| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > recapb | GIF version | ||
| Description: A complex number has a multiplicative inverse if and only if it is apart from zero. Theorem 11.2.4 of [HoTT], p. (varies), generalized from real to complex numbers. (Contributed by Jim Kingdon, 18-Jan-2025.) |
| Ref | Expression |
|---|---|
| recapb | ⊢ (𝐴 ∈ ℂ → (𝐴 # 0 ↔ ∃𝑥 ∈ ℂ (𝐴 · 𝑥) = 1)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | recexap 8788 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝐴 # 0) → ∃𝑥 ∈ ℂ (𝐴 · 𝑥) = 1) | |
| 2 | 1 | ex 115 | . 2 ⊢ (𝐴 ∈ ℂ → (𝐴 # 0 → ∃𝑥 ∈ ℂ (𝐴 · 𝑥) = 1)) |
| 3 | simpl 109 | . . . 4 ⊢ ((𝐴 ∈ ℂ ∧ (𝑥 ∈ ℂ ∧ (𝐴 · 𝑥) = 1)) → 𝐴 ∈ ℂ) | |
| 4 | simprl 529 | . . . 4 ⊢ ((𝐴 ∈ ℂ ∧ (𝑥 ∈ ℂ ∧ (𝐴 · 𝑥) = 1)) → 𝑥 ∈ ℂ) | |
| 5 | simprr 531 | . . . . 5 ⊢ ((𝐴 ∈ ℂ ∧ (𝑥 ∈ ℂ ∧ (𝐴 · 𝑥) = 1)) → (𝐴 · 𝑥) = 1) | |
| 6 | 1ap0 8725 | . . . . 5 ⊢ 1 # 0 | |
| 7 | 5, 6 | eqbrtrdi 4121 | . . . 4 ⊢ ((𝐴 ∈ ℂ ∧ (𝑥 ∈ ℂ ∧ (𝐴 · 𝑥) = 1)) → (𝐴 · 𝑥) # 0) |
| 8 | 3, 4, 7 | mulap0bad 8794 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ (𝑥 ∈ ℂ ∧ (𝐴 · 𝑥) = 1)) → 𝐴 # 0) |
| 9 | 8 | rexlimdvaa 2649 | . 2 ⊢ (𝐴 ∈ ℂ → (∃𝑥 ∈ ℂ (𝐴 · 𝑥) = 1 → 𝐴 # 0)) |
| 10 | 2, 9 | impbid 129 | 1 ⊢ (𝐴 ∈ ℂ → (𝐴 # 0 ↔ ∃𝑥 ∈ ℂ (𝐴 · 𝑥) = 1)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 = wceq 1395 ∈ wcel 2200 ∃wrex 2509 class class class wbr 4082 (class class class)co 5994 ℂcc 7985 0cc0 7987 1c1 7988 · cmul 7992 # cap 8716 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4201 ax-pow 4257 ax-pr 4292 ax-un 4521 ax-setind 4626 ax-cnex 8078 ax-resscn 8079 ax-1cn 8080 ax-1re 8081 ax-icn 8082 ax-addcl 8083 ax-addrcl 8084 ax-mulcl 8085 ax-mulrcl 8086 ax-addcom 8087 ax-mulcom 8088 ax-addass 8089 ax-mulass 8090 ax-distr 8091 ax-i2m1 8092 ax-0lt1 8093 ax-1rid 8094 ax-0id 8095 ax-rnegex 8096 ax-precex 8097 ax-cnre 8098 ax-pre-ltirr 8099 ax-pre-ltwlin 8100 ax-pre-lttrn 8101 ax-pre-apti 8102 ax-pre-ltadd 8103 ax-pre-mulgt0 8104 ax-pre-mulext 8105 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-nel 2496 df-ral 2513 df-rex 2514 df-reu 2515 df-rab 2517 df-v 2801 df-sbc 3029 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-br 4083 df-opab 4145 df-id 4381 df-po 4384 df-iso 4385 df-xp 4722 df-rel 4723 df-cnv 4724 df-co 4725 df-dm 4726 df-iota 5274 df-fun 5316 df-fv 5322 df-riota 5947 df-ov 5997 df-oprab 5998 df-mpo 5999 df-pnf 8171 df-mnf 8172 df-xr 8173 df-ltxr 8174 df-le 8175 df-sub 8307 df-neg 8308 df-reap 8710 df-ap 8717 |
| This theorem is referenced by: rerecapb 8978 cnfldui 14538 |
| Copyright terms: Public domain | W3C validator |