ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  unitgrp GIF version

Theorem unitgrp 13283
Description: The group of units is a group under multiplication. (Contributed by Mario Carneiro, 2-Dec-2014.)
Hypotheses
Ref Expression
unitgrp.1 π‘ˆ = (Unitβ€˜π‘…)
unitgrp.2 𝐺 = ((mulGrpβ€˜π‘…) β†Ύs π‘ˆ)
Assertion
Ref Expression
unitgrp (𝑅 ∈ Ring β†’ 𝐺 ∈ Grp)

Proof of Theorem unitgrp
Dummy variables π‘₯ 𝑦 𝑧 π‘š are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 unitgrp.1 . . . 4 π‘ˆ = (Unitβ€˜π‘…)
21a1i 9 . . 3 (𝑅 ∈ Ring β†’ π‘ˆ = (Unitβ€˜π‘…))
3 unitgrp.2 . . . 4 𝐺 = ((mulGrpβ€˜π‘…) β†Ύs π‘ˆ)
43a1i 9 . . 3 (𝑅 ∈ Ring β†’ 𝐺 = ((mulGrpβ€˜π‘…) β†Ύs π‘ˆ))
5 ringsrg 13222 . . 3 (𝑅 ∈ Ring β†’ 𝑅 ∈ SRing)
62, 4, 5unitgrpbasd 13282 . 2 (𝑅 ∈ Ring β†’ π‘ˆ = (Baseβ€˜πΊ))
7 eqid 2177 . . . 4 (mulGrpβ€˜π‘…) = (mulGrpβ€˜π‘…)
8 eqid 2177 . . . 4 (.rβ€˜π‘…) = (.rβ€˜π‘…)
97, 8mgpplusgg 13132 . . 3 (𝑅 ∈ Ring β†’ (.rβ€˜π‘…) = (+gβ€˜(mulGrpβ€˜π‘…)))
10 basfn 12519 . . . . 5 Base Fn V
11 elex 2748 . . . . 5 (𝑅 ∈ Ring β†’ 𝑅 ∈ V)
12 funfvex 5532 . . . . . 6 ((Fun Base ∧ 𝑅 ∈ dom Base) β†’ (Baseβ€˜π‘…) ∈ V)
1312funfni 5316 . . . . 5 ((Base Fn V ∧ 𝑅 ∈ V) β†’ (Baseβ€˜π‘…) ∈ V)
1410, 11, 13sylancr 414 . . . 4 (𝑅 ∈ Ring β†’ (Baseβ€˜π‘…) ∈ V)
15 eqidd 2178 . . . . 5 (𝑅 ∈ Ring β†’ (Baseβ€˜π‘…) = (Baseβ€˜π‘…))
1615, 2, 5unitssd 13276 . . . 4 (𝑅 ∈ Ring β†’ π‘ˆ βŠ† (Baseβ€˜π‘…))
1714, 16ssexd 4143 . . 3 (𝑅 ∈ Ring β†’ π‘ˆ ∈ V)
187mgpex 13133 . . 3 (𝑅 ∈ Ring β†’ (mulGrpβ€˜π‘…) ∈ V)
194, 9, 17, 18ressplusgd 12586 . 2 (𝑅 ∈ Ring β†’ (.rβ€˜π‘…) = (+gβ€˜πΊ))
201, 8unitmulcl 13280 . 2 ((𝑅 ∈ Ring ∧ π‘₯ ∈ π‘ˆ ∧ 𝑦 ∈ π‘ˆ) β†’ (π‘₯(.rβ€˜π‘…)𝑦) ∈ π‘ˆ)
21 eqidd 2178 . . . . 5 ((𝑅 ∈ Ring ∧ (π‘₯ ∈ π‘ˆ ∧ 𝑦 ∈ π‘ˆ ∧ 𝑧 ∈ π‘ˆ)) β†’ (Baseβ€˜π‘…) = (Baseβ€˜π‘…))
221a1i 9 . . . . 5 ((𝑅 ∈ Ring ∧ (π‘₯ ∈ π‘ˆ ∧ 𝑦 ∈ π‘ˆ ∧ 𝑧 ∈ π‘ˆ)) β†’ π‘ˆ = (Unitβ€˜π‘…))
235adantr 276 . . . . 5 ((𝑅 ∈ Ring ∧ (π‘₯ ∈ π‘ˆ ∧ 𝑦 ∈ π‘ˆ ∧ 𝑧 ∈ π‘ˆ)) β†’ 𝑅 ∈ SRing)
24 simpr1 1003 . . . . 5 ((𝑅 ∈ Ring ∧ (π‘₯ ∈ π‘ˆ ∧ 𝑦 ∈ π‘ˆ ∧ 𝑧 ∈ π‘ˆ)) β†’ π‘₯ ∈ π‘ˆ)
2521, 22, 23, 24unitcld 13275 . . . 4 ((𝑅 ∈ Ring ∧ (π‘₯ ∈ π‘ˆ ∧ 𝑦 ∈ π‘ˆ ∧ 𝑧 ∈ π‘ˆ)) β†’ π‘₯ ∈ (Baseβ€˜π‘…))
26 simpr2 1004 . . . . 5 ((𝑅 ∈ Ring ∧ (π‘₯ ∈ π‘ˆ ∧ 𝑦 ∈ π‘ˆ ∧ 𝑧 ∈ π‘ˆ)) β†’ 𝑦 ∈ π‘ˆ)
2721, 22, 23, 26unitcld 13275 . . . 4 ((𝑅 ∈ Ring ∧ (π‘₯ ∈ π‘ˆ ∧ 𝑦 ∈ π‘ˆ ∧ 𝑧 ∈ π‘ˆ)) β†’ 𝑦 ∈ (Baseβ€˜π‘…))
28 simpr3 1005 . . . . 5 ((𝑅 ∈ Ring ∧ (π‘₯ ∈ π‘ˆ ∧ 𝑦 ∈ π‘ˆ ∧ 𝑧 ∈ π‘ˆ)) β†’ 𝑧 ∈ π‘ˆ)
2921, 22, 23, 28unitcld 13275 . . . 4 ((𝑅 ∈ Ring ∧ (π‘₯ ∈ π‘ˆ ∧ 𝑦 ∈ π‘ˆ ∧ 𝑧 ∈ π‘ˆ)) β†’ 𝑧 ∈ (Baseβ€˜π‘…))
3025, 27, 293jca 1177 . . 3 ((𝑅 ∈ Ring ∧ (π‘₯ ∈ π‘ˆ ∧ 𝑦 ∈ π‘ˆ ∧ 𝑧 ∈ π‘ˆ)) β†’ (π‘₯ ∈ (Baseβ€˜π‘…) ∧ 𝑦 ∈ (Baseβ€˜π‘…) ∧ 𝑧 ∈ (Baseβ€˜π‘…)))
31 eqid 2177 . . . 4 (Baseβ€˜π‘…) = (Baseβ€˜π‘…)
3231, 8ringass 13197 . . 3 ((𝑅 ∈ Ring ∧ (π‘₯ ∈ (Baseβ€˜π‘…) ∧ 𝑦 ∈ (Baseβ€˜π‘…) ∧ 𝑧 ∈ (Baseβ€˜π‘…))) β†’ ((π‘₯(.rβ€˜π‘…)𝑦)(.rβ€˜π‘…)𝑧) = (π‘₯(.rβ€˜π‘…)(𝑦(.rβ€˜π‘…)𝑧)))
3330, 32syldan 282 . 2 ((𝑅 ∈ Ring ∧ (π‘₯ ∈ π‘ˆ ∧ 𝑦 ∈ π‘ˆ ∧ 𝑧 ∈ π‘ˆ)) β†’ ((π‘₯(.rβ€˜π‘…)𝑦)(.rβ€˜π‘…)𝑧) = (π‘₯(.rβ€˜π‘…)(𝑦(.rβ€˜π‘…)𝑧)))
34 eqid 2177 . . 3 (1rβ€˜π‘…) = (1rβ€˜π‘…)
351, 341unit 13274 . 2 (𝑅 ∈ Ring β†’ (1rβ€˜π‘…) ∈ π‘ˆ)
36 eqidd 2178 . . . 4 ((𝑅 ∈ Ring ∧ π‘₯ ∈ π‘ˆ) β†’ (Baseβ€˜π‘…) = (Baseβ€˜π‘…))
371a1i 9 . . . 4 ((𝑅 ∈ Ring ∧ π‘₯ ∈ π‘ˆ) β†’ π‘ˆ = (Unitβ€˜π‘…))
385adantr 276 . . . 4 ((𝑅 ∈ Ring ∧ π‘₯ ∈ π‘ˆ) β†’ 𝑅 ∈ SRing)
39 simpr 110 . . . 4 ((𝑅 ∈ Ring ∧ π‘₯ ∈ π‘ˆ) β†’ π‘₯ ∈ π‘ˆ)
4036, 37, 38, 39unitcld 13275 . . 3 ((𝑅 ∈ Ring ∧ π‘₯ ∈ π‘ˆ) β†’ π‘₯ ∈ (Baseβ€˜π‘…))
4131, 8, 34ringlidm 13204 . . 3 ((𝑅 ∈ Ring ∧ π‘₯ ∈ (Baseβ€˜π‘…)) β†’ ((1rβ€˜π‘…)(.rβ€˜π‘…)π‘₯) = π‘₯)
4240, 41syldan 282 . 2 ((𝑅 ∈ Ring ∧ π‘₯ ∈ π‘ˆ) β†’ ((1rβ€˜π‘…)(.rβ€˜π‘…)π‘₯) = π‘₯)
43 eqidd 2178 . . . . 5 ((𝑅 ∈ Ring ∧ π‘₯ ∈ π‘ˆ) β†’ (1rβ€˜π‘…) = (1rβ€˜π‘…))
44 eqidd 2178 . . . . 5 ((𝑅 ∈ Ring ∧ π‘₯ ∈ π‘ˆ) β†’ (βˆ₯rβ€˜π‘…) = (βˆ₯rβ€˜π‘…))
45 eqidd 2178 . . . . 5 ((𝑅 ∈ Ring ∧ π‘₯ ∈ π‘ˆ) β†’ (opprβ€˜π‘…) = (opprβ€˜π‘…))
46 eqidd 2178 . . . . 5 ((𝑅 ∈ Ring ∧ π‘₯ ∈ π‘ˆ) β†’ (βˆ₯rβ€˜(opprβ€˜π‘…)) = (βˆ₯rβ€˜(opprβ€˜π‘…)))
4737, 43, 44, 45, 46, 38isunitd 13273 . . . 4 ((𝑅 ∈ Ring ∧ π‘₯ ∈ π‘ˆ) β†’ (π‘₯ ∈ π‘ˆ ↔ (π‘₯(βˆ₯rβ€˜π‘…)(1rβ€˜π‘…) ∧ π‘₯(βˆ₯rβ€˜(opprβ€˜π‘…))(1rβ€˜π‘…))))
4839, 47mpbid 147 . . 3 ((𝑅 ∈ Ring ∧ π‘₯ ∈ π‘ˆ) β†’ (π‘₯(βˆ₯rβ€˜π‘…)(1rβ€˜π‘…) ∧ π‘₯(βˆ₯rβ€˜(opprβ€˜π‘…))(1rβ€˜π‘…)))
49 eqidd 2178 . . . . . 6 ((𝑅 ∈ Ring ∧ π‘₯ ∈ π‘ˆ) β†’ (.rβ€˜π‘…) = (.rβ€˜π‘…))
5036, 44, 38, 49, 40dvdsr2d 13262 . . . . 5 ((𝑅 ∈ Ring ∧ π‘₯ ∈ π‘ˆ) β†’ (π‘₯(βˆ₯rβ€˜π‘…)(1rβ€˜π‘…) ↔ βˆƒπ‘¦ ∈ (Baseβ€˜π‘…)(𝑦(.rβ€˜π‘…)π‘₯) = (1rβ€˜π‘…)))
51 eqid 2177 . . . . . . . 8 (opprβ€˜π‘…) = (opprβ€˜π‘…)
5251, 31opprbasg 13245 . . . . . . 7 (𝑅 ∈ Ring β†’ (Baseβ€˜π‘…) = (Baseβ€˜(opprβ€˜π‘…)))
5352adantr 276 . . . . . 6 ((𝑅 ∈ Ring ∧ π‘₯ ∈ π‘ˆ) β†’ (Baseβ€˜π‘…) = (Baseβ€˜(opprβ€˜π‘…)))
5451opprring 13247 . . . . . . . 8 (𝑅 ∈ Ring β†’ (opprβ€˜π‘…) ∈ Ring)
55 ringsrg 13222 . . . . . . . 8 ((opprβ€˜π‘…) ∈ Ring β†’ (opprβ€˜π‘…) ∈ SRing)
5654, 55syl 14 . . . . . . 7 (𝑅 ∈ Ring β†’ (opprβ€˜π‘…) ∈ SRing)
5756adantr 276 . . . . . 6 ((𝑅 ∈ Ring ∧ π‘₯ ∈ π‘ˆ) β†’ (opprβ€˜π‘…) ∈ SRing)
58 eqidd 2178 . . . . . 6 ((𝑅 ∈ Ring ∧ π‘₯ ∈ π‘ˆ) β†’ (.rβ€˜(opprβ€˜π‘…)) = (.rβ€˜(opprβ€˜π‘…)))
5953, 46, 57, 58, 40dvdsr2d 13262 . . . . 5 ((𝑅 ∈ Ring ∧ π‘₯ ∈ π‘ˆ) β†’ (π‘₯(βˆ₯rβ€˜(opprβ€˜π‘…))(1rβ€˜π‘…) ↔ βˆƒπ‘š ∈ (Baseβ€˜π‘…)(π‘š(.rβ€˜(opprβ€˜π‘…))π‘₯) = (1rβ€˜π‘…)))
6050, 59anbi12d 473 . . . 4 ((𝑅 ∈ Ring ∧ π‘₯ ∈ π‘ˆ) β†’ ((π‘₯(βˆ₯rβ€˜π‘…)(1rβ€˜π‘…) ∧ π‘₯(βˆ₯rβ€˜(opprβ€˜π‘…))(1rβ€˜π‘…)) ↔ (βˆƒπ‘¦ ∈ (Baseβ€˜π‘…)(𝑦(.rβ€˜π‘…)π‘₯) = (1rβ€˜π‘…) ∧ βˆƒπ‘š ∈ (Baseβ€˜π‘…)(π‘š(.rβ€˜(opprβ€˜π‘…))π‘₯) = (1rβ€˜π‘…))))
61 reeanv 2646 . . . . 5 (βˆƒπ‘¦ ∈ (Baseβ€˜π‘…)βˆƒπ‘š ∈ (Baseβ€˜π‘…)((𝑦(.rβ€˜π‘…)π‘₯) = (1rβ€˜π‘…) ∧ (π‘š(.rβ€˜(opprβ€˜π‘…))π‘₯) = (1rβ€˜π‘…)) ↔ (βˆƒπ‘¦ ∈ (Baseβ€˜π‘…)(𝑦(.rβ€˜π‘…)π‘₯) = (1rβ€˜π‘…) ∧ βˆƒπ‘š ∈ (Baseβ€˜π‘…)(π‘š(.rβ€˜(opprβ€˜π‘…))π‘₯) = (1rβ€˜π‘…)))
62 eqidd 2178 . . . . . . . . . . . 12 ((((𝑅 ∈ Ring ∧ π‘₯ ∈ π‘ˆ) ∧ 𝑦 ∈ (Baseβ€˜π‘…)) ∧ (π‘š ∈ (Baseβ€˜π‘…) ∧ ((𝑦(.rβ€˜π‘…)π‘₯) = (1rβ€˜π‘…) ∧ (π‘š(.rβ€˜(opprβ€˜π‘…))π‘₯) = (1rβ€˜π‘…)))) β†’ (Baseβ€˜π‘…) = (Baseβ€˜π‘…))
63 eqidd 2178 . . . . . . . . . . . 12 ((((𝑅 ∈ Ring ∧ π‘₯ ∈ π‘ˆ) ∧ 𝑦 ∈ (Baseβ€˜π‘…)) ∧ (π‘š ∈ (Baseβ€˜π‘…) ∧ ((𝑦(.rβ€˜π‘…)π‘₯) = (1rβ€˜π‘…) ∧ (π‘š(.rβ€˜(opprβ€˜π‘…))π‘₯) = (1rβ€˜π‘…)))) β†’ (βˆ₯rβ€˜π‘…) = (βˆ₯rβ€˜π‘…))
6438ad2antrr 488 . . . . . . . . . . . 12 ((((𝑅 ∈ Ring ∧ π‘₯ ∈ π‘ˆ) ∧ 𝑦 ∈ (Baseβ€˜π‘…)) ∧ (π‘š ∈ (Baseβ€˜π‘…) ∧ ((𝑦(.rβ€˜π‘…)π‘₯) = (1rβ€˜π‘…) ∧ (π‘š(.rβ€˜(opprβ€˜π‘…))π‘₯) = (1rβ€˜π‘…)))) β†’ 𝑅 ∈ SRing)
65 eqidd 2178 . . . . . . . . . . . 12 ((((𝑅 ∈ Ring ∧ π‘₯ ∈ π‘ˆ) ∧ 𝑦 ∈ (Baseβ€˜π‘…)) ∧ (π‘š ∈ (Baseβ€˜π‘…) ∧ ((𝑦(.rβ€˜π‘…)π‘₯) = (1rβ€˜π‘…) ∧ (π‘š(.rβ€˜(opprβ€˜π‘…))π‘₯) = (1rβ€˜π‘…)))) β†’ (.rβ€˜π‘…) = (.rβ€˜π‘…))
66 simprl 529 . . . . . . . . . . . 12 ((((𝑅 ∈ Ring ∧ π‘₯ ∈ π‘ˆ) ∧ 𝑦 ∈ (Baseβ€˜π‘…)) ∧ (π‘š ∈ (Baseβ€˜π‘…) ∧ ((𝑦(.rβ€˜π‘…)π‘₯) = (1rβ€˜π‘…) ∧ (π‘š(.rβ€˜(opprβ€˜π‘…))π‘₯) = (1rβ€˜π‘…)))) β†’ π‘š ∈ (Baseβ€˜π‘…))
6740ad2antrr 488 . . . . . . . . . . . 12 ((((𝑅 ∈ Ring ∧ π‘₯ ∈ π‘ˆ) ∧ 𝑦 ∈ (Baseβ€˜π‘…)) ∧ (π‘š ∈ (Baseβ€˜π‘…) ∧ ((𝑦(.rβ€˜π‘…)π‘₯) = (1rβ€˜π‘…) ∧ (π‘š(.rβ€˜(opprβ€˜π‘…))π‘₯) = (1rβ€˜π‘…)))) β†’ π‘₯ ∈ (Baseβ€˜π‘…))
6862, 63, 64, 65, 66, 67dvdsrmuld 13263 . . . . . . . . . . 11 ((((𝑅 ∈ Ring ∧ π‘₯ ∈ π‘ˆ) ∧ 𝑦 ∈ (Baseβ€˜π‘…)) ∧ (π‘š ∈ (Baseβ€˜π‘…) ∧ ((𝑦(.rβ€˜π‘…)π‘₯) = (1rβ€˜π‘…) ∧ (π‘š(.rβ€˜(opprβ€˜π‘…))π‘₯) = (1rβ€˜π‘…)))) β†’ π‘š(βˆ₯rβ€˜π‘…)(π‘₯(.rβ€˜π‘…)π‘š))
69 simplll 533 . . . . . . . . . . . . . 14 ((((𝑅 ∈ Ring ∧ π‘₯ ∈ π‘ˆ) ∧ 𝑦 ∈ (Baseβ€˜π‘…)) ∧ (π‘š ∈ (Baseβ€˜π‘…) ∧ ((𝑦(.rβ€˜π‘…)π‘₯) = (1rβ€˜π‘…) ∧ (π‘š(.rβ€˜(opprβ€˜π‘…))π‘₯) = (1rβ€˜π‘…)))) β†’ 𝑅 ∈ Ring)
70 simplr 528 . . . . . . . . . . . . . 14 ((((𝑅 ∈ Ring ∧ π‘₯ ∈ π‘ˆ) ∧ 𝑦 ∈ (Baseβ€˜π‘…)) ∧ (π‘š ∈ (Baseβ€˜π‘…) ∧ ((𝑦(.rβ€˜π‘…)π‘₯) = (1rβ€˜π‘…) ∧ (π‘š(.rβ€˜(opprβ€˜π‘…))π‘₯) = (1rβ€˜π‘…)))) β†’ 𝑦 ∈ (Baseβ€˜π‘…))
7131, 8ringass 13197 . . . . . . . . . . . . . 14 ((𝑅 ∈ Ring ∧ (𝑦 ∈ (Baseβ€˜π‘…) ∧ π‘₯ ∈ (Baseβ€˜π‘…) ∧ π‘š ∈ (Baseβ€˜π‘…))) β†’ ((𝑦(.rβ€˜π‘…)π‘₯)(.rβ€˜π‘…)π‘š) = (𝑦(.rβ€˜π‘…)(π‘₯(.rβ€˜π‘…)π‘š)))
7269, 70, 67, 66, 71syl13anc 1240 . . . . . . . . . . . . 13 ((((𝑅 ∈ Ring ∧ π‘₯ ∈ π‘ˆ) ∧ 𝑦 ∈ (Baseβ€˜π‘…)) ∧ (π‘š ∈ (Baseβ€˜π‘…) ∧ ((𝑦(.rβ€˜π‘…)π‘₯) = (1rβ€˜π‘…) ∧ (π‘š(.rβ€˜(opprβ€˜π‘…))π‘₯) = (1rβ€˜π‘…)))) β†’ ((𝑦(.rβ€˜π‘…)π‘₯)(.rβ€˜π‘…)π‘š) = (𝑦(.rβ€˜π‘…)(π‘₯(.rβ€˜π‘…)π‘š)))
73 simprrl 539 . . . . . . . . . . . . . 14 ((((𝑅 ∈ Ring ∧ π‘₯ ∈ π‘ˆ) ∧ 𝑦 ∈ (Baseβ€˜π‘…)) ∧ (π‘š ∈ (Baseβ€˜π‘…) ∧ ((𝑦(.rβ€˜π‘…)π‘₯) = (1rβ€˜π‘…) ∧ (π‘š(.rβ€˜(opprβ€˜π‘…))π‘₯) = (1rβ€˜π‘…)))) β†’ (𝑦(.rβ€˜π‘…)π‘₯) = (1rβ€˜π‘…))
7473oveq1d 5889 . . . . . . . . . . . . 13 ((((𝑅 ∈ Ring ∧ π‘₯ ∈ π‘ˆ) ∧ 𝑦 ∈ (Baseβ€˜π‘…)) ∧ (π‘š ∈ (Baseβ€˜π‘…) ∧ ((𝑦(.rβ€˜π‘…)π‘₯) = (1rβ€˜π‘…) ∧ (π‘š(.rβ€˜(opprβ€˜π‘…))π‘₯) = (1rβ€˜π‘…)))) β†’ ((𝑦(.rβ€˜π‘…)π‘₯)(.rβ€˜π‘…)π‘š) = ((1rβ€˜π‘…)(.rβ€˜π‘…)π‘š))
7539ad2antrr 488 . . . . . . . . . . . . . . . 16 ((((𝑅 ∈ Ring ∧ π‘₯ ∈ π‘ˆ) ∧ 𝑦 ∈ (Baseβ€˜π‘…)) ∧ (π‘š ∈ (Baseβ€˜π‘…) ∧ ((𝑦(.rβ€˜π‘…)π‘₯) = (1rβ€˜π‘…) ∧ (π‘š(.rβ€˜(opprβ€˜π‘…))π‘₯) = (1rβ€˜π‘…)))) β†’ π‘₯ ∈ π‘ˆ)
76 eqid 2177 . . . . . . . . . . . . . . . . 17 (.rβ€˜(opprβ€˜π‘…)) = (.rβ€˜(opprβ€˜π‘…))
7731, 8, 51, 76opprmulg 13241 . . . . . . . . . . . . . . . 16 ((𝑅 ∈ Ring ∧ π‘š ∈ (Baseβ€˜π‘…) ∧ π‘₯ ∈ π‘ˆ) β†’ (π‘š(.rβ€˜(opprβ€˜π‘…))π‘₯) = (π‘₯(.rβ€˜π‘…)π‘š))
7869, 66, 75, 77syl3anc 1238 . . . . . . . . . . . . . . 15 ((((𝑅 ∈ Ring ∧ π‘₯ ∈ π‘ˆ) ∧ 𝑦 ∈ (Baseβ€˜π‘…)) ∧ (π‘š ∈ (Baseβ€˜π‘…) ∧ ((𝑦(.rβ€˜π‘…)π‘₯) = (1rβ€˜π‘…) ∧ (π‘š(.rβ€˜(opprβ€˜π‘…))π‘₯) = (1rβ€˜π‘…)))) β†’ (π‘š(.rβ€˜(opprβ€˜π‘…))π‘₯) = (π‘₯(.rβ€˜π‘…)π‘š))
79 simprrr 540 . . . . . . . . . . . . . . 15 ((((𝑅 ∈ Ring ∧ π‘₯ ∈ π‘ˆ) ∧ 𝑦 ∈ (Baseβ€˜π‘…)) ∧ (π‘š ∈ (Baseβ€˜π‘…) ∧ ((𝑦(.rβ€˜π‘…)π‘₯) = (1rβ€˜π‘…) ∧ (π‘š(.rβ€˜(opprβ€˜π‘…))π‘₯) = (1rβ€˜π‘…)))) β†’ (π‘š(.rβ€˜(opprβ€˜π‘…))π‘₯) = (1rβ€˜π‘…))
8078, 79eqtr3d 2212 . . . . . . . . . . . . . 14 ((((𝑅 ∈ Ring ∧ π‘₯ ∈ π‘ˆ) ∧ 𝑦 ∈ (Baseβ€˜π‘…)) ∧ (π‘š ∈ (Baseβ€˜π‘…) ∧ ((𝑦(.rβ€˜π‘…)π‘₯) = (1rβ€˜π‘…) ∧ (π‘š(.rβ€˜(opprβ€˜π‘…))π‘₯) = (1rβ€˜π‘…)))) β†’ (π‘₯(.rβ€˜π‘…)π‘š) = (1rβ€˜π‘…))
8180oveq2d 5890 . . . . . . . . . . . . 13 ((((𝑅 ∈ Ring ∧ π‘₯ ∈ π‘ˆ) ∧ 𝑦 ∈ (Baseβ€˜π‘…)) ∧ (π‘š ∈ (Baseβ€˜π‘…) ∧ ((𝑦(.rβ€˜π‘…)π‘₯) = (1rβ€˜π‘…) ∧ (π‘š(.rβ€˜(opprβ€˜π‘…))π‘₯) = (1rβ€˜π‘…)))) β†’ (𝑦(.rβ€˜π‘…)(π‘₯(.rβ€˜π‘…)π‘š)) = (𝑦(.rβ€˜π‘…)(1rβ€˜π‘…)))
8272, 74, 813eqtr3d 2218 . . . . . . . . . . . 12 ((((𝑅 ∈ Ring ∧ π‘₯ ∈ π‘ˆ) ∧ 𝑦 ∈ (Baseβ€˜π‘…)) ∧ (π‘š ∈ (Baseβ€˜π‘…) ∧ ((𝑦(.rβ€˜π‘…)π‘₯) = (1rβ€˜π‘…) ∧ (π‘š(.rβ€˜(opprβ€˜π‘…))π‘₯) = (1rβ€˜π‘…)))) β†’ ((1rβ€˜π‘…)(.rβ€˜π‘…)π‘š) = (𝑦(.rβ€˜π‘…)(1rβ€˜π‘…)))
8331, 8, 34ringlidm 13204 . . . . . . . . . . . . 13 ((𝑅 ∈ Ring ∧ π‘š ∈ (Baseβ€˜π‘…)) β†’ ((1rβ€˜π‘…)(.rβ€˜π‘…)π‘š) = π‘š)
8469, 66, 83syl2anc 411 . . . . . . . . . . . 12 ((((𝑅 ∈ Ring ∧ π‘₯ ∈ π‘ˆ) ∧ 𝑦 ∈ (Baseβ€˜π‘…)) ∧ (π‘š ∈ (Baseβ€˜π‘…) ∧ ((𝑦(.rβ€˜π‘…)π‘₯) = (1rβ€˜π‘…) ∧ (π‘š(.rβ€˜(opprβ€˜π‘…))π‘₯) = (1rβ€˜π‘…)))) β†’ ((1rβ€˜π‘…)(.rβ€˜π‘…)π‘š) = π‘š)
8531, 8, 34ringridm 13205 . . . . . . . . . . . . 13 ((𝑅 ∈ Ring ∧ 𝑦 ∈ (Baseβ€˜π‘…)) β†’ (𝑦(.rβ€˜π‘…)(1rβ€˜π‘…)) = 𝑦)
8669, 70, 85syl2anc 411 . . . . . . . . . . . 12 ((((𝑅 ∈ Ring ∧ π‘₯ ∈ π‘ˆ) ∧ 𝑦 ∈ (Baseβ€˜π‘…)) ∧ (π‘š ∈ (Baseβ€˜π‘…) ∧ ((𝑦(.rβ€˜π‘…)π‘₯) = (1rβ€˜π‘…) ∧ (π‘š(.rβ€˜(opprβ€˜π‘…))π‘₯) = (1rβ€˜π‘…)))) β†’ (𝑦(.rβ€˜π‘…)(1rβ€˜π‘…)) = 𝑦)
8782, 84, 863eqtr3d 2218 . . . . . . . . . . 11 ((((𝑅 ∈ Ring ∧ π‘₯ ∈ π‘ˆ) ∧ 𝑦 ∈ (Baseβ€˜π‘…)) ∧ (π‘š ∈ (Baseβ€˜π‘…) ∧ ((𝑦(.rβ€˜π‘…)π‘₯) = (1rβ€˜π‘…) ∧ (π‘š(.rβ€˜(opprβ€˜π‘…))π‘₯) = (1rβ€˜π‘…)))) β†’ π‘š = 𝑦)
8868, 87, 803brtr3d 4034 . . . . . . . . . 10 ((((𝑅 ∈ Ring ∧ π‘₯ ∈ π‘ˆ) ∧ 𝑦 ∈ (Baseβ€˜π‘…)) ∧ (π‘š ∈ (Baseβ€˜π‘…) ∧ ((𝑦(.rβ€˜π‘…)π‘₯) = (1rβ€˜π‘…) ∧ (π‘š(.rβ€˜(opprβ€˜π‘…))π‘₯) = (1rβ€˜π‘…)))) β†’ 𝑦(βˆ₯rβ€˜π‘…)(1rβ€˜π‘…))
8969, 52syl 14 . . . . . . . . . . . 12 ((((𝑅 ∈ Ring ∧ π‘₯ ∈ π‘ˆ) ∧ 𝑦 ∈ (Baseβ€˜π‘…)) ∧ (π‘š ∈ (Baseβ€˜π‘…) ∧ ((𝑦(.rβ€˜π‘…)π‘₯) = (1rβ€˜π‘…) ∧ (π‘š(.rβ€˜(opprβ€˜π‘…))π‘₯) = (1rβ€˜π‘…)))) β†’ (Baseβ€˜π‘…) = (Baseβ€˜(opprβ€˜π‘…)))
90 eqidd 2178 . . . . . . . . . . . 12 ((((𝑅 ∈ Ring ∧ π‘₯ ∈ π‘ˆ) ∧ 𝑦 ∈ (Baseβ€˜π‘…)) ∧ (π‘š ∈ (Baseβ€˜π‘…) ∧ ((𝑦(.rβ€˜π‘…)π‘₯) = (1rβ€˜π‘…) ∧ (π‘š(.rβ€˜(opprβ€˜π‘…))π‘₯) = (1rβ€˜π‘…)))) β†’ (βˆ₯rβ€˜(opprβ€˜π‘…)) = (βˆ₯rβ€˜(opprβ€˜π‘…)))
9169, 56syl 14 . . . . . . . . . . . 12 ((((𝑅 ∈ Ring ∧ π‘₯ ∈ π‘ˆ) ∧ 𝑦 ∈ (Baseβ€˜π‘…)) ∧ (π‘š ∈ (Baseβ€˜π‘…) ∧ ((𝑦(.rβ€˜π‘…)π‘₯) = (1rβ€˜π‘…) ∧ (π‘š(.rβ€˜(opprβ€˜π‘…))π‘₯) = (1rβ€˜π‘…)))) β†’ (opprβ€˜π‘…) ∈ SRing)
92 eqidd 2178 . . . . . . . . . . . 12 ((((𝑅 ∈ Ring ∧ π‘₯ ∈ π‘ˆ) ∧ 𝑦 ∈ (Baseβ€˜π‘…)) ∧ (π‘š ∈ (Baseβ€˜π‘…) ∧ ((𝑦(.rβ€˜π‘…)π‘₯) = (1rβ€˜π‘…) ∧ (π‘š(.rβ€˜(opprβ€˜π‘…))π‘₯) = (1rβ€˜π‘…)))) β†’ (.rβ€˜(opprβ€˜π‘…)) = (.rβ€˜(opprβ€˜π‘…)))
9389, 90, 91, 92, 70, 67dvdsrmuld 13263 . . . . . . . . . . 11 ((((𝑅 ∈ Ring ∧ π‘₯ ∈ π‘ˆ) ∧ 𝑦 ∈ (Baseβ€˜π‘…)) ∧ (π‘š ∈ (Baseβ€˜π‘…) ∧ ((𝑦(.rβ€˜π‘…)π‘₯) = (1rβ€˜π‘…) ∧ (π‘š(.rβ€˜(opprβ€˜π‘…))π‘₯) = (1rβ€˜π‘…)))) β†’ 𝑦(βˆ₯rβ€˜(opprβ€˜π‘…))(π‘₯(.rβ€˜(opprβ€˜π‘…))𝑦))
9431, 8, 51, 76opprmulg 13241 . . . . . . . . . . . . 13 ((𝑅 ∈ Ring ∧ π‘₯ ∈ π‘ˆ ∧ 𝑦 ∈ (Baseβ€˜π‘…)) β†’ (π‘₯(.rβ€˜(opprβ€˜π‘…))𝑦) = (𝑦(.rβ€˜π‘…)π‘₯))
9569, 75, 70, 94syl3anc 1238 . . . . . . . . . . . 12 ((((𝑅 ∈ Ring ∧ π‘₯ ∈ π‘ˆ) ∧ 𝑦 ∈ (Baseβ€˜π‘…)) ∧ (π‘š ∈ (Baseβ€˜π‘…) ∧ ((𝑦(.rβ€˜π‘…)π‘₯) = (1rβ€˜π‘…) ∧ (π‘š(.rβ€˜(opprβ€˜π‘…))π‘₯) = (1rβ€˜π‘…)))) β†’ (π‘₯(.rβ€˜(opprβ€˜π‘…))𝑦) = (𝑦(.rβ€˜π‘…)π‘₯))
9695, 73eqtrd 2210 . . . . . . . . . . 11 ((((𝑅 ∈ Ring ∧ π‘₯ ∈ π‘ˆ) ∧ 𝑦 ∈ (Baseβ€˜π‘…)) ∧ (π‘š ∈ (Baseβ€˜π‘…) ∧ ((𝑦(.rβ€˜π‘…)π‘₯) = (1rβ€˜π‘…) ∧ (π‘š(.rβ€˜(opprβ€˜π‘…))π‘₯) = (1rβ€˜π‘…)))) β†’ (π‘₯(.rβ€˜(opprβ€˜π‘…))𝑦) = (1rβ€˜π‘…))
9793, 96breqtrd 4029 . . . . . . . . . 10 ((((𝑅 ∈ Ring ∧ π‘₯ ∈ π‘ˆ) ∧ 𝑦 ∈ (Baseβ€˜π‘…)) ∧ (π‘š ∈ (Baseβ€˜π‘…) ∧ ((𝑦(.rβ€˜π‘…)π‘₯) = (1rβ€˜π‘…) ∧ (π‘š(.rβ€˜(opprβ€˜π‘…))π‘₯) = (1rβ€˜π‘…)))) β†’ 𝑦(βˆ₯rβ€˜(opprβ€˜π‘…))(1rβ€˜π‘…))
981a1i 9 . . . . . . . . . . 11 ((((𝑅 ∈ Ring ∧ π‘₯ ∈ π‘ˆ) ∧ 𝑦 ∈ (Baseβ€˜π‘…)) ∧ (π‘š ∈ (Baseβ€˜π‘…) ∧ ((𝑦(.rβ€˜π‘…)π‘₯) = (1rβ€˜π‘…) ∧ (π‘š(.rβ€˜(opprβ€˜π‘…))π‘₯) = (1rβ€˜π‘…)))) β†’ π‘ˆ = (Unitβ€˜π‘…))
99 eqidd 2178 . . . . . . . . . . 11 ((((𝑅 ∈ Ring ∧ π‘₯ ∈ π‘ˆ) ∧ 𝑦 ∈ (Baseβ€˜π‘…)) ∧ (π‘š ∈ (Baseβ€˜π‘…) ∧ ((𝑦(.rβ€˜π‘…)π‘₯) = (1rβ€˜π‘…) ∧ (π‘š(.rβ€˜(opprβ€˜π‘…))π‘₯) = (1rβ€˜π‘…)))) β†’ (1rβ€˜π‘…) = (1rβ€˜π‘…))
100 eqidd 2178 . . . . . . . . . . 11 ((((𝑅 ∈ Ring ∧ π‘₯ ∈ π‘ˆ) ∧ 𝑦 ∈ (Baseβ€˜π‘…)) ∧ (π‘š ∈ (Baseβ€˜π‘…) ∧ ((𝑦(.rβ€˜π‘…)π‘₯) = (1rβ€˜π‘…) ∧ (π‘š(.rβ€˜(opprβ€˜π‘…))π‘₯) = (1rβ€˜π‘…)))) β†’ (opprβ€˜π‘…) = (opprβ€˜π‘…))
10198, 99, 63, 100, 90, 64isunitd 13273 . . . . . . . . . 10 ((((𝑅 ∈ Ring ∧ π‘₯ ∈ π‘ˆ) ∧ 𝑦 ∈ (Baseβ€˜π‘…)) ∧ (π‘š ∈ (Baseβ€˜π‘…) ∧ ((𝑦(.rβ€˜π‘…)π‘₯) = (1rβ€˜π‘…) ∧ (π‘š(.rβ€˜(opprβ€˜π‘…))π‘₯) = (1rβ€˜π‘…)))) β†’ (𝑦 ∈ π‘ˆ ↔ (𝑦(βˆ₯rβ€˜π‘…)(1rβ€˜π‘…) ∧ 𝑦(βˆ₯rβ€˜(opprβ€˜π‘…))(1rβ€˜π‘…))))
10288, 97, 101mpbir2and 944 . . . . . . . . 9 ((((𝑅 ∈ Ring ∧ π‘₯ ∈ π‘ˆ) ∧ 𝑦 ∈ (Baseβ€˜π‘…)) ∧ (π‘š ∈ (Baseβ€˜π‘…) ∧ ((𝑦(.rβ€˜π‘…)π‘₯) = (1rβ€˜π‘…) ∧ (π‘š(.rβ€˜(opprβ€˜π‘…))π‘₯) = (1rβ€˜π‘…)))) β†’ 𝑦 ∈ π‘ˆ)
103102, 73jca 306 . . . . . . . 8 ((((𝑅 ∈ Ring ∧ π‘₯ ∈ π‘ˆ) ∧ 𝑦 ∈ (Baseβ€˜π‘…)) ∧ (π‘š ∈ (Baseβ€˜π‘…) ∧ ((𝑦(.rβ€˜π‘…)π‘₯) = (1rβ€˜π‘…) ∧ (π‘š(.rβ€˜(opprβ€˜π‘…))π‘₯) = (1rβ€˜π‘…)))) β†’ (𝑦 ∈ π‘ˆ ∧ (𝑦(.rβ€˜π‘…)π‘₯) = (1rβ€˜π‘…)))
104103rexlimdvaa 2595 . . . . . . 7 (((𝑅 ∈ Ring ∧ π‘₯ ∈ π‘ˆ) ∧ 𝑦 ∈ (Baseβ€˜π‘…)) β†’ (βˆƒπ‘š ∈ (Baseβ€˜π‘…)((𝑦(.rβ€˜π‘…)π‘₯) = (1rβ€˜π‘…) ∧ (π‘š(.rβ€˜(opprβ€˜π‘…))π‘₯) = (1rβ€˜π‘…)) β†’ (𝑦 ∈ π‘ˆ ∧ (𝑦(.rβ€˜π‘…)π‘₯) = (1rβ€˜π‘…))))
105104expimpd 363 . . . . . 6 ((𝑅 ∈ Ring ∧ π‘₯ ∈ π‘ˆ) β†’ ((𝑦 ∈ (Baseβ€˜π‘…) ∧ βˆƒπ‘š ∈ (Baseβ€˜π‘…)((𝑦(.rβ€˜π‘…)π‘₯) = (1rβ€˜π‘…) ∧ (π‘š(.rβ€˜(opprβ€˜π‘…))π‘₯) = (1rβ€˜π‘…))) β†’ (𝑦 ∈ π‘ˆ ∧ (𝑦(.rβ€˜π‘…)π‘₯) = (1rβ€˜π‘…))))
106105reximdv2 2576 . . . . 5 ((𝑅 ∈ Ring ∧ π‘₯ ∈ π‘ˆ) β†’ (βˆƒπ‘¦ ∈ (Baseβ€˜π‘…)βˆƒπ‘š ∈ (Baseβ€˜π‘…)((𝑦(.rβ€˜π‘…)π‘₯) = (1rβ€˜π‘…) ∧ (π‘š(.rβ€˜(opprβ€˜π‘…))π‘₯) = (1rβ€˜π‘…)) β†’ βˆƒπ‘¦ ∈ π‘ˆ (𝑦(.rβ€˜π‘…)π‘₯) = (1rβ€˜π‘…)))
10761, 106biimtrrid 153 . . . 4 ((𝑅 ∈ Ring ∧ π‘₯ ∈ π‘ˆ) β†’ ((βˆƒπ‘¦ ∈ (Baseβ€˜π‘…)(𝑦(.rβ€˜π‘…)π‘₯) = (1rβ€˜π‘…) ∧ βˆƒπ‘š ∈ (Baseβ€˜π‘…)(π‘š(.rβ€˜(opprβ€˜π‘…))π‘₯) = (1rβ€˜π‘…)) β†’ βˆƒπ‘¦ ∈ π‘ˆ (𝑦(.rβ€˜π‘…)π‘₯) = (1rβ€˜π‘…)))
10860, 107sylbid 150 . . 3 ((𝑅 ∈ Ring ∧ π‘₯ ∈ π‘ˆ) β†’ ((π‘₯(βˆ₯rβ€˜π‘…)(1rβ€˜π‘…) ∧ π‘₯(βˆ₯rβ€˜(opprβ€˜π‘…))(1rβ€˜π‘…)) β†’ βˆƒπ‘¦ ∈ π‘ˆ (𝑦(.rβ€˜π‘…)π‘₯) = (1rβ€˜π‘…)))
10948, 108mpd 13 . 2 ((𝑅 ∈ Ring ∧ π‘₯ ∈ π‘ˆ) β†’ βˆƒπ‘¦ ∈ π‘ˆ (𝑦(.rβ€˜π‘…)π‘₯) = (1rβ€˜π‘…))
1106, 19, 20, 33, 35, 42, 109isgrpde 12897 1 (𝑅 ∈ Ring β†’ 𝐺 ∈ Grp)
Colors of variables: wff set class
Syntax hints:   β†’ wi 4   ∧ wa 104   ∧ w3a 978   = wceq 1353   ∈ wcel 2148  βˆƒwrex 2456  Vcvv 2737   class class class wbr 4003   Fn wfn 5211  β€˜cfv 5216  (class class class)co 5874  Basecbs 12461   β†Ύs cress 12462  .rcmulr 12536  Grpcgrp 12876  mulGrpcmgp 13128  1rcur 13140  SRingcsrg 13144  Ringcrg 13177  opprcoppr 13237  βˆ₯rcdsr 13253  Unitcui 13254
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4118  ax-sep 4121  ax-nul 4129  ax-pow 4174  ax-pr 4209  ax-un 4433  ax-setind 4536  ax-cnex 7901  ax-resscn 7902  ax-1cn 7903  ax-1re 7904  ax-icn 7905  ax-addcl 7906  ax-addrcl 7907  ax-mulcl 7908  ax-addcom 7910  ax-addass 7912  ax-i2m1 7915  ax-0lt1 7916  ax-0id 7918  ax-rnegex 7919  ax-pre-ltirr 7922  ax-pre-lttrn 7924  ax-pre-ltadd 7926
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rmo 2463  df-rab 2464  df-v 2739  df-sbc 2963  df-csb 3058  df-dif 3131  df-un 3133  df-in 3135  df-ss 3142  df-nul 3423  df-pw 3577  df-sn 3598  df-pr 3599  df-op 3601  df-uni 3810  df-int 3845  df-iun 3888  df-br 4004  df-opab 4065  df-mpt 4066  df-id 4293  df-xp 4632  df-rel 4633  df-cnv 4634  df-co 4635  df-dm 4636  df-rn 4637  df-res 4638  df-ima 4639  df-iota 5178  df-fun 5218  df-fn 5219  df-f 5220  df-f1 5221  df-fo 5222  df-f1o 5223  df-fv 5224  df-riota 5830  df-ov 5877  df-oprab 5878  df-mpo 5879  df-tpos 6245  df-pnf 7993  df-mnf 7994  df-ltxr 7996  df-inn 8919  df-2 8977  df-3 8978  df-ndx 12464  df-slot 12465  df-base 12467  df-sets 12468  df-iress 12469  df-plusg 12548  df-mulr 12549  df-0g 12706  df-mgm 12774  df-sgrp 12807  df-mnd 12817  df-grp 12879  df-minusg 12880  df-cmn 13088  df-abl 13089  df-mgp 13129  df-ur 13141  df-srg 13145  df-ring 13179  df-oppr 13238  df-dvdsr 13256  df-unit 13257
This theorem is referenced by:  unitabl  13284  unitsubm  13286  invrfvald  13289  unitinvcl  13290  unitinvinv  13291  unitlinv  13293  unitrinv  13294  rdivmuldivd  13311  subrgugrp  13359
  Copyright terms: Public domain W3C validator