝑅 ∈ Ring ∧ 𝑥𝑈) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ (𝑚 ∈ (Base‘𝑅) ∧ ((𝑦(.r𝑅)𝑥) = (1r𝑅) ∧ (𝑚(.r‘(oppr𝑅))𝑥) = (1r𝑅)))) → 𝑚 ∈ (Base‘𝑅))
6740ad2antrr 488 . . . . . . . . . . . 12 ((((𝑅 ∈ Ring ∧ 𝑥𝑈) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ (𝑚 ∈ (Base‘𝑅) ∧ ((𝑦(.r𝑅)𝑥) = (1r𝑅) ∧ (𝑚(.r‘(oppr𝑅))𝑥) = (1r𝑅)))) → 𝑥 ∈ (Base‘𝑅))
6862, 63, 64, 65, 66, 67dvdsrmuld 13592 . . . . . . . . . . 11 ((((𝑅 ∈ Ring ∧ 𝑥𝑈) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ (𝑚 ∈ (Base‘𝑅) ∧ ((𝑦(.r𝑅)𝑥) = (1r𝑅) ∧ (𝑚(.r‘(oppr𝑅))𝑥) = (1r𝑅)))) → 𝑚(∥r𝑅)(𝑥(.r𝑅)𝑚))
69 simplll 533 . . . . . . . . . . . . . 14 ((((𝑅 ∈ Ring ∧ 𝑥𝑈) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ (𝑚 ∈ (Base‘𝑅) ∧ ((𝑦(.r𝑅)𝑥) = (1r𝑅) ∧ (𝑚(.r‘(oppr𝑅))𝑥) = (1r𝑅)))) → 𝑅 ∈ Ring)
70 simplr 528 . . . . . . . . . . . . . 14 ((((𝑅 ∈ Ring ∧ 𝑥𝑈) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ (𝑚 ∈ (Base‘𝑅) ∧ ((𝑦(.r𝑅)𝑥) = (1r𝑅) ∧ (𝑚(.r‘(oppr𝑅))𝑥) = (1r𝑅)))) → 𝑦 ∈ (Base‘𝑅))
7131, 8ringass 13512 . . . . . . . . . . . . . 14 ((𝑅 ∈ Ring ∧ (𝑦 ∈ (Base‘𝑅) ∧ 𝑥 ∈ (Base‘𝑅) ∧ 𝑚 ∈ (Base‘𝑅))) → ((𝑦(.r𝑅)𝑥)(.r𝑅)𝑚) = (𝑦(.r𝑅)(𝑥(.r𝑅)𝑚)))
7269, 70, 67, 66, 71syl13anc 1251 . . . . . . . . . . . . 13 ((((𝑅 ∈ Ring ∧ 𝑥𝑈) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ (𝑚 ∈ (Base‘𝑅) ∧ ((𝑦(.r𝑅)𝑥) = (1r𝑅) ∧ (𝑚(.r‘(oppr𝑅))𝑥) = (1r𝑅)))) → ((𝑦(.r𝑅)𝑥)(.r𝑅)𝑚) = (𝑦(.r𝑅)(𝑥(.r𝑅)𝑚)))
73 simprrl 539 . . . . . . . . . . . . . 14 ((((𝑅 ∈ Ring ∧ 𝑥𝑈) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ (𝑚 ∈ (Base‘𝑅) ∧ ((𝑦(.r𝑅)𝑥) = (1r𝑅) ∧ (𝑚(.r‘(oppr𝑅))𝑥) = (1r𝑅)))) → (𝑦(.r𝑅)𝑥) = (1r𝑅))
7473oveq1d 5933 . . . . . . . . . . . . 13 ((((𝑅 ∈ Ring ∧ 𝑥𝑈) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ (𝑚 ∈ (Base‘𝑅) ∧ ((𝑦(.r𝑅)𝑥) = (1r𝑅) ∧ (𝑚(.r‘(oppr𝑅))𝑥) = (1r𝑅)))) → ((𝑦(.r𝑅)𝑥)(.r𝑅)𝑚) = ((1r𝑅)(.r𝑅)𝑚))
7539ad2antrr 488 . . . . . . . . . . . . . . . 16 ((((𝑅 ∈ Ring ∧ 𝑥𝑈) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ (𝑚 ∈ (Base‘𝑅) ∧ ((𝑦(.r𝑅)𝑥) = (1r𝑅) ∧ (𝑚(.r‘(oppr𝑅))𝑥) = (1r𝑅)))) → 𝑥𝑈)
76 eqid 2193 . . . . . . . . . . . . . . . . 17 (.r‘(oppr𝑅)) = (.r‘(oppr𝑅))
7731, 8, 51, 76opprmulg 13567 . . . . . . . . . . . . . . . 16 ((𝑅 ∈ Ring ∧ 𝑚 ∈ (Base‘𝑅) ∧ 𝑥𝑈) → (𝑚(.r‘(oppr𝑅))𝑥) = (𝑥(.r𝑅)𝑚))
7869, 66, 75, 77syl3anc 1249 . . . . . . . . . . . . . . 15 ((((𝑅 ∈ Ring ∧ 𝑥𝑈) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ (𝑚 ∈ (Base‘𝑅) ∧ ((𝑦(.r𝑅)𝑥) = (1r𝑅) ∧ (𝑚(.r‘(oppr𝑅))𝑥) = (1r𝑅)))) → (𝑚(.r‘(oppr𝑅))𝑥) = (𝑥(.r𝑅)𝑚))
79 simprrr 540 . . . . . . . . . . . . . . 15 ((((𝑅 ∈ Ring ∧ 𝑥𝑈) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ (𝑚 ∈ (Base‘𝑅) ∧ ((𝑦(.r𝑅)𝑥) = (1r𝑅) ∧ (𝑚(.r‘(oppr𝑅))𝑥) = (1r𝑅)))) → (𝑚(.r‘(oppr𝑅))𝑥) = (1r𝑅))
8078, 79eqtr3d 2228 . . . . . . . . . . . . . 14 ((((𝑅 ∈ Ring ∧ 𝑥𝑈) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ (𝑚 ∈ (Base‘𝑅) ∧ ((𝑦(.r𝑅)𝑥) = (1r𝑅) ∧ (𝑚(.r‘(oppr𝑅))𝑥) = (1r𝑅)))) → (𝑥(.r𝑅)𝑚) = (1r𝑅))
8180oveq2d 5934 . . . . . . . . . . . . 13 ((((𝑅 ∈ Ring ∧ 𝑥𝑈) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ (𝑚 ∈ (Base‘𝑅) ∧ ((𝑦(.r𝑅)𝑥) = (1r𝑅) ∧ (𝑚(.r‘(oppr𝑅))𝑥) = (1r𝑅)))) → (𝑦(.r𝑅)(𝑥(.r𝑅)𝑚)) = (𝑦(.r𝑅)(1r𝑅)))
8272, 74, 813eqtr3d 2234 . . . . . . . . . . . 12 ((((𝑅 ∈ Ring ∧ 𝑥𝑈) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ (𝑚 ∈ (Base‘𝑅) ∧ ((𝑦(.r𝑅)𝑥) = (1r𝑅) ∧ (𝑚(.r‘(oppr𝑅))𝑥) = (1r𝑅)))) → ((1r𝑅)(.r𝑅)𝑚) = (𝑦(.r𝑅)(1r𝑅)))
8331, 8, 34ringlidm 13519 . . . . . . . . . . . . 13 ((𝑅 ∈ Ring ∧ 𝑚 ∈ (Base‘𝑅)) → ((1r𝑅)(.r𝑅)𝑚) = 𝑚)
8469, 66, 83syl2anc 411 . . . . . . . . . . . 12 ((((𝑅 ∈ Ring ∧ 𝑥𝑈) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ (𝑚 ∈ (Base‘𝑅) ∧ ((𝑦(.r𝑅)𝑥) = (1r𝑅) ∧ (𝑚(.r‘(oppr𝑅))𝑥) = (1r𝑅)))) → ((1r𝑅)(.r𝑅)𝑚) = 𝑚)
8531, 8, 34ringridm 13520 . . . . . . . . . . . . 13 ((𝑅 ∈ Ring ∧ 𝑦 ∈ (Base‘𝑅)) → (𝑦(.r𝑅)(1r𝑅)) = 𝑦)
8669, 70, 85syl2anc 411 . . . . . . . . . . . 12 ((((𝑅 ∈ Ring ∧ 𝑥𝑈) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ (𝑚 ∈ (Base‘𝑅) ∧ ((𝑦(.r𝑅)𝑥) = (1r𝑅) ∧ (𝑚(.r‘(oppr𝑅))𝑥) = (1r𝑅)))) → (𝑦(.r𝑅)(1r𝑅)) = 𝑦)
8782, 84, 863eqtr3d 2234 . . . . . . . . . . 11 ((((𝑅 ∈ Ring ∧ 𝑥𝑈) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ (𝑚 ∈ (Base‘𝑅) ∧ ((𝑦(.r𝑅)𝑥) = (1r𝑅) ∧ (𝑚(.r‘(oppr𝑅))𝑥) = (1r𝑅)))) → 𝑚 = 𝑦)
8868, 87, 803brtr3d 4060 . . . . . . . . . 10 ((((𝑅 ∈ Ring ∧ 𝑥𝑈) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ (𝑚 ∈ (Base‘𝑅) ∧ ((𝑦(.r𝑅)𝑥) = (1r𝑅) ∧ (𝑚(.r‘(oppr𝑅))𝑥) = (1r𝑅)))) → 𝑦(∥r𝑅)(1r𝑅))
8969, 52syl 14 . . . . . . . . . . . 12 ((((𝑅 ∈ Ring ∧ 𝑥𝑈) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ (𝑚 ∈ (Base‘𝑅) ∧ ((𝑦(.r𝑅)𝑥) = (1r𝑅) ∧ (𝑚(.r‘(oppr𝑅))𝑥) = (1r𝑅)))) → (Base‘𝑅) = (Base‘(oppr𝑅)))
90 eqidd 2194 . . . . . . . . . . . 12 ((((𝑅 ∈ Ring ∧ 𝑥𝑈) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ (𝑚 ∈ (Base‘𝑅) ∧ ((𝑦(.r𝑅)𝑥) = (1r𝑅) ∧ (𝑚(.r‘(oppr𝑅))𝑥) = (1r𝑅)))) → (∥r‘(oppr𝑅)) = (∥r‘(oppr𝑅)))
9169, 56syl 14 . . . . . . . . . . . 12 ((((𝑅 ∈ Ring ∧ 𝑥𝑈) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ (𝑚 ∈ (Base‘𝑅) ∧ ((𝑦(.r𝑅)𝑥) = (1r𝑅) ∧ (𝑚(.r‘(oppr𝑅))𝑥) = (1r𝑅)))) → (oppr𝑅) ∈ SRing)
92 eqidd 2194 . . . . . . . . . . . 12 ((((𝑅 ∈ Ring ∧ 𝑥𝑈) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ (𝑚 ∈ (Base‘𝑅) ∧ ((𝑦(.r𝑅)𝑥) = (1r𝑅) ∧ (𝑚(.r‘(oppr𝑅))𝑥) = (1r𝑅)))) → (.r‘(oppr𝑅)) = (.r‘(oppr𝑅)))
9389, 90, 91, 92, 70, 67dvdsrmuld 13592 . . . . . . . . . . 11 ((((𝑅 ∈ Ring ∧ 𝑥𝑈) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ (𝑚 ∈ (Base‘𝑅) ∧ ((𝑦(.r𝑅)𝑥) = (1r𝑅) ∧ (𝑚(.r‘(oppr𝑅))𝑥) = (1r𝑅)))) → 𝑦(∥r‘(oppr𝑅))(𝑥(.r‘(oppr𝑅))𝑦))
9431, 8, 51, 76opprmulg 13567 . . . . . . . . . . . . 13 ((𝑅 ∈ Ring ∧ 𝑥𝑈𝑦 ∈ (Base‘𝑅)) → (𝑥(.r‘(oppr𝑅))𝑦) = (𝑦(.r𝑅)𝑥))
9569, 75, 70, 94syl3anc 1249 . . . . . . . . . . . 12 ((((𝑅 ∈ Ring ∧ 𝑥𝑈) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ (𝑚 ∈ (Base‘𝑅) ∧ ((𝑦(.r𝑅)𝑥) = (1r𝑅) ∧ (𝑚(.r‘(oppr𝑅))𝑥) = (1r𝑅)))) → (𝑥(.r‘(oppr𝑅))𝑦) = (𝑦(.r𝑅)𝑥))
9695, 73eqtrd 2226 . . . . . . . . . . 11 ((((𝑅 ∈ Ring ∧ 𝑥𝑈) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ (𝑚 ∈ (Base‘𝑅) ∧ ((𝑦(.r𝑅)𝑥) = (1r𝑅) ∧ (𝑚(.r‘(oppr𝑅))𝑥) = (1r𝑅)))) → (𝑥(.r‘(oppr𝑅))𝑦) = (1r𝑅))
9793, 96breqtrd 4055 . . . . . . . . . 10 ((((𝑅 ∈ Ring ∧ 𝑥𝑈) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ (𝑚 ∈ (Base‘𝑅) ∧ ((𝑦(.r𝑅)𝑥) = (1r𝑅) ∧ (𝑚(.r‘(oppr𝑅))𝑥) = (1r𝑅)))) → 𝑦(∥r‘(oppr𝑅))(1r𝑅))
981a1i 9 . . . . . . . . . . 11 ((((𝑅 ∈ Ring ∧ 𝑥𝑈) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ (𝑚 ∈ (Base‘𝑅) ∧ ((𝑦(.r𝑅)𝑥) = (1r𝑅) ∧ (𝑚(.r‘(oppr𝑅))𝑥) = (1r𝑅)))) → 𝑈 = (Unit‘𝑅))
99 eqidd 2194 . . . . . . . . . . 11 ((((𝑅 ∈ Ring ∧ 𝑥𝑈) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ (𝑚 ∈ (Base‘𝑅) ∧ ((𝑦(.r𝑅)𝑥) = (1r𝑅) ∧ (𝑚(.r‘(oppr𝑅))𝑥) = (1r𝑅)))) → (1r𝑅) = (1r𝑅))
100 eqidd 2194 . . . . . . . . . . 11 ((((𝑅 ∈ Ring ∧ 𝑥𝑈) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ (𝑚 ∈ (Base‘𝑅) ∧ ((𝑦(.r𝑅)𝑥) = (1r𝑅) ∧ (𝑚(.r‘(oppr𝑅))𝑥) = (1r𝑅)))) → (oppr𝑅) = (oppr𝑅))
10198, 99, 63, 100, 90, 64isunitd 13602 . . . . . . . . . 10 ((((𝑅 ∈ Ring ∧ 𝑥𝑈) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ (𝑚 ∈ (Base‘𝑅) ∧ ((𝑦(.r𝑅)𝑥) = (1r𝑅) ∧ (𝑚(.r‘(oppr𝑅))𝑥) = (1r𝑅)))) → (𝑦𝑈 ↔ (𝑦(∥r𝑅)(1r𝑅) ∧ 𝑦(∥r‘(oppr𝑅))(1r𝑅))))
10288, 97, 101mpbir2and 946 . . . . . . . . 9 ((((𝑅 ∈ Ring ∧ 𝑥𝑈) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ (𝑚 ∈ (Base‘𝑅) ∧ ((𝑦(.r𝑅)𝑥) = (1r𝑅) ∧ (𝑚(.r‘(oppr𝑅))𝑥) = (1r𝑅)))) → 𝑦𝑈)
103102, 73jca 306 . . . . . . . 8 ((((𝑅 ∈ Ring ∧ 𝑥𝑈) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ (𝑚 ∈ (Base‘𝑅) ∧ ((𝑦(.r𝑅)𝑥) = (1r𝑅) ∧ (𝑚(.r‘(oppr𝑅))𝑥) = (1r𝑅)))) → (𝑦𝑈 ∧ (𝑦(.r𝑅)𝑥) = (1r𝑅)))
104103rexlimdvaa 2612 . . . . . . 7 (((𝑅 ∈ Ring ∧ 𝑥𝑈) ∧ 𝑦 ∈ (Base‘𝑅)) → (∃𝑚 ∈ (Base‘𝑅)((𝑦(.r𝑅)𝑥) = (1r𝑅) ∧ (𝑚(.r‘(oppr𝑅))𝑥) = (1r𝑅)) → (𝑦𝑈 ∧ (𝑦(.r𝑅)𝑥) = (1r𝑅))))
105104expimpd 363 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝑥𝑈) → ((𝑦 ∈ (Base‘𝑅) ∧ ∃𝑚 ∈ (Base‘𝑅)((𝑦(.r𝑅)𝑥) = (1r𝑅) ∧ (𝑚(.r‘(oppr𝑅))𝑥) = (1r𝑅))) → (𝑦𝑈 ∧ (𝑦(.r𝑅)𝑥) = (1r𝑅))))
106105reximdv2 2593 . . . . 5 ((𝑅 ∈ Ring ∧ 𝑥𝑈) → (∃𝑦 ∈ (Base‘𝑅)∃𝑚 ∈ (Base‘𝑅)((𝑦(.r𝑅)𝑥) = (1r𝑅) ∧ (𝑚(.r‘(oppr𝑅))𝑥) = (1r𝑅)) → ∃𝑦𝑈 (𝑦(.r𝑅)𝑥) = (1r𝑅)))
10761, 106biimtrrid 153 . . . 4 ((𝑅 ∈ Ring ∧ 𝑥𝑈) → ((∃𝑦 ∈ (Base‘𝑅)(𝑦(.r𝑅)𝑥) = (1r𝑅) ∧ ∃𝑚 ∈ (Base‘𝑅)(𝑚(.r‘(oppr𝑅))𝑥) = (1r𝑅)) → ∃𝑦𝑈 (𝑦(.r𝑅)𝑥) = (1r𝑅)))
10860, 107sylbid 150 . . 3 ((𝑅 ∈ Ring ∧ 𝑥𝑈) → ((𝑥(∥r𝑅)(1r𝑅) ∧ 𝑥(∥r‘(oppr𝑅))(1r𝑅)) → ∃𝑦𝑈 (𝑦(.r𝑅)𝑥) = (1r𝑅)))
10948, 108mpd 13 . 2 ((𝑅 ∈ Ring ∧ 𝑥𝑈) → ∃𝑦𝑈 (𝑦(.r𝑅)𝑥) = (1r𝑅))
1106, 19, 20, 33, 35, 42, 109isgrpde 13094 1 (𝑅 ∈ Ring → 𝐺 ∈ Grp)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  w3a 980   = wceq 1364  wcel 2164  wrex 2473  Vcvv 2760   class class class wbr 4029   Fn wfn 5249  cfv 5254  (class class class)co 5918  Basecbs 12618  s cress 12619  .rcmulr 12696  Grpcgrp 13072  mulGrpcmgp 13416  1rcur 13455  SRingcsrg 13459  Ringcrg 13492  opprcoppr 13563  rcdsr 13582  Unitcui 13583
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4144  ax-sep 4147  ax-nul 4155  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569  ax-cnex 7963  ax-resscn 7964  ax-1cn 7965  ax-1re 7966  ax-icn 7967  ax-addcl 7968  ax-addrcl 7969  ax-mulcl 7970  ax-addcom 7972  ax-addass 7974  ax-i2m1 7977  ax-0lt1 7978  ax-0id 7980  ax-rnegex 7981  ax-pre-ltirr 7984  ax-pre-lttrn 7986  ax-pre-ltadd 7988
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rmo 2480  df-rab 2481  df-v 2762  df-sbc 2986  df-csb 3081  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3447  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-int 3871  df-iun 3914  df-br 4030  df-opab 4091  df-mpt 4092  df-id 4324  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-f1 5259  df-fo 5260  df-f1o 5261  df-fv 5262  df-riota 5873  df-ov 5921  df-oprab 5922  df-mpo 5923  df-tpos 6298  df-pnf 8056  df-mnf 8057  df-ltxr 8059  df-inn 8983  df-2 9041  df-3 9042  df-ndx 12621  df-slot 12622  df-base 12624  df-sets 12625  df-iress 12626  df-plusg 12708  df-mulr 12709  df-0g 12869  df-mgm 12939  df-sgrp 12985  df-mnd 12998  df-grp 13075  df-minusg 13076  df-cmn 13356  df-abl 13357  df-mgp 13417  df-ur 13456  df-srg 13460  df-ring 13494  df-oppr 13564  df-dvdsr 13585  df-unit 13586
This theorem is referenced by:  unitabl  13613  unitsubm  13615  invrfvald  13618  unitinvcl  13619  unitinvinv  13620  unitlinv  13622  unitrinv  13623  rdivmuldivd  13640  rhmunitinv  13674  subrgugrp  13736  expghmap  14095
  Copyright terms: Public domain W3C validator