ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  unitgrp GIF version

Theorem unitgrp 13922
Description: The group of units is a group under multiplication. (Contributed by Mario Carneiro, 2-Dec-2014.)
Hypotheses
Ref Expression
unitgrp.1 𝑈 = (Unit‘𝑅)
unitgrp.2 𝐺 = ((mulGrp‘𝑅) ↾s 𝑈)
Assertion
Ref Expression
unitgrp (𝑅 ∈ Ring → 𝐺 ∈ Grp)

Proof of Theorem unitgrp
Dummy variables 𝑥 𝑦 𝑧 𝑚 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 unitgrp.1 . . . 4 𝑈 = (Unit‘𝑅)
21a1i 9 . . 3 (𝑅 ∈ Ring → 𝑈 = (Unit‘𝑅))
3 unitgrp.2 . . . 4 𝐺 = ((mulGrp‘𝑅) ↾s 𝑈)
43a1i 9 . . 3 (𝑅 ∈ Ring → 𝐺 = ((mulGrp‘𝑅) ↾s 𝑈))
5 ringsrg 13853 . . 3 (𝑅 ∈ Ring → 𝑅 ∈ SRing)
62, 4, 5unitgrpbasd 13921 . 2 (𝑅 ∈ Ring → 𝑈 = (Base‘𝐺))
7 eqid 2206 . . . 4 (mulGrp‘𝑅) = (mulGrp‘𝑅)
8 eqid 2206 . . . 4 (.r𝑅) = (.r𝑅)
97, 8mgpplusgg 13730 . . 3 (𝑅 ∈ Ring → (.r𝑅) = (+g‘(mulGrp‘𝑅)))
10 basfn 12934 . . . . 5 Base Fn V
11 elex 2784 . . . . 5 (𝑅 ∈ Ring → 𝑅 ∈ V)
12 funfvex 5600 . . . . . 6 ((Fun Base ∧ 𝑅 ∈ dom Base) → (Base‘𝑅) ∈ V)
1312funfni 5381 . . . . 5 ((Base Fn V ∧ 𝑅 ∈ V) → (Base‘𝑅) ∈ V)
1410, 11, 13sylancr 414 . . . 4 (𝑅 ∈ Ring → (Base‘𝑅) ∈ V)
15 eqidd 2207 . . . . 5 (𝑅 ∈ Ring → (Base‘𝑅) = (Base‘𝑅))
1615, 2, 5unitssd 13915 . . . 4 (𝑅 ∈ Ring → 𝑈 ⊆ (Base‘𝑅))
1714, 16ssexd 4188 . . 3 (𝑅 ∈ Ring → 𝑈 ∈ V)
187mgpex 13731 . . 3 (𝑅 ∈ Ring → (mulGrp‘𝑅) ∈ V)
194, 9, 17, 18ressplusgd 13005 . 2 (𝑅 ∈ Ring → (.r𝑅) = (+g𝐺))
201, 8unitmulcl 13919 . 2 ((𝑅 ∈ Ring ∧ 𝑥𝑈𝑦𝑈) → (𝑥(.r𝑅)𝑦) ∈ 𝑈)
21 eqidd 2207 . . . . 5 ((𝑅 ∈ Ring ∧ (𝑥𝑈𝑦𝑈𝑧𝑈)) → (Base‘𝑅) = (Base‘𝑅))
221a1i 9 . . . . 5 ((𝑅 ∈ Ring ∧ (𝑥𝑈𝑦𝑈𝑧𝑈)) → 𝑈 = (Unit‘𝑅))
235adantr 276 . . . . 5 ((𝑅 ∈ Ring ∧ (𝑥𝑈𝑦𝑈𝑧𝑈)) → 𝑅 ∈ SRing)
24 simpr1 1006 . . . . 5 ((𝑅 ∈ Ring ∧ (𝑥𝑈𝑦𝑈𝑧𝑈)) → 𝑥𝑈)
2521, 22, 23, 24unitcld 13914 . . . 4 ((𝑅 ∈ Ring ∧ (𝑥𝑈𝑦𝑈𝑧𝑈)) → 𝑥 ∈ (Base‘𝑅))
26 simpr2 1007 . . . . 5 ((𝑅 ∈ Ring ∧ (𝑥𝑈𝑦𝑈𝑧𝑈)) → 𝑦𝑈)
2721, 22, 23, 26unitcld 13914 . . . 4 ((𝑅 ∈ Ring ∧ (𝑥𝑈𝑦𝑈𝑧𝑈)) → 𝑦 ∈ (Base‘𝑅))
28 simpr3 1008 . . . . 5 ((𝑅 ∈ Ring ∧ (𝑥𝑈𝑦𝑈𝑧𝑈)) → 𝑧𝑈)
2921, 22, 23, 28unitcld 13914 . . . 4 ((𝑅 ∈ Ring ∧ (𝑥𝑈𝑦𝑈𝑧𝑈)) → 𝑧 ∈ (Base‘𝑅))
3025, 27, 293jca 1180 . . 3 ((𝑅 ∈ Ring ∧ (𝑥𝑈𝑦𝑈𝑧𝑈)) → (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅) ∧ 𝑧 ∈ (Base‘𝑅)))
31 eqid 2206 . . . 4 (Base‘𝑅) = (Base‘𝑅)
3231, 8ringass 13822 . . 3 ((𝑅 ∈ Ring ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅) ∧ 𝑧 ∈ (Base‘𝑅))) → ((𝑥(.r𝑅)𝑦)(.r𝑅)𝑧) = (𝑥(.r𝑅)(𝑦(.r𝑅)𝑧)))
3330, 32syldan 282 . 2 ((𝑅 ∈ Ring ∧ (𝑥𝑈𝑦𝑈𝑧𝑈)) → ((𝑥(.r𝑅)𝑦)(.r𝑅)𝑧) = (𝑥(.r𝑅)(𝑦(.r𝑅)𝑧)))
34 eqid 2206 . . 3 (1r𝑅) = (1r𝑅)
351, 341unit 13913 . 2 (𝑅 ∈ Ring → (1r𝑅) ∈ 𝑈)
36 eqidd 2207 . . . 4 ((𝑅 ∈ Ring ∧ 𝑥𝑈) → (Base‘𝑅) = (Base‘𝑅))
371a1i 9 . . . 4 ((𝑅 ∈ Ring ∧ 𝑥𝑈) → 𝑈 = (Unit‘𝑅))
385adantr 276 . . . 4 ((𝑅 ∈ Ring ∧ 𝑥𝑈) → 𝑅 ∈ SRing)
39 simpr 110 . . . 4 ((𝑅 ∈ Ring ∧ 𝑥𝑈) → 𝑥𝑈)
4036, 37, 38, 39unitcld 13914 . . 3 ((𝑅 ∈ Ring ∧ 𝑥𝑈) → 𝑥 ∈ (Base‘𝑅))
4131, 8, 34ringlidm 13829 . . 3 ((𝑅 ∈ Ring ∧ 𝑥 ∈ (Base‘𝑅)) → ((1r𝑅)(.r𝑅)𝑥) = 𝑥)
4240, 41syldan 282 . 2 ((𝑅 ∈ Ring ∧ 𝑥𝑈) → ((1r𝑅)(.r𝑅)𝑥) = 𝑥)
43 eqidd 2207 . . . . 5 ((𝑅 ∈ Ring ∧ 𝑥𝑈) → (1r𝑅) = (1r𝑅))
44 eqidd 2207 . . . . 5 ((𝑅 ∈ Ring ∧ 𝑥𝑈) → (∥r𝑅) = (∥r𝑅))
45 eqidd 2207 . . . . 5 ((𝑅 ∈ Ring ∧ 𝑥𝑈) → (oppr𝑅) = (oppr𝑅))
46 eqidd 2207 . . . . 5 ((𝑅 ∈ Ring ∧ 𝑥𝑈) → (∥r‘(oppr𝑅)) = (∥r‘(oppr𝑅)))
4737, 43, 44, 45, 46, 38isunitd 13912 . . . 4 ((𝑅 ∈ Ring ∧ 𝑥𝑈) → (𝑥𝑈 ↔ (𝑥(∥r𝑅)(1r𝑅) ∧ 𝑥(∥r‘(oppr𝑅))(1r𝑅))))
4839, 47mpbid 147 . . 3 ((𝑅 ∈ Ring ∧ 𝑥𝑈) → (𝑥(∥r𝑅)(1r𝑅) ∧ 𝑥(∥r‘(oppr𝑅))(1r𝑅)))
49 eqidd 2207 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝑥𝑈) → (.r𝑅) = (.r𝑅))
5036, 44, 38, 49, 40dvdsr2d 13901 . . . . 5 ((𝑅 ∈ Ring ∧ 𝑥𝑈) → (𝑥(∥r𝑅)(1r𝑅) ↔ ∃𝑦 ∈ (Base‘𝑅)(𝑦(.r𝑅)𝑥) = (1r𝑅)))
51 eqid 2206 . . . . . . . 8 (oppr𝑅) = (oppr𝑅)
5251, 31opprbasg 13881 . . . . . . 7 (𝑅 ∈ Ring → (Base‘𝑅) = (Base‘(oppr𝑅)))
5352adantr 276 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝑥𝑈) → (Base‘𝑅) = (Base‘(oppr𝑅)))
5451opprring 13885 . . . . . . . 8 (𝑅 ∈ Ring → (oppr𝑅) ∈ Ring)
55 ringsrg 13853 . . . . . . . 8 ((oppr𝑅) ∈ Ring → (oppr𝑅) ∈ SRing)
5654, 55syl 14 . . . . . . 7 (𝑅 ∈ Ring → (oppr𝑅) ∈ SRing)
5756adantr 276 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝑥𝑈) → (oppr𝑅) ∈ SRing)
58 eqidd 2207 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝑥𝑈) → (.r‘(oppr𝑅)) = (.r‘(oppr𝑅)))
5953, 46, 57, 58, 40dvdsr2d 13901 . . . . 5 ((𝑅 ∈ Ring ∧ 𝑥𝑈) → (𝑥(∥r‘(oppr𝑅))(1r𝑅) ↔ ∃𝑚 ∈ (Base‘𝑅)(𝑚(.r‘(oppr𝑅))𝑥) = (1r𝑅)))
6050, 59anbi12d 473 . . . 4 ((𝑅 ∈ Ring ∧ 𝑥𝑈) → ((𝑥(∥r𝑅)(1r𝑅) ∧ 𝑥(∥r‘(oppr𝑅))(1r𝑅)) ↔ (∃𝑦 ∈ (Base‘𝑅)(𝑦(.r𝑅)𝑥) = (1r𝑅) ∧ ∃𝑚 ∈ (Base‘𝑅)(𝑚(.r‘(oppr𝑅))𝑥) = (1r𝑅))))
61 reeanv 2677 . . . . 5 (∃𝑦 ∈ (Base‘𝑅)∃𝑚 ∈ (Base‘𝑅)((𝑦(.r𝑅)𝑥) = (1r𝑅) ∧ (𝑚(.r‘(oppr𝑅))𝑥) = (1r𝑅)) ↔ (∃𝑦 ∈ (Base‘𝑅)(𝑦(.r𝑅)𝑥) = (1r𝑅) ∧ ∃𝑚 ∈ (Base‘𝑅)(𝑚(.r‘(oppr𝑅))𝑥) = (1r𝑅)))
62 eqidd 2207 . . . . . . . . . . . 12 ((((𝑅 ∈ Ring ∧ 𝑥𝑈) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ (𝑚 ∈ (Base‘𝑅) ∧ ((𝑦(.r𝑅)𝑥) = (1r𝑅) ∧ (𝑚(.r‘(oppr𝑅))𝑥) = (1r𝑅)))) → (Base‘𝑅) = (Base‘𝑅))
63 eqidd 2207 . . . . . . . . . . . 12 ((((𝑅 ∈ Ring ∧ 𝑥𝑈) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ (𝑚 ∈ (Base‘𝑅) ∧ ((𝑦(.r𝑅)𝑥) = (1r𝑅) ∧ (𝑚(.r‘(oppr𝑅))𝑥) = (1r𝑅)))) → (∥r𝑅) = (∥r𝑅))
6438ad2antrr 488 . . . . . . . . . . . 12 ((((𝑅 ∈ Ring ∧ 𝑥𝑈) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ (𝑚 ∈ (Base‘𝑅) ∧ ((𝑦(.r𝑅)𝑥) = (1r𝑅) ∧ (𝑚(.r‘(oppr𝑅))𝑥) = (1r𝑅)))) → 𝑅 ∈ SRing)
65 eqidd 2207 . . . . . . . . . . . 12 ((((𝑅 ∈ Ring ∧ 𝑥𝑈) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ (𝑚 ∈ (Base‘𝑅) ∧ ((𝑦(.r𝑅)𝑥) = (1r𝑅) ∧ (𝑚(.r‘(oppr𝑅))𝑥) = (1r𝑅)))) → (.r𝑅) = (.r𝑅))
66 simprl 529 . . . . . . . . . . . 12 ((((𝑅 ∈ Ring ∧ 𝑥𝑈) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ (𝑚 ∈ (Base‘𝑅) ∧ ((𝑦(.r𝑅)𝑥) = (1r𝑅) ∧ (𝑚(.r‘(oppr𝑅))𝑥) = (1r𝑅)))) → 𝑚 ∈ (Base‘𝑅))
6740ad2antrr 488 . . . . . . . . . . . 12 ((((𝑅 ∈ Ring ∧ 𝑥𝑈) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ (𝑚 ∈ (Base‘𝑅) ∧ ((𝑦(.r𝑅)𝑥) = (1r𝑅) ∧ (𝑚(.r‘(oppr𝑅))𝑥) = (1r𝑅)))) → 𝑥 ∈ (Base‘𝑅))
6862, 63, 64, 65, 66, 67dvdsrmuld 13902 . . . . . . . . . . 11 ((((𝑅 ∈ Ring ∧ 𝑥𝑈) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ (𝑚 ∈ (Base‘𝑅) ∧ ((𝑦(.r𝑅)𝑥) = (1r𝑅) ∧ (𝑚(.r‘(oppr𝑅))𝑥) = (1r𝑅)))) → 𝑚(∥r𝑅)(𝑥(.r𝑅)𝑚))
69 simplll 533 . . . . . . . . . . . . . 14 ((((𝑅 ∈ Ring ∧ 𝑥𝑈) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ (𝑚 ∈ (Base‘𝑅) ∧ ((𝑦(.r𝑅)𝑥) = (1r𝑅) ∧ (𝑚(.r‘(oppr𝑅))𝑥) = (1r𝑅)))) → 𝑅 ∈ Ring)
70 simplr 528 . . . . . . . . . . . . . 14 ((((𝑅 ∈ Ring ∧ 𝑥𝑈) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ (𝑚 ∈ (Base‘𝑅) ∧ ((𝑦(.r𝑅)𝑥) = (1r𝑅) ∧ (𝑚(.r‘(oppr𝑅))𝑥) = (1r𝑅)))) → 𝑦 ∈ (Base‘𝑅))
7131, 8ringass 13822 . . . . . . . . . . . . . 14 ((𝑅 ∈ Ring ∧ (𝑦 ∈ (Base‘𝑅) ∧ 𝑥 ∈ (Base‘𝑅) ∧ 𝑚 ∈ (Base‘𝑅))) → ((𝑦(.r𝑅)𝑥)(.r𝑅)𝑚) = (𝑦(.r𝑅)(𝑥(.r𝑅)𝑚)))
7269, 70, 67, 66, 71syl13anc 1252 . . . . . . . . . . . . 13 ((((𝑅 ∈ Ring ∧ 𝑥𝑈) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ (𝑚 ∈ (Base‘𝑅) ∧ ((𝑦(.r𝑅)𝑥) = (1r𝑅) ∧ (𝑚(.r‘(oppr𝑅))𝑥) = (1r𝑅)))) → ((𝑦(.r𝑅)𝑥)(.r𝑅)𝑚) = (𝑦(.r𝑅)(𝑥(.r𝑅)𝑚)))
73 simprrl 539 . . . . . . . . . . . . . 14 ((((𝑅 ∈ Ring ∧ 𝑥𝑈) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ (𝑚 ∈ (Base‘𝑅) ∧ ((𝑦(.r𝑅)𝑥) = (1r𝑅) ∧ (𝑚(.r‘(oppr𝑅))𝑥) = (1r𝑅)))) → (𝑦(.r𝑅)𝑥) = (1r𝑅))
7473oveq1d 5966 . . . . . . . . . . . . 13 ((((𝑅 ∈ Ring ∧ 𝑥𝑈) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ (𝑚 ∈ (Base‘𝑅) ∧ ((𝑦(.r𝑅)𝑥) = (1r𝑅) ∧ (𝑚(.r‘(oppr𝑅))𝑥) = (1r𝑅)))) → ((𝑦(.r𝑅)𝑥)(.r𝑅)𝑚) = ((1r𝑅)(.r𝑅)𝑚))
7539ad2antrr 488 . . . . . . . . . . . . . . . 16 ((((𝑅 ∈ Ring ∧ 𝑥𝑈) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ (𝑚 ∈ (Base‘𝑅) ∧ ((𝑦(.r𝑅)𝑥) = (1r𝑅) ∧ (𝑚(.r‘(oppr𝑅))𝑥) = (1r𝑅)))) → 𝑥𝑈)
76 eqid 2206 . . . . . . . . . . . . . . . . 17 (.r‘(oppr𝑅)) = (.r‘(oppr𝑅))
7731, 8, 51, 76opprmulg 13877 . . . . . . . . . . . . . . . 16 ((𝑅 ∈ Ring ∧ 𝑚 ∈ (Base‘𝑅) ∧ 𝑥𝑈) → (𝑚(.r‘(oppr𝑅))𝑥) = (𝑥(.r𝑅)𝑚))
7869, 66, 75, 77syl3anc 1250 . . . . . . . . . . . . . . 15 ((((𝑅 ∈ Ring ∧ 𝑥𝑈) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ (𝑚 ∈ (Base‘𝑅) ∧ ((𝑦(.r𝑅)𝑥) = (1r𝑅) ∧ (𝑚(.r‘(oppr𝑅))𝑥) = (1r𝑅)))) → (𝑚(.r‘(oppr𝑅))𝑥) = (𝑥(.r𝑅)𝑚))
79 simprrr 540 . . . . . . . . . . . . . . 15 ((((𝑅 ∈ Ring ∧ 𝑥𝑈) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ (𝑚 ∈ (Base‘𝑅) ∧ ((𝑦(.r𝑅)𝑥) = (1r𝑅) ∧ (𝑚(.r‘(oppr𝑅))𝑥) = (1r𝑅)))) → (𝑚(.r‘(oppr𝑅))𝑥) = (1r𝑅))
8078, 79eqtr3d 2241 . . . . . . . . . . . . . 14 ((((𝑅 ∈ Ring ∧ 𝑥𝑈) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ (𝑚 ∈ (Base‘𝑅) ∧ ((𝑦(.r𝑅)𝑥) = (1r𝑅) ∧ (𝑚(.r‘(oppr𝑅))𝑥) = (1r𝑅)))) → (𝑥(.r𝑅)𝑚) = (1r𝑅))
8180oveq2d 5967 . . . . . . . . . . . . 13 ((((𝑅 ∈ Ring ∧ 𝑥𝑈) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ (𝑚 ∈ (Base‘𝑅) ∧ ((𝑦(.r𝑅)𝑥) = (1r𝑅) ∧ (𝑚(.r‘(oppr𝑅))𝑥) = (1r𝑅)))) → (𝑦(.r𝑅)(𝑥(.r𝑅)𝑚)) = (𝑦(.r𝑅)(1r𝑅)))
8272, 74, 813eqtr3d 2247 . . . . . . . . . . . 12 ((((𝑅 ∈ Ring ∧ 𝑥𝑈) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ (𝑚 ∈ (Base‘𝑅) ∧ ((𝑦(.r𝑅)𝑥) = (1r𝑅) ∧ (𝑚(.r‘(oppr𝑅))𝑥) = (1r𝑅)))) → ((1r𝑅)(.r𝑅)𝑚) = (𝑦(.r𝑅)(1r𝑅)))
8331, 8, 34ringlidm 13829 . . . . . . . . . . . . 13 ((𝑅 ∈ Ring ∧ 𝑚 ∈ (Base‘𝑅)) → ((1r𝑅)(.r𝑅)𝑚) = 𝑚)
8469, 66, 83syl2anc 411 . . . . . . . . . . . 12 ((((𝑅 ∈ Ring ∧ 𝑥𝑈) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ (𝑚 ∈ (Base‘𝑅) ∧ ((𝑦(.r𝑅)𝑥) = (1r𝑅) ∧ (𝑚(.r‘(oppr𝑅))𝑥) = (1r𝑅)))) → ((1r𝑅)(.r𝑅)𝑚) = 𝑚)
8531, 8, 34ringridm 13830 . . . . . . . . . . . . 13 ((𝑅 ∈ Ring ∧ 𝑦 ∈ (Base‘𝑅)) → (𝑦(.r𝑅)(1r𝑅)) = 𝑦)
8669, 70, 85syl2anc 411 . . . . . . . . . . . 12 ((((𝑅 ∈ Ring ∧ 𝑥𝑈) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ (𝑚 ∈ (Base‘𝑅) ∧ ((𝑦(.r𝑅)𝑥) = (1r𝑅) ∧ (𝑚(.r‘(oppr𝑅))𝑥) = (1r𝑅)))) → (𝑦(.r𝑅)(1r𝑅)) = 𝑦)
8782, 84, 863eqtr3d 2247 . . . . . . . . . . 11 ((((𝑅 ∈ Ring ∧ 𝑥𝑈) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ (𝑚 ∈ (Base‘𝑅) ∧ ((𝑦(.r𝑅)𝑥) = (1r𝑅) ∧ (𝑚(.r‘(oppr𝑅))𝑥) = (1r𝑅)))) → 𝑚 = 𝑦)
8868, 87, 803brtr3d 4078 . . . . . . . . . 10 ((((𝑅 ∈ Ring ∧ 𝑥𝑈) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ (𝑚 ∈ (Base‘𝑅) ∧ ((𝑦(.r𝑅)𝑥) = (1r𝑅) ∧ (𝑚(.r‘(oppr𝑅))𝑥) = (1r𝑅)))) → 𝑦(∥r𝑅)(1r𝑅))
8969, 52syl 14 . . . . . . . . . . . 12 ((((𝑅 ∈ Ring ∧ 𝑥𝑈) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ (𝑚 ∈ (Base‘𝑅) ∧ ((𝑦(.r𝑅)𝑥) = (1r𝑅) ∧ (𝑚(.r‘(oppr𝑅))𝑥) = (1r𝑅)))) → (Base‘𝑅) = (Base‘(oppr𝑅)))
90 eqidd 2207 . . . . . . . . . . . 12 ((((𝑅 ∈ Ring ∧ 𝑥𝑈) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ (𝑚 ∈ (Base‘𝑅) ∧ ((𝑦(.r𝑅)𝑥) = (1r𝑅) ∧ (𝑚(.r‘(oppr𝑅))𝑥) = (1r𝑅)))) → (∥r‘(oppr𝑅)) = (∥r‘(oppr𝑅)))
9169, 56syl 14 . . . . . . . . . . . 12 ((((𝑅 ∈ Ring ∧ 𝑥𝑈) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ (𝑚 ∈ (Base‘𝑅) ∧ ((𝑦(.r𝑅)𝑥) = (1r𝑅) ∧ (𝑚(.r‘(oppr𝑅))𝑥) = (1r𝑅)))) → (oppr𝑅) ∈ SRing)
92 eqidd 2207 . . . . . . . . . . . 12 ((((𝑅 ∈ Ring ∧ 𝑥𝑈) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ (𝑚 ∈ (Base‘𝑅) ∧ ((𝑦(.r𝑅)𝑥) = (1r𝑅) ∧ (𝑚(.r‘(oppr𝑅))𝑥) = (1r𝑅)))) → (.r‘(oppr𝑅)) = (.r‘(oppr𝑅)))
9389, 90, 91, 92, 70, 67dvdsrmuld 13902 . . . . . . . . . . 11 ((((𝑅 ∈ Ring ∧ 𝑥𝑈) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ (𝑚 ∈ (Base‘𝑅) ∧ ((𝑦(.r𝑅)𝑥) = (1r𝑅) ∧ (𝑚(.r‘(oppr𝑅))𝑥) = (1r𝑅)))) → 𝑦(∥r‘(oppr𝑅))(𝑥(.r‘(oppr𝑅))𝑦))
9431, 8, 51, 76opprmulg 13877 . . . . . . . . . . . . 13 ((𝑅 ∈ Ring ∧ 𝑥𝑈𝑦 ∈ (Base‘𝑅)) → (𝑥(.r‘(oppr𝑅))𝑦) = (𝑦(.r𝑅)𝑥))
9569, 75, 70, 94syl3anc 1250 . . . . . . . . . . . 12 ((((𝑅 ∈ Ring ∧ 𝑥𝑈) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ (𝑚 ∈ (Base‘𝑅) ∧ ((𝑦(.r𝑅)𝑥) = (1r𝑅) ∧ (𝑚(.r‘(oppr𝑅))𝑥) = (1r𝑅)))) → (𝑥(.r‘(oppr𝑅))𝑦) = (𝑦(.r𝑅)𝑥))
9695, 73eqtrd 2239 . . . . . . . . . . 11 ((((𝑅 ∈ Ring ∧ 𝑥𝑈) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ (𝑚 ∈ (Base‘𝑅) ∧ ((𝑦(.r𝑅)𝑥) = (1r𝑅) ∧ (𝑚(.r‘(oppr𝑅))𝑥) = (1r𝑅)))) → (𝑥(.r‘(oppr𝑅))𝑦) = (1r𝑅))
9793, 96breqtrd 4073 . . . . . . . . . 10 ((((𝑅 ∈ Ring ∧ 𝑥𝑈) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ (𝑚 ∈ (Base‘𝑅) ∧ ((𝑦(.r𝑅)𝑥) = (1r𝑅) ∧ (𝑚(.r‘(oppr𝑅))𝑥) = (1r𝑅)))) → 𝑦(∥r‘(oppr𝑅))(1r𝑅))
981a1i 9 . . . . . . . . . . 11 ((((𝑅 ∈ Ring ∧ 𝑥𝑈) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ (𝑚 ∈ (Base‘𝑅) ∧ ((𝑦(.r𝑅)𝑥) = (1r𝑅) ∧ (𝑚(.r‘(oppr𝑅))𝑥) = (1r𝑅)))) → 𝑈 = (Unit‘𝑅))
99 eqidd 2207 . . . . . . . . . . 11 ((((𝑅 ∈ Ring ∧ 𝑥𝑈) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ (𝑚 ∈ (Base‘𝑅) ∧ ((𝑦(.r𝑅)𝑥) = (1r𝑅) ∧ (𝑚(.r‘(oppr𝑅))𝑥) = (1r𝑅)))) → (1r𝑅) = (1r𝑅))
100 eqidd 2207 . . . . . . . . . . 11 ((((𝑅 ∈ Ring ∧ 𝑥𝑈) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ (𝑚 ∈ (Base‘𝑅) ∧ ((𝑦(.r𝑅)𝑥) = (1r𝑅) ∧ (𝑚(.r‘(oppr𝑅))𝑥) = (1r𝑅)))) → (oppr𝑅) = (oppr𝑅))
10198, 99, 63, 100, 90, 64isunitd 13912 . . . . . . . . . 10 ((((𝑅 ∈ Ring ∧ 𝑥𝑈) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ (𝑚 ∈ (Base‘𝑅) ∧ ((𝑦(.r𝑅)𝑥) = (1r𝑅) ∧ (𝑚(.r‘(oppr𝑅))𝑥) = (1r𝑅)))) → (𝑦𝑈 ↔ (𝑦(∥r𝑅)(1r𝑅) ∧ 𝑦(∥r‘(oppr𝑅))(1r𝑅))))
10288, 97, 101mpbir2and 947 . . . . . . . . 9 ((((𝑅 ∈ Ring ∧ 𝑥𝑈) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ (𝑚 ∈ (Base‘𝑅) ∧ ((𝑦(.r𝑅)𝑥) = (1r𝑅) ∧ (𝑚(.r‘(oppr𝑅))𝑥) = (1r𝑅)))) → 𝑦𝑈)
103102, 73jca 306 . . . . . . . 8 ((((𝑅 ∈ Ring ∧ 𝑥𝑈) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ (𝑚 ∈ (Base‘𝑅) ∧ ((𝑦(.r𝑅)𝑥) = (1r𝑅) ∧ (𝑚(.r‘(oppr𝑅))𝑥) = (1r𝑅)))) → (𝑦𝑈 ∧ (𝑦(.r𝑅)𝑥) = (1r𝑅)))
104103rexlimdvaa 2625 . . . . . . 7 (((𝑅 ∈ Ring ∧ 𝑥𝑈) ∧ 𝑦 ∈ (Base‘𝑅)) → (∃𝑚 ∈ (Base‘𝑅)((𝑦(.r𝑅)𝑥) = (1r𝑅) ∧ (𝑚(.r‘(oppr𝑅))𝑥) = (1r𝑅)) → (𝑦𝑈 ∧ (𝑦(.r𝑅)𝑥) = (1r𝑅))))
105104expimpd 363 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝑥𝑈) → ((𝑦 ∈ (Base‘𝑅) ∧ ∃𝑚 ∈ (Base‘𝑅)((𝑦(.r𝑅)𝑥) = (1r𝑅) ∧ (𝑚(.r‘(oppr𝑅))𝑥) = (1r𝑅))) → (𝑦𝑈 ∧ (𝑦(.r𝑅)𝑥) = (1r𝑅))))
106105reximdv2 2606 . . . . 5 ((𝑅 ∈ Ring ∧ 𝑥𝑈) → (∃𝑦 ∈ (Base‘𝑅)∃𝑚 ∈ (Base‘𝑅)((𝑦(.r𝑅)𝑥) = (1r𝑅) ∧ (𝑚(.r‘(oppr𝑅))𝑥) = (1r𝑅)) → ∃𝑦𝑈 (𝑦(.r𝑅)𝑥) = (1r𝑅)))
10761, 106biimtrrid 153 . . . 4 ((𝑅 ∈ Ring ∧ 𝑥𝑈) → ((∃𝑦 ∈ (Base‘𝑅)(𝑦(.r𝑅)𝑥) = (1r𝑅) ∧ ∃𝑚 ∈ (Base‘𝑅)(𝑚(.r‘(oppr𝑅))𝑥) = (1r𝑅)) → ∃𝑦𝑈 (𝑦(.r𝑅)𝑥) = (1r𝑅)))
10860, 107sylbid 150 . . 3 ((𝑅 ∈ Ring ∧ 𝑥𝑈) → ((𝑥(∥r𝑅)(1r𝑅) ∧ 𝑥(∥r‘(oppr𝑅))(1r𝑅)) → ∃𝑦𝑈 (𝑦(.r𝑅)𝑥) = (1r𝑅)))
10948, 108mpd 13 . 2 ((𝑅 ∈ Ring ∧ 𝑥𝑈) → ∃𝑦𝑈 (𝑦(.r𝑅)𝑥) = (1r𝑅))
1106, 19, 20, 33, 35, 42, 109isgrpde 13398 1 (𝑅 ∈ Ring → 𝐺 ∈ Grp)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  w3a 981   = wceq 1373  wcel 2177  wrex 2486  Vcvv 2773   class class class wbr 4047   Fn wfn 5271  cfv 5276  (class class class)co 5951  Basecbs 12876  s cress 12877  .rcmulr 12954  Grpcgrp 13376  mulGrpcmgp 13726  1rcur 13765  SRingcsrg 13769  Ringcrg 13802  opprcoppr 13873  rcdsr 13892  Unitcui 13893
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-coll 4163  ax-sep 4166  ax-nul 4174  ax-pow 4222  ax-pr 4257  ax-un 4484  ax-setind 4589  ax-cnex 8023  ax-resscn 8024  ax-1cn 8025  ax-1re 8026  ax-icn 8027  ax-addcl 8028  ax-addrcl 8029  ax-mulcl 8030  ax-addcom 8032  ax-addass 8034  ax-i2m1 8037  ax-0lt1 8038  ax-0id 8040  ax-rnegex 8041  ax-pre-ltirr 8044  ax-pre-lttrn 8046  ax-pre-ltadd 8048
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-nel 2473  df-ral 2490  df-rex 2491  df-reu 2492  df-rmo 2493  df-rab 2494  df-v 2775  df-sbc 3000  df-csb 3095  df-dif 3169  df-un 3171  df-in 3173  df-ss 3180  df-nul 3462  df-pw 3619  df-sn 3640  df-pr 3641  df-op 3643  df-uni 3853  df-int 3888  df-iun 3931  df-br 4048  df-opab 4110  df-mpt 4111  df-id 4344  df-xp 4685  df-rel 4686  df-cnv 4687  df-co 4688  df-dm 4689  df-rn 4690  df-res 4691  df-ima 4692  df-iota 5237  df-fun 5278  df-fn 5279  df-f 5280  df-f1 5281  df-fo 5282  df-f1o 5283  df-fv 5284  df-riota 5906  df-ov 5954  df-oprab 5955  df-mpo 5956  df-tpos 6338  df-pnf 8116  df-mnf 8117  df-ltxr 8119  df-inn 9044  df-2 9102  df-3 9103  df-ndx 12879  df-slot 12880  df-base 12882  df-sets 12883  df-iress 12884  df-plusg 12966  df-mulr 12967  df-0g 13134  df-mgm 13232  df-sgrp 13278  df-mnd 13293  df-grp 13379  df-minusg 13380  df-cmn 13666  df-abl 13667  df-mgp 13727  df-ur 13766  df-srg 13770  df-ring 13804  df-oppr 13874  df-dvdsr 13895  df-unit 13896
This theorem is referenced by:  unitabl  13923  unitsubm  13925  invrfvald  13928  unitinvcl  13929  unitinvinv  13930  unitlinv  13932  unitrinv  13933  rdivmuldivd  13950  rhmunitinv  13984  subrgugrp  14046  expghmap  14413
  Copyright terms: Public domain W3C validator