| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > qnumval | GIF version | ||
| Description: Value of the canonical numerator function. (Contributed by Stefan O'Rear, 13-Sep-2014.) |
| Ref | Expression |
|---|---|
| qnumval | ⊢ (𝐴 ∈ ℚ → (numer‘𝐴) = (1st ‘(℩𝑥 ∈ (ℤ × ℕ)(((1st ‘𝑥) gcd (2nd ‘𝑥)) = 1 ∧ 𝐴 = ((1st ‘𝑥) / (2nd ‘𝑥)))))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqeq1 2212 | . . . . 5 ⊢ (𝑎 = 𝐴 → (𝑎 = ((1st ‘𝑥) / (2nd ‘𝑥)) ↔ 𝐴 = ((1st ‘𝑥) / (2nd ‘𝑥)))) | |
| 2 | 1 | anbi2d 464 | . . . 4 ⊢ (𝑎 = 𝐴 → ((((1st ‘𝑥) gcd (2nd ‘𝑥)) = 1 ∧ 𝑎 = ((1st ‘𝑥) / (2nd ‘𝑥))) ↔ (((1st ‘𝑥) gcd (2nd ‘𝑥)) = 1 ∧ 𝐴 = ((1st ‘𝑥) / (2nd ‘𝑥))))) |
| 3 | 2 | riotabidv 5901 | . . 3 ⊢ (𝑎 = 𝐴 → (℩𝑥 ∈ (ℤ × ℕ)(((1st ‘𝑥) gcd (2nd ‘𝑥)) = 1 ∧ 𝑎 = ((1st ‘𝑥) / (2nd ‘𝑥)))) = (℩𝑥 ∈ (ℤ × ℕ)(((1st ‘𝑥) gcd (2nd ‘𝑥)) = 1 ∧ 𝐴 = ((1st ‘𝑥) / (2nd ‘𝑥))))) |
| 4 | 3 | fveq2d 5580 | . 2 ⊢ (𝑎 = 𝐴 → (1st ‘(℩𝑥 ∈ (ℤ × ℕ)(((1st ‘𝑥) gcd (2nd ‘𝑥)) = 1 ∧ 𝑎 = ((1st ‘𝑥) / (2nd ‘𝑥))))) = (1st ‘(℩𝑥 ∈ (ℤ × ℕ)(((1st ‘𝑥) gcd (2nd ‘𝑥)) = 1 ∧ 𝐴 = ((1st ‘𝑥) / (2nd ‘𝑥)))))) |
| 5 | df-numer 12505 | . 2 ⊢ numer = (𝑎 ∈ ℚ ↦ (1st ‘(℩𝑥 ∈ (ℤ × ℕ)(((1st ‘𝑥) gcd (2nd ‘𝑥)) = 1 ∧ 𝑎 = ((1st ‘𝑥) / (2nd ‘𝑥)))))) | |
| 6 | zex 9381 | . . . 4 ⊢ ℤ ∈ V | |
| 7 | nnex 9042 | . . . 4 ⊢ ℕ ∈ V | |
| 8 | 6, 7 | xpex 4790 | . . 3 ⊢ (ℤ × ℕ) ∈ V |
| 9 | riotaexg 5903 | . . 3 ⊢ ((ℤ × ℕ) ∈ V → (℩𝑥 ∈ (ℤ × ℕ)(((1st ‘𝑥) gcd (2nd ‘𝑥)) = 1 ∧ 𝐴 = ((1st ‘𝑥) / (2nd ‘𝑥)))) ∈ V) | |
| 10 | 1stexg 6253 | . . 3 ⊢ ((℩𝑥 ∈ (ℤ × ℕ)(((1st ‘𝑥) gcd (2nd ‘𝑥)) = 1 ∧ 𝐴 = ((1st ‘𝑥) / (2nd ‘𝑥)))) ∈ V → (1st ‘(℩𝑥 ∈ (ℤ × ℕ)(((1st ‘𝑥) gcd (2nd ‘𝑥)) = 1 ∧ 𝐴 = ((1st ‘𝑥) / (2nd ‘𝑥))))) ∈ V) | |
| 11 | 8, 9, 10 | mp2b 8 | . 2 ⊢ (1st ‘(℩𝑥 ∈ (ℤ × ℕ)(((1st ‘𝑥) gcd (2nd ‘𝑥)) = 1 ∧ 𝐴 = ((1st ‘𝑥) / (2nd ‘𝑥))))) ∈ V |
| 12 | 4, 5, 11 | fvmpt 5656 | 1 ⊢ (𝐴 ∈ ℚ → (numer‘𝐴) = (1st ‘(℩𝑥 ∈ (ℤ × ℕ)(((1st ‘𝑥) gcd (2nd ‘𝑥)) = 1 ∧ 𝐴 = ((1st ‘𝑥) / (2nd ‘𝑥)))))) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1373 ∈ wcel 2176 Vcvv 2772 × cxp 4673 ‘cfv 5271 ℩crio 5898 (class class class)co 5944 1st c1st 6224 2nd c2nd 6225 1c1 7926 / cdiv 8745 ℕcn 9036 ℤcz 9372 ℚcq 9740 gcd cgcd 12274 numercnumer 12503 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-13 2178 ax-14 2179 ax-ext 2187 ax-sep 4162 ax-pow 4218 ax-pr 4253 ax-un 4480 ax-cnex 8016 ax-resscn 8017 ax-1re 8019 ax-addrcl 8022 |
| This theorem depends on definitions: df-bi 117 df-3or 982 df-3an 983 df-tru 1376 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ral 2489 df-rex 2490 df-rab 2493 df-v 2774 df-sbc 2999 df-un 3170 df-in 3172 df-ss 3179 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-int 3886 df-br 4045 df-opab 4106 df-mpt 4107 df-id 4340 df-xp 4681 df-rel 4682 df-cnv 4683 df-co 4684 df-dm 4685 df-rn 4686 df-iota 5232 df-fun 5273 df-fn 5274 df-f 5275 df-fo 5277 df-fv 5279 df-riota 5899 df-ov 5947 df-1st 6226 df-neg 8246 df-inn 9037 df-z 9373 df-numer 12505 |
| This theorem is referenced by: qnumdencl 12509 fnum 12512 qnumdenbi 12514 |
| Copyright terms: Public domain | W3C validator |