| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > grpinvval | GIF version | ||
| Description: The inverse of a group element. (Contributed by NM, 24-Aug-2011.) (Revised by Mario Carneiro, 7-Aug-2013.) |
| Ref | Expression |
|---|---|
| grpinvval.b | ⊢ 𝐵 = (Base‘𝐺) |
| grpinvval.p | ⊢ + = (+g‘𝐺) |
| grpinvval.o | ⊢ 0 = (0g‘𝐺) |
| grpinvval.n | ⊢ 𝑁 = (invg‘𝐺) |
| Ref | Expression |
|---|---|
| grpinvval | ⊢ (𝑋 ∈ 𝐵 → (𝑁‘𝑋) = (℩𝑦 ∈ 𝐵 (𝑦 + 𝑋) = 0 )) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | grpinvval.b | . . . . 5 ⊢ 𝐵 = (Base‘𝐺) | |
| 2 | 1 | basmex 12762 | . . . 4 ⊢ (𝑋 ∈ 𝐵 → 𝐺 ∈ V) |
| 3 | grpinvval.p | . . . . 5 ⊢ + = (+g‘𝐺) | |
| 4 | grpinvval.o | . . . . 5 ⊢ 0 = (0g‘𝐺) | |
| 5 | grpinvval.n | . . . . 5 ⊢ 𝑁 = (invg‘𝐺) | |
| 6 | 1, 3, 4, 5 | grpinvfvalg 13244 | . . . 4 ⊢ (𝐺 ∈ V → 𝑁 = (𝑥 ∈ 𝐵 ↦ (℩𝑦 ∈ 𝐵 (𝑦 + 𝑥) = 0 ))) |
| 7 | 2, 6 | syl 14 | . . 3 ⊢ (𝑋 ∈ 𝐵 → 𝑁 = (𝑥 ∈ 𝐵 ↦ (℩𝑦 ∈ 𝐵 (𝑦 + 𝑥) = 0 ))) |
| 8 | 7 | fveq1d 5563 | . 2 ⊢ (𝑋 ∈ 𝐵 → (𝑁‘𝑋) = ((𝑥 ∈ 𝐵 ↦ (℩𝑦 ∈ 𝐵 (𝑦 + 𝑥) = 0 ))‘𝑋)) |
| 9 | eqid 2196 | . . 3 ⊢ (𝑥 ∈ 𝐵 ↦ (℩𝑦 ∈ 𝐵 (𝑦 + 𝑥) = 0 )) = (𝑥 ∈ 𝐵 ↦ (℩𝑦 ∈ 𝐵 (𝑦 + 𝑥) = 0 )) | |
| 10 | oveq2 5933 | . . . . 5 ⊢ (𝑥 = 𝑋 → (𝑦 + 𝑥) = (𝑦 + 𝑋)) | |
| 11 | 10 | eqeq1d 2205 | . . . 4 ⊢ (𝑥 = 𝑋 → ((𝑦 + 𝑥) = 0 ↔ (𝑦 + 𝑋) = 0 )) |
| 12 | 11 | riotabidv 5882 | . . 3 ⊢ (𝑥 = 𝑋 → (℩𝑦 ∈ 𝐵 (𝑦 + 𝑥) = 0 ) = (℩𝑦 ∈ 𝐵 (𝑦 + 𝑋) = 0 )) |
| 13 | id 19 | . . 3 ⊢ (𝑋 ∈ 𝐵 → 𝑋 ∈ 𝐵) | |
| 14 | basfn 12761 | . . . . . 6 ⊢ Base Fn V | |
| 15 | funfvex 5578 | . . . . . . 7 ⊢ ((Fun Base ∧ 𝐺 ∈ dom Base) → (Base‘𝐺) ∈ V) | |
| 16 | 15 | funfni 5361 | . . . . . 6 ⊢ ((Base Fn V ∧ 𝐺 ∈ V) → (Base‘𝐺) ∈ V) |
| 17 | 14, 2, 16 | sylancr 414 | . . . . 5 ⊢ (𝑋 ∈ 𝐵 → (Base‘𝐺) ∈ V) |
| 18 | 1, 17 | eqeltrid 2283 | . . . 4 ⊢ (𝑋 ∈ 𝐵 → 𝐵 ∈ V) |
| 19 | riotaexg 5884 | . . . 4 ⊢ (𝐵 ∈ V → (℩𝑦 ∈ 𝐵 (𝑦 + 𝑋) = 0 ) ∈ V) | |
| 20 | 18, 19 | syl 14 | . . 3 ⊢ (𝑋 ∈ 𝐵 → (℩𝑦 ∈ 𝐵 (𝑦 + 𝑋) = 0 ) ∈ V) |
| 21 | 9, 12, 13, 20 | fvmptd3 5658 | . 2 ⊢ (𝑋 ∈ 𝐵 → ((𝑥 ∈ 𝐵 ↦ (℩𝑦 ∈ 𝐵 (𝑦 + 𝑥) = 0 ))‘𝑋) = (℩𝑦 ∈ 𝐵 (𝑦 + 𝑋) = 0 )) |
| 22 | 8, 21 | eqtrd 2229 | 1 ⊢ (𝑋 ∈ 𝐵 → (𝑁‘𝑋) = (℩𝑦 ∈ 𝐵 (𝑦 + 𝑋) = 0 )) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1364 ∈ wcel 2167 Vcvv 2763 ↦ cmpt 4095 Fn wfn 5254 ‘cfv 5259 ℩crio 5879 (class class class)co 5925 Basecbs 12703 +gcplusg 12780 0gc0g 12958 invgcminusg 13203 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-coll 4149 ax-sep 4152 ax-pow 4208 ax-pr 4243 ax-un 4469 ax-cnex 7987 ax-resscn 7988 ax-1re 7990 ax-addrcl 7993 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-reu 2482 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-un 3161 df-in 3163 df-ss 3170 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-int 3876 df-iun 3919 df-br 4035 df-opab 4096 df-mpt 4097 df-id 4329 df-xp 4670 df-rel 4671 df-cnv 4672 df-co 4673 df-dm 4674 df-rn 4675 df-res 4676 df-ima 4677 df-iota 5220 df-fun 5261 df-fn 5262 df-f 5263 df-f1 5264 df-fo 5265 df-f1o 5266 df-fv 5267 df-riota 5880 df-ov 5928 df-inn 9008 df-ndx 12706 df-slot 12707 df-base 12709 df-minusg 13206 |
| This theorem is referenced by: grplinv 13252 isgrpinv 13256 |
| Copyright terms: Public domain | W3C validator |