ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  grpinvval GIF version

Theorem grpinvval 12870
Description: The inverse of a group element. (Contributed by NM, 24-Aug-2011.) (Revised by Mario Carneiro, 7-Aug-2013.)
Hypotheses
Ref Expression
grpinvval.b 𝐵 = (Base‘𝐺)
grpinvval.p + = (+g𝐺)
grpinvval.o 0 = (0g𝐺)
grpinvval.n 𝑁 = (invg𝐺)
Assertion
Ref Expression
grpinvval (𝑋𝐵 → (𝑁𝑋) = (𝑦𝐵 (𝑦 + 𝑋) = 0 ))
Distinct variable groups:   𝑦,𝐵   𝑦,𝐺   𝑦,𝑋
Allowed substitution hints:   + (𝑦)   𝑁(𝑦)   0 (𝑦)

Proof of Theorem grpinvval
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 grpinvval.b . . . . 5 𝐵 = (Base‘𝐺)
21basmex 12515 . . . 4 (𝑋𝐵𝐺 ∈ V)
3 grpinvval.p . . . . 5 + = (+g𝐺)
4 grpinvval.o . . . . 5 0 = (0g𝐺)
5 grpinvval.n . . . . 5 𝑁 = (invg𝐺)
61, 3, 4, 5grpinvfvalg 12869 . . . 4 (𝐺 ∈ V → 𝑁 = (𝑥𝐵 ↦ (𝑦𝐵 (𝑦 + 𝑥) = 0 )))
72, 6syl 14 . . 3 (𝑋𝐵𝑁 = (𝑥𝐵 ↦ (𝑦𝐵 (𝑦 + 𝑥) = 0 )))
87fveq1d 5517 . 2 (𝑋𝐵 → (𝑁𝑋) = ((𝑥𝐵 ↦ (𝑦𝐵 (𝑦 + 𝑥) = 0 ))‘𝑋))
9 eqid 2177 . . 3 (𝑥𝐵 ↦ (𝑦𝐵 (𝑦 + 𝑥) = 0 )) = (𝑥𝐵 ↦ (𝑦𝐵 (𝑦 + 𝑥) = 0 ))
10 oveq2 5882 . . . . 5 (𝑥 = 𝑋 → (𝑦 + 𝑥) = (𝑦 + 𝑋))
1110eqeq1d 2186 . . . 4 (𝑥 = 𝑋 → ((𝑦 + 𝑥) = 0 ↔ (𝑦 + 𝑋) = 0 ))
1211riotabidv 5832 . . 3 (𝑥 = 𝑋 → (𝑦𝐵 (𝑦 + 𝑥) = 0 ) = (𝑦𝐵 (𝑦 + 𝑋) = 0 ))
13 id 19 . . 3 (𝑋𝐵𝑋𝐵)
14 basfn 12514 . . . . . 6 Base Fn V
15 funfvex 5532 . . . . . . 7 ((Fun Base ∧ 𝐺 ∈ dom Base) → (Base‘𝐺) ∈ V)
1615funfni 5316 . . . . . 6 ((Base Fn V ∧ 𝐺 ∈ V) → (Base‘𝐺) ∈ V)
1714, 2, 16sylancr 414 . . . . 5 (𝑋𝐵 → (Base‘𝐺) ∈ V)
181, 17eqeltrid 2264 . . . 4 (𝑋𝐵𝐵 ∈ V)
19 riotaexg 5834 . . . 4 (𝐵 ∈ V → (𝑦𝐵 (𝑦 + 𝑋) = 0 ) ∈ V)
2018, 19syl 14 . . 3 (𝑋𝐵 → (𝑦𝐵 (𝑦 + 𝑋) = 0 ) ∈ V)
219, 12, 13, 20fvmptd3 5609 . 2 (𝑋𝐵 → ((𝑥𝐵 ↦ (𝑦𝐵 (𝑦 + 𝑥) = 0 ))‘𝑋) = (𝑦𝐵 (𝑦 + 𝑋) = 0 ))
228, 21eqtrd 2210 1 (𝑋𝐵 → (𝑁𝑋) = (𝑦𝐵 (𝑦 + 𝑋) = 0 ))
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1353  wcel 2148  Vcvv 2737  cmpt 4064   Fn wfn 5211  cfv 5216  crio 5829  (class class class)co 5874  Basecbs 12456  +gcplusg 12530  0gc0g 12695  invgcminusg 12832
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4118  ax-sep 4121  ax-pow 4174  ax-pr 4209  ax-un 4433  ax-cnex 7901  ax-resscn 7902  ax-1re 7904  ax-addrcl 7907
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-rex 2461  df-reu 2462  df-rab 2464  df-v 2739  df-sbc 2963  df-csb 3058  df-un 3133  df-in 3135  df-ss 3142  df-pw 3577  df-sn 3598  df-pr 3599  df-op 3601  df-uni 3810  df-int 3845  df-iun 3888  df-br 4004  df-opab 4065  df-mpt 4066  df-id 4293  df-xp 4632  df-rel 4633  df-cnv 4634  df-co 4635  df-dm 4636  df-rn 4637  df-res 4638  df-ima 4639  df-iota 5178  df-fun 5218  df-fn 5219  df-f 5220  df-f1 5221  df-fo 5222  df-f1o 5223  df-fv 5224  df-riota 5830  df-ov 5877  df-inn 8918  df-ndx 12459  df-slot 12460  df-base 12462  df-minusg 12835
This theorem is referenced by:  grplinv  12876  isgrpinv  12880
  Copyright terms: Public domain W3C validator