ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  grpinvval GIF version

Theorem grpinvval 13115
Description: The inverse of a group element. (Contributed by NM, 24-Aug-2011.) (Revised by Mario Carneiro, 7-Aug-2013.)
Hypotheses
Ref Expression
grpinvval.b 𝐵 = (Base‘𝐺)
grpinvval.p + = (+g𝐺)
grpinvval.o 0 = (0g𝐺)
grpinvval.n 𝑁 = (invg𝐺)
Assertion
Ref Expression
grpinvval (𝑋𝐵 → (𝑁𝑋) = (𝑦𝐵 (𝑦 + 𝑋) = 0 ))
Distinct variable groups:   𝑦,𝐵   𝑦,𝐺   𝑦,𝑋
Allowed substitution hints:   + (𝑦)   𝑁(𝑦)   0 (𝑦)

Proof of Theorem grpinvval
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 grpinvval.b . . . . 5 𝐵 = (Base‘𝐺)
21basmex 12677 . . . 4 (𝑋𝐵𝐺 ∈ V)
3 grpinvval.p . . . . 5 + = (+g𝐺)
4 grpinvval.o . . . . 5 0 = (0g𝐺)
5 grpinvval.n . . . . 5 𝑁 = (invg𝐺)
61, 3, 4, 5grpinvfvalg 13114 . . . 4 (𝐺 ∈ V → 𝑁 = (𝑥𝐵 ↦ (𝑦𝐵 (𝑦 + 𝑥) = 0 )))
72, 6syl 14 . . 3 (𝑋𝐵𝑁 = (𝑥𝐵 ↦ (𝑦𝐵 (𝑦 + 𝑥) = 0 )))
87fveq1d 5556 . 2 (𝑋𝐵 → (𝑁𝑋) = ((𝑥𝐵 ↦ (𝑦𝐵 (𝑦 + 𝑥) = 0 ))‘𝑋))
9 eqid 2193 . . 3 (𝑥𝐵 ↦ (𝑦𝐵 (𝑦 + 𝑥) = 0 )) = (𝑥𝐵 ↦ (𝑦𝐵 (𝑦 + 𝑥) = 0 ))
10 oveq2 5926 . . . . 5 (𝑥 = 𝑋 → (𝑦 + 𝑥) = (𝑦 + 𝑋))
1110eqeq1d 2202 . . . 4 (𝑥 = 𝑋 → ((𝑦 + 𝑥) = 0 ↔ (𝑦 + 𝑋) = 0 ))
1211riotabidv 5875 . . 3 (𝑥 = 𝑋 → (𝑦𝐵 (𝑦 + 𝑥) = 0 ) = (𝑦𝐵 (𝑦 + 𝑋) = 0 ))
13 id 19 . . 3 (𝑋𝐵𝑋𝐵)
14 basfn 12676 . . . . . 6 Base Fn V
15 funfvex 5571 . . . . . . 7 ((Fun Base ∧ 𝐺 ∈ dom Base) → (Base‘𝐺) ∈ V)
1615funfni 5354 . . . . . 6 ((Base Fn V ∧ 𝐺 ∈ V) → (Base‘𝐺) ∈ V)
1714, 2, 16sylancr 414 . . . . 5 (𝑋𝐵 → (Base‘𝐺) ∈ V)
181, 17eqeltrid 2280 . . . 4 (𝑋𝐵𝐵 ∈ V)
19 riotaexg 5877 . . . 4 (𝐵 ∈ V → (𝑦𝐵 (𝑦 + 𝑋) = 0 ) ∈ V)
2018, 19syl 14 . . 3 (𝑋𝐵 → (𝑦𝐵 (𝑦 + 𝑋) = 0 ) ∈ V)
219, 12, 13, 20fvmptd3 5651 . 2 (𝑋𝐵 → ((𝑥𝐵 ↦ (𝑦𝐵 (𝑦 + 𝑥) = 0 ))‘𝑋) = (𝑦𝐵 (𝑦 + 𝑋) = 0 ))
228, 21eqtrd 2226 1 (𝑋𝐵 → (𝑁𝑋) = (𝑦𝐵 (𝑦 + 𝑋) = 0 ))
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1364  wcel 2164  Vcvv 2760  cmpt 4090   Fn wfn 5249  cfv 5254  crio 5872  (class class class)co 5918  Basecbs 12618  +gcplusg 12695  0gc0g 12867  invgcminusg 13073
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4144  ax-sep 4147  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-cnex 7963  ax-resscn 7964  ax-1re 7966  ax-addrcl 7969
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-reu 2479  df-rab 2481  df-v 2762  df-sbc 2986  df-csb 3081  df-un 3157  df-in 3159  df-ss 3166  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-int 3871  df-iun 3914  df-br 4030  df-opab 4091  df-mpt 4092  df-id 4324  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-f1 5259  df-fo 5260  df-f1o 5261  df-fv 5262  df-riota 5873  df-ov 5921  df-inn 8983  df-ndx 12621  df-slot 12622  df-base 12624  df-minusg 13076
This theorem is referenced by:  grplinv  13122  isgrpinv  13126
  Copyright terms: Public domain W3C validator