ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  qnumval GIF version

Theorem qnumval 12187
Description: Value of the canonical numerator function. (Contributed by Stefan O'Rear, 13-Sep-2014.)
Assertion
Ref Expression
qnumval (𝐴 ∈ β„š β†’ (numerβ€˜π΄) = (1st β€˜(β„©π‘₯ ∈ (β„€ Γ— β„•)(((1st β€˜π‘₯) gcd (2nd β€˜π‘₯)) = 1 ∧ 𝐴 = ((1st β€˜π‘₯) / (2nd β€˜π‘₯))))))
Distinct variable group:   π‘₯,𝐴

Proof of Theorem qnumval
Dummy variable π‘Ž is distinct from all other variables.
StepHypRef Expression
1 eqeq1 2184 . . . . 5 (π‘Ž = 𝐴 β†’ (π‘Ž = ((1st β€˜π‘₯) / (2nd β€˜π‘₯)) ↔ 𝐴 = ((1st β€˜π‘₯) / (2nd β€˜π‘₯))))
21anbi2d 464 . . . 4 (π‘Ž = 𝐴 β†’ ((((1st β€˜π‘₯) gcd (2nd β€˜π‘₯)) = 1 ∧ π‘Ž = ((1st β€˜π‘₯) / (2nd β€˜π‘₯))) ↔ (((1st β€˜π‘₯) gcd (2nd β€˜π‘₯)) = 1 ∧ 𝐴 = ((1st β€˜π‘₯) / (2nd β€˜π‘₯)))))
32riotabidv 5835 . . 3 (π‘Ž = 𝐴 β†’ (β„©π‘₯ ∈ (β„€ Γ— β„•)(((1st β€˜π‘₯) gcd (2nd β€˜π‘₯)) = 1 ∧ π‘Ž = ((1st β€˜π‘₯) / (2nd β€˜π‘₯)))) = (β„©π‘₯ ∈ (β„€ Γ— β„•)(((1st β€˜π‘₯) gcd (2nd β€˜π‘₯)) = 1 ∧ 𝐴 = ((1st β€˜π‘₯) / (2nd β€˜π‘₯)))))
43fveq2d 5521 . 2 (π‘Ž = 𝐴 β†’ (1st β€˜(β„©π‘₯ ∈ (β„€ Γ— β„•)(((1st β€˜π‘₯) gcd (2nd β€˜π‘₯)) = 1 ∧ π‘Ž = ((1st β€˜π‘₯) / (2nd β€˜π‘₯))))) = (1st β€˜(β„©π‘₯ ∈ (β„€ Γ— β„•)(((1st β€˜π‘₯) gcd (2nd β€˜π‘₯)) = 1 ∧ 𝐴 = ((1st β€˜π‘₯) / (2nd β€˜π‘₯))))))
5 df-numer 12185 . 2 numer = (π‘Ž ∈ β„š ↦ (1st β€˜(β„©π‘₯ ∈ (β„€ Γ— β„•)(((1st β€˜π‘₯) gcd (2nd β€˜π‘₯)) = 1 ∧ π‘Ž = ((1st β€˜π‘₯) / (2nd β€˜π‘₯))))))
6 zex 9264 . . . 4 β„€ ∈ V
7 nnex 8927 . . . 4 β„• ∈ V
86, 7xpex 4743 . . 3 (β„€ Γ— β„•) ∈ V
9 riotaexg 5837 . . 3 ((β„€ Γ— β„•) ∈ V β†’ (β„©π‘₯ ∈ (β„€ Γ— β„•)(((1st β€˜π‘₯) gcd (2nd β€˜π‘₯)) = 1 ∧ 𝐴 = ((1st β€˜π‘₯) / (2nd β€˜π‘₯)))) ∈ V)
10 1stexg 6170 . . 3 ((β„©π‘₯ ∈ (β„€ Γ— β„•)(((1st β€˜π‘₯) gcd (2nd β€˜π‘₯)) = 1 ∧ 𝐴 = ((1st β€˜π‘₯) / (2nd β€˜π‘₯)))) ∈ V β†’ (1st β€˜(β„©π‘₯ ∈ (β„€ Γ— β„•)(((1st β€˜π‘₯) gcd (2nd β€˜π‘₯)) = 1 ∧ 𝐴 = ((1st β€˜π‘₯) / (2nd β€˜π‘₯))))) ∈ V)
118, 9, 10mp2b 8 . 2 (1st β€˜(β„©π‘₯ ∈ (β„€ Γ— β„•)(((1st β€˜π‘₯) gcd (2nd β€˜π‘₯)) = 1 ∧ 𝐴 = ((1st β€˜π‘₯) / (2nd β€˜π‘₯))))) ∈ V
124, 5, 11fvmpt 5595 1 (𝐴 ∈ β„š β†’ (numerβ€˜π΄) = (1st β€˜(β„©π‘₯ ∈ (β„€ Γ— β„•)(((1st β€˜π‘₯) gcd (2nd β€˜π‘₯)) = 1 ∧ 𝐴 = ((1st β€˜π‘₯) / (2nd β€˜π‘₯))))))
Colors of variables: wff set class
Syntax hints:   β†’ wi 4   ∧ wa 104   = wceq 1353   ∈ wcel 2148  Vcvv 2739   Γ— cxp 4626  β€˜cfv 5218  β„©crio 5832  (class class class)co 5877  1st c1st 6141  2nd c2nd 6142  1c1 7814   / cdiv 8631  β„•cn 8921  β„€cz 9255  β„šcq 9621   gcd cgcd 11945  numercnumer 12183
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4123  ax-pow 4176  ax-pr 4211  ax-un 4435  ax-cnex 7904  ax-resscn 7905  ax-1re 7907  ax-addrcl 7910
This theorem depends on definitions:  df-bi 117  df-3or 979  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-rex 2461  df-rab 2464  df-v 2741  df-sbc 2965  df-un 3135  df-in 3137  df-ss 3144  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-int 3847  df-br 4006  df-opab 4067  df-mpt 4068  df-id 4295  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-rn 4639  df-iota 5180  df-fun 5220  df-fn 5221  df-f 5222  df-fo 5224  df-fv 5226  df-riota 5833  df-ov 5880  df-1st 6143  df-neg 8133  df-inn 8922  df-z 9256  df-numer 12185
This theorem is referenced by:  qnumdencl  12189  fnum  12192  qnumdenbi  12194
  Copyright terms: Public domain W3C validator