| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > grpinvval | GIF version | ||
| Description: The inverse of a group element. (Contributed by NM, 24-Aug-2011.) (Revised by Mario Carneiro, 7-Aug-2013.) |
| Ref | Expression |
|---|---|
| grpinvval.b | ⊢ 𝐵 = (Base‘𝐺) |
| grpinvval.p | ⊢ + = (+g‘𝐺) |
| grpinvval.o | ⊢ 0 = (0g‘𝐺) |
| grpinvval.n | ⊢ 𝑁 = (invg‘𝐺) |
| Ref | Expression |
|---|---|
| grpinvval | ⊢ (𝑋 ∈ 𝐵 → (𝑁‘𝑋) = (℩𝑦 ∈ 𝐵 (𝑦 + 𝑋) = 0 )) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | grpinvval.b | . . . . 5 ⊢ 𝐵 = (Base‘𝐺) | |
| 2 | 1 | basmex 13058 | . . . 4 ⊢ (𝑋 ∈ 𝐵 → 𝐺 ∈ V) |
| 3 | grpinvval.p | . . . . 5 ⊢ + = (+g‘𝐺) | |
| 4 | grpinvval.o | . . . . 5 ⊢ 0 = (0g‘𝐺) | |
| 5 | grpinvval.n | . . . . 5 ⊢ 𝑁 = (invg‘𝐺) | |
| 6 | 1, 3, 4, 5 | grpinvfvalg 13541 | . . . 4 ⊢ (𝐺 ∈ V → 𝑁 = (𝑥 ∈ 𝐵 ↦ (℩𝑦 ∈ 𝐵 (𝑦 + 𝑥) = 0 ))) |
| 7 | 2, 6 | syl 14 | . . 3 ⊢ (𝑋 ∈ 𝐵 → 𝑁 = (𝑥 ∈ 𝐵 ↦ (℩𝑦 ∈ 𝐵 (𝑦 + 𝑥) = 0 ))) |
| 8 | 7 | fveq1d 5605 | . 2 ⊢ (𝑋 ∈ 𝐵 → (𝑁‘𝑋) = ((𝑥 ∈ 𝐵 ↦ (℩𝑦 ∈ 𝐵 (𝑦 + 𝑥) = 0 ))‘𝑋)) |
| 9 | eqid 2209 | . . 3 ⊢ (𝑥 ∈ 𝐵 ↦ (℩𝑦 ∈ 𝐵 (𝑦 + 𝑥) = 0 )) = (𝑥 ∈ 𝐵 ↦ (℩𝑦 ∈ 𝐵 (𝑦 + 𝑥) = 0 )) | |
| 10 | oveq2 5982 | . . . . 5 ⊢ (𝑥 = 𝑋 → (𝑦 + 𝑥) = (𝑦 + 𝑋)) | |
| 11 | 10 | eqeq1d 2218 | . . . 4 ⊢ (𝑥 = 𝑋 → ((𝑦 + 𝑥) = 0 ↔ (𝑦 + 𝑋) = 0 )) |
| 12 | 11 | riotabidv 5929 | . . 3 ⊢ (𝑥 = 𝑋 → (℩𝑦 ∈ 𝐵 (𝑦 + 𝑥) = 0 ) = (℩𝑦 ∈ 𝐵 (𝑦 + 𝑋) = 0 )) |
| 13 | id 19 | . . 3 ⊢ (𝑋 ∈ 𝐵 → 𝑋 ∈ 𝐵) | |
| 14 | basfn 13057 | . . . . . 6 ⊢ Base Fn V | |
| 15 | funfvex 5620 | . . . . . . 7 ⊢ ((Fun Base ∧ 𝐺 ∈ dom Base) → (Base‘𝐺) ∈ V) | |
| 16 | 15 | funfni 5399 | . . . . . 6 ⊢ ((Base Fn V ∧ 𝐺 ∈ V) → (Base‘𝐺) ∈ V) |
| 17 | 14, 2, 16 | sylancr 414 | . . . . 5 ⊢ (𝑋 ∈ 𝐵 → (Base‘𝐺) ∈ V) |
| 18 | 1, 17 | eqeltrid 2296 | . . . 4 ⊢ (𝑋 ∈ 𝐵 → 𝐵 ∈ V) |
| 19 | riotaexg 5931 | . . . 4 ⊢ (𝐵 ∈ V → (℩𝑦 ∈ 𝐵 (𝑦 + 𝑋) = 0 ) ∈ V) | |
| 20 | 18, 19 | syl 14 | . . 3 ⊢ (𝑋 ∈ 𝐵 → (℩𝑦 ∈ 𝐵 (𝑦 + 𝑋) = 0 ) ∈ V) |
| 21 | 9, 12, 13, 20 | fvmptd3 5701 | . 2 ⊢ (𝑋 ∈ 𝐵 → ((𝑥 ∈ 𝐵 ↦ (℩𝑦 ∈ 𝐵 (𝑦 + 𝑥) = 0 ))‘𝑋) = (℩𝑦 ∈ 𝐵 (𝑦 + 𝑋) = 0 )) |
| 22 | 8, 21 | eqtrd 2242 | 1 ⊢ (𝑋 ∈ 𝐵 → (𝑁‘𝑋) = (℩𝑦 ∈ 𝐵 (𝑦 + 𝑋) = 0 )) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1375 ∈ wcel 2180 Vcvv 2779 ↦ cmpt 4124 Fn wfn 5289 ‘cfv 5294 ℩crio 5926 (class class class)co 5974 Basecbs 12998 +gcplusg 13076 0gc0g 13255 invgcminusg 13500 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 713 ax-5 1473 ax-7 1474 ax-gen 1475 ax-ie1 1519 ax-ie2 1520 ax-8 1530 ax-10 1531 ax-11 1532 ax-i12 1533 ax-bndl 1535 ax-4 1536 ax-17 1552 ax-i9 1556 ax-ial 1560 ax-i5r 1561 ax-13 2182 ax-14 2183 ax-ext 2191 ax-coll 4178 ax-sep 4181 ax-pow 4237 ax-pr 4272 ax-un 4501 ax-cnex 8058 ax-resscn 8059 ax-1re 8061 ax-addrcl 8064 |
| This theorem depends on definitions: df-bi 117 df-3an 985 df-tru 1378 df-nf 1487 df-sb 1789 df-eu 2060 df-mo 2061 df-clab 2196 df-cleq 2202 df-clel 2205 df-nfc 2341 df-ral 2493 df-rex 2494 df-reu 2495 df-rab 2497 df-v 2781 df-sbc 3009 df-csb 3105 df-un 3181 df-in 3183 df-ss 3190 df-pw 3631 df-sn 3652 df-pr 3653 df-op 3655 df-uni 3868 df-int 3903 df-iun 3946 df-br 4063 df-opab 4125 df-mpt 4126 df-id 4361 df-xp 4702 df-rel 4703 df-cnv 4704 df-co 4705 df-dm 4706 df-rn 4707 df-res 4708 df-ima 4709 df-iota 5254 df-fun 5296 df-fn 5297 df-f 5298 df-f1 5299 df-fo 5300 df-f1o 5301 df-fv 5302 df-riota 5927 df-ov 5977 df-inn 9079 df-ndx 13001 df-slot 13002 df-base 13004 df-minusg 13503 |
| This theorem is referenced by: grplinv 13549 isgrpinv 13553 |
| Copyright terms: Public domain | W3C validator |