ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  grpinvval GIF version

Theorem grpinvval 13542
Description: The inverse of a group element. (Contributed by NM, 24-Aug-2011.) (Revised by Mario Carneiro, 7-Aug-2013.)
Hypotheses
Ref Expression
grpinvval.b 𝐵 = (Base‘𝐺)
grpinvval.p + = (+g𝐺)
grpinvval.o 0 = (0g𝐺)
grpinvval.n 𝑁 = (invg𝐺)
Assertion
Ref Expression
grpinvval (𝑋𝐵 → (𝑁𝑋) = (𝑦𝐵 (𝑦 + 𝑋) = 0 ))
Distinct variable groups:   𝑦,𝐵   𝑦,𝐺   𝑦,𝑋
Allowed substitution hints:   + (𝑦)   𝑁(𝑦)   0 (𝑦)

Proof of Theorem grpinvval
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 grpinvval.b . . . . 5 𝐵 = (Base‘𝐺)
21basmex 13058 . . . 4 (𝑋𝐵𝐺 ∈ V)
3 grpinvval.p . . . . 5 + = (+g𝐺)
4 grpinvval.o . . . . 5 0 = (0g𝐺)
5 grpinvval.n . . . . 5 𝑁 = (invg𝐺)
61, 3, 4, 5grpinvfvalg 13541 . . . 4 (𝐺 ∈ V → 𝑁 = (𝑥𝐵 ↦ (𝑦𝐵 (𝑦 + 𝑥) = 0 )))
72, 6syl 14 . . 3 (𝑋𝐵𝑁 = (𝑥𝐵 ↦ (𝑦𝐵 (𝑦 + 𝑥) = 0 )))
87fveq1d 5605 . 2 (𝑋𝐵 → (𝑁𝑋) = ((𝑥𝐵 ↦ (𝑦𝐵 (𝑦 + 𝑥) = 0 ))‘𝑋))
9 eqid 2209 . . 3 (𝑥𝐵 ↦ (𝑦𝐵 (𝑦 + 𝑥) = 0 )) = (𝑥𝐵 ↦ (𝑦𝐵 (𝑦 + 𝑥) = 0 ))
10 oveq2 5982 . . . . 5 (𝑥 = 𝑋 → (𝑦 + 𝑥) = (𝑦 + 𝑋))
1110eqeq1d 2218 . . . 4 (𝑥 = 𝑋 → ((𝑦 + 𝑥) = 0 ↔ (𝑦 + 𝑋) = 0 ))
1211riotabidv 5929 . . 3 (𝑥 = 𝑋 → (𝑦𝐵 (𝑦 + 𝑥) = 0 ) = (𝑦𝐵 (𝑦 + 𝑋) = 0 ))
13 id 19 . . 3 (𝑋𝐵𝑋𝐵)
14 basfn 13057 . . . . . 6 Base Fn V
15 funfvex 5620 . . . . . . 7 ((Fun Base ∧ 𝐺 ∈ dom Base) → (Base‘𝐺) ∈ V)
1615funfni 5399 . . . . . 6 ((Base Fn V ∧ 𝐺 ∈ V) → (Base‘𝐺) ∈ V)
1714, 2, 16sylancr 414 . . . . 5 (𝑋𝐵 → (Base‘𝐺) ∈ V)
181, 17eqeltrid 2296 . . . 4 (𝑋𝐵𝐵 ∈ V)
19 riotaexg 5931 . . . 4 (𝐵 ∈ V → (𝑦𝐵 (𝑦 + 𝑋) = 0 ) ∈ V)
2018, 19syl 14 . . 3 (𝑋𝐵 → (𝑦𝐵 (𝑦 + 𝑋) = 0 ) ∈ V)
219, 12, 13, 20fvmptd3 5701 . 2 (𝑋𝐵 → ((𝑥𝐵 ↦ (𝑦𝐵 (𝑦 + 𝑥) = 0 ))‘𝑋) = (𝑦𝐵 (𝑦 + 𝑋) = 0 ))
228, 21eqtrd 2242 1 (𝑋𝐵 → (𝑁𝑋) = (𝑦𝐵 (𝑦 + 𝑋) = 0 ))
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1375  wcel 2180  Vcvv 2779  cmpt 4124   Fn wfn 5289  cfv 5294  crio 5926  (class class class)co 5974  Basecbs 12998  +gcplusg 13076  0gc0g 13255  invgcminusg 13500
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 713  ax-5 1473  ax-7 1474  ax-gen 1475  ax-ie1 1519  ax-ie2 1520  ax-8 1530  ax-10 1531  ax-11 1532  ax-i12 1533  ax-bndl 1535  ax-4 1536  ax-17 1552  ax-i9 1556  ax-ial 1560  ax-i5r 1561  ax-13 2182  ax-14 2183  ax-ext 2191  ax-coll 4178  ax-sep 4181  ax-pow 4237  ax-pr 4272  ax-un 4501  ax-cnex 8058  ax-resscn 8059  ax-1re 8061  ax-addrcl 8064
This theorem depends on definitions:  df-bi 117  df-3an 985  df-tru 1378  df-nf 1487  df-sb 1789  df-eu 2060  df-mo 2061  df-clab 2196  df-cleq 2202  df-clel 2205  df-nfc 2341  df-ral 2493  df-rex 2494  df-reu 2495  df-rab 2497  df-v 2781  df-sbc 3009  df-csb 3105  df-un 3181  df-in 3183  df-ss 3190  df-pw 3631  df-sn 3652  df-pr 3653  df-op 3655  df-uni 3868  df-int 3903  df-iun 3946  df-br 4063  df-opab 4125  df-mpt 4126  df-id 4361  df-xp 4702  df-rel 4703  df-cnv 4704  df-co 4705  df-dm 4706  df-rn 4707  df-res 4708  df-ima 4709  df-iota 5254  df-fun 5296  df-fn 5297  df-f 5298  df-f1 5299  df-fo 5300  df-f1o 5301  df-fv 5302  df-riota 5927  df-ov 5977  df-inn 9079  df-ndx 13001  df-slot 13002  df-base 13004  df-minusg 13503
This theorem is referenced by:  grplinv  13549  isgrpinv  13553
  Copyright terms: Public domain W3C validator