ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  axcaucvglemcau GIF version

Theorem axcaucvglemcau 8018
Description: Lemma for axcaucvg 8020. The result of mapping to N and R satisfies the Cauchy condition. (Contributed by Jim Kingdon, 9-Jul-2021.)
Hypotheses
Ref Expression
axcaucvg.n 𝑁 = {𝑥 ∣ (1 ∈ 𝑥 ∧ ∀𝑦𝑥 (𝑦 + 1) ∈ 𝑥)}
axcaucvg.f (𝜑𝐹:𝑁⟶ℝ)
axcaucvg.cau (𝜑 → ∀𝑛𝑁𝑘𝑁 (𝑛 < 𝑘 → ((𝐹𝑛) < ((𝐹𝑘) + (𝑟 ∈ ℝ (𝑛 · 𝑟) = 1)) ∧ (𝐹𝑘) < ((𝐹𝑛) + (𝑟 ∈ ℝ (𝑛 · 𝑟) = 1)))))
axcaucvg.g 𝐺 = (𝑗N ↦ (𝑧R (𝐹‘⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑗, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑗, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩) = ⟨𝑧, 0R⟩))
Assertion
Ref Expression
axcaucvglemcau (𝜑 → ∀𝑛N𝑘N (𝑛 <N 𝑘 → ((𝐺𝑛) <R ((𝐺𝑘) +R [⟨(⟨{𝑙𝑙 <Q (*Q‘[⟨𝑛, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑛, 1o⟩] ~Q ) <Q 𝑢}⟩ +P 1P), 1P⟩] ~R ) ∧ (𝐺𝑘) <R ((𝐺𝑛) +R [⟨(⟨{𝑙𝑙 <Q (*Q‘[⟨𝑛, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑛, 1o⟩] ~Q ) <Q 𝑢}⟩ +P 1P), 1P⟩] ~R ))))
Distinct variable groups:   𝑘,𝐹,𝑛,𝑧,𝑗   𝑘,𝑁,𝑛   𝑧,𝐺   𝑘,𝑙,𝑟,𝑢,𝑛   𝑗,𝑙,𝑢,𝑧   𝜑,𝑗,𝑘,𝑛   𝑦,𝑙,𝑢   𝑥,𝑦   𝑗,𝑛,𝑧,𝑘
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑧,𝑢,𝑟,𝑙)   𝐹(𝑥,𝑦,𝑢,𝑟,𝑙)   𝐺(𝑥,𝑦,𝑢,𝑗,𝑘,𝑛,𝑟,𝑙)   𝑁(𝑥,𝑦,𝑧,𝑢,𝑗,𝑟,𝑙)

Proof of Theorem axcaucvglemcau
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ltrenn 7975 . . . . . . . . . 10 (𝑛 <N 𝑘 → ⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑛, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑛, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ < ⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑘, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑘, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩)
21adantl 277 . . . . . . . . 9 ((((𝜑𝑛N) ∧ 𝑘N) ∧ 𝑛 <N 𝑘) → ⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑛, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑛, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ < ⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑘, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑘, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩)
3 breq2 4051 . . . . . . . . . . 11 (𝑏 = ⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑘, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑘, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ → (⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑛, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑛, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ < 𝑏 ↔ ⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑛, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑛, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ < ⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑘, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑘, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩))
4 fveq2 5583 . . . . . . . . . . . . . 14 (𝑏 = ⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑘, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑘, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ → (𝐹𝑏) = (𝐹‘⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑘, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑘, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩))
54oveq1d 5966 . . . . . . . . . . . . 13 (𝑏 = ⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑘, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑘, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ → ((𝐹𝑏) + (𝑟 ∈ ℝ (⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑛, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑛, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ · 𝑟) = 1)) = ((𝐹‘⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑘, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑘, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩) + (𝑟 ∈ ℝ (⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑛, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑛, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ · 𝑟) = 1)))
65breq2d 4059 . . . . . . . . . . . 12 (𝑏 = ⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑘, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑘, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ → ((𝐹‘⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑛, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑛, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩) < ((𝐹𝑏) + (𝑟 ∈ ℝ (⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑛, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑛, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ · 𝑟) = 1)) ↔ (𝐹‘⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑛, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑛, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩) < ((𝐹‘⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑘, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑘, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩) + (𝑟 ∈ ℝ (⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑛, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑛, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ · 𝑟) = 1))))
74breq1d 4057 . . . . . . . . . . . 12 (𝑏 = ⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑘, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑘, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ → ((𝐹𝑏) < ((𝐹‘⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑛, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑛, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩) + (𝑟 ∈ ℝ (⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑛, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑛, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ · 𝑟) = 1)) ↔ (𝐹‘⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑘, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑘, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩) < ((𝐹‘⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑛, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑛, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩) + (𝑟 ∈ ℝ (⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑛, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑛, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ · 𝑟) = 1))))
86, 7anbi12d 473 . . . . . . . . . . 11 (𝑏 = ⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑘, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑘, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ → (((𝐹‘⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑛, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑛, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩) < ((𝐹𝑏) + (𝑟 ∈ ℝ (⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑛, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑛, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ · 𝑟) = 1)) ∧ (𝐹𝑏) < ((𝐹‘⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑛, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑛, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩) + (𝑟 ∈ ℝ (⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑛, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑛, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ · 𝑟) = 1))) ↔ ((𝐹‘⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑛, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑛, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩) < ((𝐹‘⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑘, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑘, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩) + (𝑟 ∈ ℝ (⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑛, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑛, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ · 𝑟) = 1)) ∧ (𝐹‘⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑘, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑘, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩) < ((𝐹‘⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑛, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑛, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩) + (𝑟 ∈ ℝ (⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑛, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑛, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ · 𝑟) = 1)))))
93, 8imbi12d 234 . . . . . . . . . 10 (𝑏 = ⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑘, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑘, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ → ((⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑛, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑛, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ < 𝑏 → ((𝐹‘⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑛, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑛, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩) < ((𝐹𝑏) + (𝑟 ∈ ℝ (⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑛, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑛, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ · 𝑟) = 1)) ∧ (𝐹𝑏) < ((𝐹‘⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑛, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑛, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩) + (𝑟 ∈ ℝ (⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑛, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑛, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ · 𝑟) = 1)))) ↔ (⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑛, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑛, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ < ⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑘, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑘, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ → ((𝐹‘⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑛, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑛, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩) < ((𝐹‘⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑘, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑘, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩) + (𝑟 ∈ ℝ (⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑛, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑛, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ · 𝑟) = 1)) ∧ (𝐹‘⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑘, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑘, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩) < ((𝐹‘⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑛, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑛, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩) + (𝑟 ∈ ℝ (⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑛, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑛, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ · 𝑟) = 1))))))
10 breq1 4050 . . . . . . . . . . . . 13 (𝑎 = ⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑛, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑛, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ → (𝑎 < 𝑏 ↔ ⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑛, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑛, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ < 𝑏))
11 fveq2 5583 . . . . . . . . . . . . . . 15 (𝑎 = ⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑛, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑛, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ → (𝐹𝑎) = (𝐹‘⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑛, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑛, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩))
12 oveq1 5958 . . . . . . . . . . . . . . . . . 18 (𝑎 = ⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑛, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑛, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ → (𝑎 · 𝑟) = (⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑛, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑛, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ · 𝑟))
1312eqeq1d 2215 . . . . . . . . . . . . . . . . 17 (𝑎 = ⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑛, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑛, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ → ((𝑎 · 𝑟) = 1 ↔ (⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑛, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑛, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ · 𝑟) = 1))
1413riotabidv 5908 . . . . . . . . . . . . . . . 16 (𝑎 = ⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑛, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑛, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ → (𝑟 ∈ ℝ (𝑎 · 𝑟) = 1) = (𝑟 ∈ ℝ (⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑛, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑛, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ · 𝑟) = 1))
1514oveq2d 5967 . . . . . . . . . . . . . . 15 (𝑎 = ⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑛, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑛, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ → ((𝐹𝑏) + (𝑟 ∈ ℝ (𝑎 · 𝑟) = 1)) = ((𝐹𝑏) + (𝑟 ∈ ℝ (⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑛, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑛, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ · 𝑟) = 1)))
1611, 15breq12d 4060 . . . . . . . . . . . . . 14 (𝑎 = ⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑛, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑛, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ → ((𝐹𝑎) < ((𝐹𝑏) + (𝑟 ∈ ℝ (𝑎 · 𝑟) = 1)) ↔ (𝐹‘⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑛, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑛, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩) < ((𝐹𝑏) + (𝑟 ∈ ℝ (⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑛, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑛, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ · 𝑟) = 1))))
1711, 14oveq12d 5969 . . . . . . . . . . . . . . 15 (𝑎 = ⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑛, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑛, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ → ((𝐹𝑎) + (𝑟 ∈ ℝ (𝑎 · 𝑟) = 1)) = ((𝐹‘⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑛, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑛, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩) + (𝑟 ∈ ℝ (⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑛, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑛, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ · 𝑟) = 1)))
1817breq2d 4059 . . . . . . . . . . . . . 14 (𝑎 = ⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑛, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑛, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ → ((𝐹𝑏) < ((𝐹𝑎) + (𝑟 ∈ ℝ (𝑎 · 𝑟) = 1)) ↔ (𝐹𝑏) < ((𝐹‘⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑛, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑛, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩) + (𝑟 ∈ ℝ (⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑛, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑛, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ · 𝑟) = 1))))
1916, 18anbi12d 473 . . . . . . . . . . . . 13 (𝑎 = ⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑛, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑛, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ → (((𝐹𝑎) < ((𝐹𝑏) + (𝑟 ∈ ℝ (𝑎 · 𝑟) = 1)) ∧ (𝐹𝑏) < ((𝐹𝑎) + (𝑟 ∈ ℝ (𝑎 · 𝑟) = 1))) ↔ ((𝐹‘⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑛, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑛, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩) < ((𝐹𝑏) + (𝑟 ∈ ℝ (⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑛, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑛, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ · 𝑟) = 1)) ∧ (𝐹𝑏) < ((𝐹‘⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑛, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑛, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩) + (𝑟 ∈ ℝ (⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑛, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑛, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ · 𝑟) = 1)))))
2010, 19imbi12d 234 . . . . . . . . . . . 12 (𝑎 = ⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑛, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑛, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ → ((𝑎 < 𝑏 → ((𝐹𝑎) < ((𝐹𝑏) + (𝑟 ∈ ℝ (𝑎 · 𝑟) = 1)) ∧ (𝐹𝑏) < ((𝐹𝑎) + (𝑟 ∈ ℝ (𝑎 · 𝑟) = 1)))) ↔ (⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑛, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑛, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ < 𝑏 → ((𝐹‘⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑛, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑛, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩) < ((𝐹𝑏) + (𝑟 ∈ ℝ (⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑛, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑛, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ · 𝑟) = 1)) ∧ (𝐹𝑏) < ((𝐹‘⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑛, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑛, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩) + (𝑟 ∈ ℝ (⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑛, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑛, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ · 𝑟) = 1))))))
2120ralbidv 2507 . . . . . . . . . . 11 (𝑎 = ⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑛, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑛, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ → (∀𝑏𝑁 (𝑎 < 𝑏 → ((𝐹𝑎) < ((𝐹𝑏) + (𝑟 ∈ ℝ (𝑎 · 𝑟) = 1)) ∧ (𝐹𝑏) < ((𝐹𝑎) + (𝑟 ∈ ℝ (𝑎 · 𝑟) = 1)))) ↔ ∀𝑏𝑁 (⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑛, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑛, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ < 𝑏 → ((𝐹‘⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑛, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑛, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩) < ((𝐹𝑏) + (𝑟 ∈ ℝ (⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑛, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑛, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ · 𝑟) = 1)) ∧ (𝐹𝑏) < ((𝐹‘⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑛, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑛, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩) + (𝑟 ∈ ℝ (⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑛, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑛, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ · 𝑟) = 1))))))
22 axcaucvg.cau . . . . . . . . . . . . 13 (𝜑 → ∀𝑛𝑁𝑘𝑁 (𝑛 < 𝑘 → ((𝐹𝑛) < ((𝐹𝑘) + (𝑟 ∈ ℝ (𝑛 · 𝑟) = 1)) ∧ (𝐹𝑘) < ((𝐹𝑛) + (𝑟 ∈ ℝ (𝑛 · 𝑟) = 1)))))
23 breq1 4050 . . . . . . . . . . . . . . 15 (𝑛 = 𝑎 → (𝑛 < 𝑘𝑎 < 𝑘))
24 fveq2 5583 . . . . . . . . . . . . . . . . 17 (𝑛 = 𝑎 → (𝐹𝑛) = (𝐹𝑎))
25 oveq1 5958 . . . . . . . . . . . . . . . . . . . 20 (𝑛 = 𝑎 → (𝑛 · 𝑟) = (𝑎 · 𝑟))
2625eqeq1d 2215 . . . . . . . . . . . . . . . . . . 19 (𝑛 = 𝑎 → ((𝑛 · 𝑟) = 1 ↔ (𝑎 · 𝑟) = 1))
2726riotabidv 5908 . . . . . . . . . . . . . . . . . 18 (𝑛 = 𝑎 → (𝑟 ∈ ℝ (𝑛 · 𝑟) = 1) = (𝑟 ∈ ℝ (𝑎 · 𝑟) = 1))
2827oveq2d 5967 . . . . . . . . . . . . . . . . 17 (𝑛 = 𝑎 → ((𝐹𝑘) + (𝑟 ∈ ℝ (𝑛 · 𝑟) = 1)) = ((𝐹𝑘) + (𝑟 ∈ ℝ (𝑎 · 𝑟) = 1)))
2924, 28breq12d 4060 . . . . . . . . . . . . . . . 16 (𝑛 = 𝑎 → ((𝐹𝑛) < ((𝐹𝑘) + (𝑟 ∈ ℝ (𝑛 · 𝑟) = 1)) ↔ (𝐹𝑎) < ((𝐹𝑘) + (𝑟 ∈ ℝ (𝑎 · 𝑟) = 1))))
3024, 27oveq12d 5969 . . . . . . . . . . . . . . . . 17 (𝑛 = 𝑎 → ((𝐹𝑛) + (𝑟 ∈ ℝ (𝑛 · 𝑟) = 1)) = ((𝐹𝑎) + (𝑟 ∈ ℝ (𝑎 · 𝑟) = 1)))
3130breq2d 4059 . . . . . . . . . . . . . . . 16 (𝑛 = 𝑎 → ((𝐹𝑘) < ((𝐹𝑛) + (𝑟 ∈ ℝ (𝑛 · 𝑟) = 1)) ↔ (𝐹𝑘) < ((𝐹𝑎) + (𝑟 ∈ ℝ (𝑎 · 𝑟) = 1))))
3229, 31anbi12d 473 . . . . . . . . . . . . . . 15 (𝑛 = 𝑎 → (((𝐹𝑛) < ((𝐹𝑘) + (𝑟 ∈ ℝ (𝑛 · 𝑟) = 1)) ∧ (𝐹𝑘) < ((𝐹𝑛) + (𝑟 ∈ ℝ (𝑛 · 𝑟) = 1))) ↔ ((𝐹𝑎) < ((𝐹𝑘) + (𝑟 ∈ ℝ (𝑎 · 𝑟) = 1)) ∧ (𝐹𝑘) < ((𝐹𝑎) + (𝑟 ∈ ℝ (𝑎 · 𝑟) = 1)))))
3323, 32imbi12d 234 . . . . . . . . . . . . . 14 (𝑛 = 𝑎 → ((𝑛 < 𝑘 → ((𝐹𝑛) < ((𝐹𝑘) + (𝑟 ∈ ℝ (𝑛 · 𝑟) = 1)) ∧ (𝐹𝑘) < ((𝐹𝑛) + (𝑟 ∈ ℝ (𝑛 · 𝑟) = 1)))) ↔ (𝑎 < 𝑘 → ((𝐹𝑎) < ((𝐹𝑘) + (𝑟 ∈ ℝ (𝑎 · 𝑟) = 1)) ∧ (𝐹𝑘) < ((𝐹𝑎) + (𝑟 ∈ ℝ (𝑎 · 𝑟) = 1))))))
34 breq2 4051 . . . . . . . . . . . . . . 15 (𝑘 = 𝑏 → (𝑎 < 𝑘𝑎 < 𝑏))
35 fveq2 5583 . . . . . . . . . . . . . . . . . 18 (𝑘 = 𝑏 → (𝐹𝑘) = (𝐹𝑏))
3635oveq1d 5966 . . . . . . . . . . . . . . . . 17 (𝑘 = 𝑏 → ((𝐹𝑘) + (𝑟 ∈ ℝ (𝑎 · 𝑟) = 1)) = ((𝐹𝑏) + (𝑟 ∈ ℝ (𝑎 · 𝑟) = 1)))
3736breq2d 4059 . . . . . . . . . . . . . . . 16 (𝑘 = 𝑏 → ((𝐹𝑎) < ((𝐹𝑘) + (𝑟 ∈ ℝ (𝑎 · 𝑟) = 1)) ↔ (𝐹𝑎) < ((𝐹𝑏) + (𝑟 ∈ ℝ (𝑎 · 𝑟) = 1))))
3835breq1d 4057 . . . . . . . . . . . . . . . 16 (𝑘 = 𝑏 → ((𝐹𝑘) < ((𝐹𝑎) + (𝑟 ∈ ℝ (𝑎 · 𝑟) = 1)) ↔ (𝐹𝑏) < ((𝐹𝑎) + (𝑟 ∈ ℝ (𝑎 · 𝑟) = 1))))
3937, 38anbi12d 473 . . . . . . . . . . . . . . 15 (𝑘 = 𝑏 → (((𝐹𝑎) < ((𝐹𝑘) + (𝑟 ∈ ℝ (𝑎 · 𝑟) = 1)) ∧ (𝐹𝑘) < ((𝐹𝑎) + (𝑟 ∈ ℝ (𝑎 · 𝑟) = 1))) ↔ ((𝐹𝑎) < ((𝐹𝑏) + (𝑟 ∈ ℝ (𝑎 · 𝑟) = 1)) ∧ (𝐹𝑏) < ((𝐹𝑎) + (𝑟 ∈ ℝ (𝑎 · 𝑟) = 1)))))
4034, 39imbi12d 234 . . . . . . . . . . . . . 14 (𝑘 = 𝑏 → ((𝑎 < 𝑘 → ((𝐹𝑎) < ((𝐹𝑘) + (𝑟 ∈ ℝ (𝑎 · 𝑟) = 1)) ∧ (𝐹𝑘) < ((𝐹𝑎) + (𝑟 ∈ ℝ (𝑎 · 𝑟) = 1)))) ↔ (𝑎 < 𝑏 → ((𝐹𝑎) < ((𝐹𝑏) + (𝑟 ∈ ℝ (𝑎 · 𝑟) = 1)) ∧ (𝐹𝑏) < ((𝐹𝑎) + (𝑟 ∈ ℝ (𝑎 · 𝑟) = 1))))))
4133, 40cbvral2v 2752 . . . . . . . . . . . . 13 (∀𝑛𝑁𝑘𝑁 (𝑛 < 𝑘 → ((𝐹𝑛) < ((𝐹𝑘) + (𝑟 ∈ ℝ (𝑛 · 𝑟) = 1)) ∧ (𝐹𝑘) < ((𝐹𝑛) + (𝑟 ∈ ℝ (𝑛 · 𝑟) = 1)))) ↔ ∀𝑎𝑁𝑏𝑁 (𝑎 < 𝑏 → ((𝐹𝑎) < ((𝐹𝑏) + (𝑟 ∈ ℝ (𝑎 · 𝑟) = 1)) ∧ (𝐹𝑏) < ((𝐹𝑎) + (𝑟 ∈ ℝ (𝑎 · 𝑟) = 1)))))
4222, 41sylib 122 . . . . . . . . . . . 12 (𝜑 → ∀𝑎𝑁𝑏𝑁 (𝑎 < 𝑏 → ((𝐹𝑎) < ((𝐹𝑏) + (𝑟 ∈ ℝ (𝑎 · 𝑟) = 1)) ∧ (𝐹𝑏) < ((𝐹𝑎) + (𝑟 ∈ ℝ (𝑎 · 𝑟) = 1)))))
4342ad3antrrr 492 . . . . . . . . . . 11 ((((𝜑𝑛N) ∧ 𝑘N) ∧ 𝑛 <N 𝑘) → ∀𝑎𝑁𝑏𝑁 (𝑎 < 𝑏 → ((𝐹𝑎) < ((𝐹𝑏) + (𝑟 ∈ ℝ (𝑎 · 𝑟) = 1)) ∧ (𝐹𝑏) < ((𝐹𝑎) + (𝑟 ∈ ℝ (𝑎 · 𝑟) = 1)))))
44 pitonn 7968 . . . . . . . . . . . . 13 (𝑛N → ⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑛, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑛, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ ∈ {𝑥 ∣ (1 ∈ 𝑥 ∧ ∀𝑦𝑥 (𝑦 + 1) ∈ 𝑥)})
45 axcaucvg.n . . . . . . . . . . . . 13 𝑁 = {𝑥 ∣ (1 ∈ 𝑥 ∧ ∀𝑦𝑥 (𝑦 + 1) ∈ 𝑥)}
4644, 45eleqtrrdi 2300 . . . . . . . . . . . 12 (𝑛N → ⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑛, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑛, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ ∈ 𝑁)
4746ad3antlr 493 . . . . . . . . . . 11 ((((𝜑𝑛N) ∧ 𝑘N) ∧ 𝑛 <N 𝑘) → ⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑛, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑛, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ ∈ 𝑁)
4821, 43, 47rspcdva 2883 . . . . . . . . . 10 ((((𝜑𝑛N) ∧ 𝑘N) ∧ 𝑛 <N 𝑘) → ∀𝑏𝑁 (⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑛, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑛, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ < 𝑏 → ((𝐹‘⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑛, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑛, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩) < ((𝐹𝑏) + (𝑟 ∈ ℝ (⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑛, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑛, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ · 𝑟) = 1)) ∧ (𝐹𝑏) < ((𝐹‘⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑛, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑛, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩) + (𝑟 ∈ ℝ (⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑛, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑛, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ · 𝑟) = 1)))))
49 pitonn 7968 . . . . . . . . . . . 12 (𝑘N → ⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑘, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑘, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ ∈ {𝑥 ∣ (1 ∈ 𝑥 ∧ ∀𝑦𝑥 (𝑦 + 1) ∈ 𝑥)})
5049, 45eleqtrrdi 2300 . . . . . . . . . . 11 (𝑘N → ⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑘, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑘, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ ∈ 𝑁)
5150ad2antlr 489 . . . . . . . . . 10 ((((𝜑𝑛N) ∧ 𝑘N) ∧ 𝑛 <N 𝑘) → ⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑘, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑘, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ ∈ 𝑁)
529, 48, 51rspcdva 2883 . . . . . . . . 9 ((((𝜑𝑛N) ∧ 𝑘N) ∧ 𝑛 <N 𝑘) → (⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑛, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑛, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ < ⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑘, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑘, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ → ((𝐹‘⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑛, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑛, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩) < ((𝐹‘⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑘, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑘, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩) + (𝑟 ∈ ℝ (⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑛, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑛, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ · 𝑟) = 1)) ∧ (𝐹‘⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑘, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑘, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩) < ((𝐹‘⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑛, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑛, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩) + (𝑟 ∈ ℝ (⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑛, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑛, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ · 𝑟) = 1)))))
532, 52mpd 13 . . . . . . . 8 ((((𝜑𝑛N) ∧ 𝑘N) ∧ 𝑛 <N 𝑘) → ((𝐹‘⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑛, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑛, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩) < ((𝐹‘⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑘, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑘, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩) + (𝑟 ∈ ℝ (⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑛, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑛, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ · 𝑟) = 1)) ∧ (𝐹‘⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑘, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑘, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩) < ((𝐹‘⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑛, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑛, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩) + (𝑟 ∈ ℝ (⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑛, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑛, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ · 𝑟) = 1))))
5453simpld 112 . . . . . . 7 ((((𝜑𝑛N) ∧ 𝑘N) ∧ 𝑛 <N 𝑘) → (𝐹‘⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑛, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑛, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩) < ((𝐹‘⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑘, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑘, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩) + (𝑟 ∈ ℝ (⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑛, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑛, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ · 𝑟) = 1)))
55 axcaucvg.f . . . . . . . . 9 (𝜑𝐹:𝑁⟶ℝ)
56 axcaucvg.g . . . . . . . . 9 𝐺 = (𝑗N ↦ (𝑧R (𝐹‘⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑗, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑗, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩) = ⟨𝑧, 0R⟩))
5745, 55, 22, 56axcaucvglemval 8017 . . . . . . . 8 ((𝜑𝑛N) → (𝐹‘⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑛, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑛, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩) = ⟨(𝐺𝑛), 0R⟩)
5857ad2antrr 488 . . . . . . 7 ((((𝜑𝑛N) ∧ 𝑘N) ∧ 𝑛 <N 𝑘) → (𝐹‘⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑛, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑛, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩) = ⟨(𝐺𝑛), 0R⟩)
5945, 55, 22, 56axcaucvglemval 8017 . . . . . . . . . . 11 ((𝜑𝑘N) → (𝐹‘⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑘, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑘, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩) = ⟨(𝐺𝑘), 0R⟩)
6059adantlr 477 . . . . . . . . . 10 (((𝜑𝑛N) ∧ 𝑘N) → (𝐹‘⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑘, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑘, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩) = ⟨(𝐺𝑘), 0R⟩)
6160adantr 276 . . . . . . . . 9 ((((𝜑𝑛N) ∧ 𝑘N) ∧ 𝑛 <N 𝑘) → (𝐹‘⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑘, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑘, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩) = ⟨(𝐺𝑘), 0R⟩)
62 recriota 8010 . . . . . . . . . 10 (𝑛N → (𝑟 ∈ ℝ (⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑛, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑛, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ · 𝑟) = 1) = ⟨[⟨(⟨{𝑙𝑙 <Q (*Q‘[⟨𝑛, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑛, 1o⟩] ~Q ) <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩)
6362ad3antlr 493 . . . . . . . . 9 ((((𝜑𝑛N) ∧ 𝑘N) ∧ 𝑛 <N 𝑘) → (𝑟 ∈ ℝ (⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑛, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑛, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ · 𝑟) = 1) = ⟨[⟨(⟨{𝑙𝑙 <Q (*Q‘[⟨𝑛, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑛, 1o⟩] ~Q ) <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩)
6461, 63oveq12d 5969 . . . . . . . 8 ((((𝜑𝑛N) ∧ 𝑘N) ∧ 𝑛 <N 𝑘) → ((𝐹‘⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑘, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑘, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩) + (𝑟 ∈ ℝ (⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑛, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑛, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ · 𝑟) = 1)) = (⟨(𝐺𝑘), 0R⟩ + ⟨[⟨(⟨{𝑙𝑙 <Q (*Q‘[⟨𝑛, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑛, 1o⟩] ~Q ) <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩))
6545, 55, 22, 56axcaucvglemf 8016 . . . . . . . . . . 11 (𝜑𝐺:NR)
6665ad3antrrr 492 . . . . . . . . . 10 ((((𝜑𝑛N) ∧ 𝑘N) ∧ 𝑛 <N 𝑘) → 𝐺:NR)
67 simplr 528 . . . . . . . . . 10 ((((𝜑𝑛N) ∧ 𝑘N) ∧ 𝑛 <N 𝑘) → 𝑘N)
6866, 67ffvelcdmd 5723 . . . . . . . . 9 ((((𝜑𝑛N) ∧ 𝑘N) ∧ 𝑛 <N 𝑘) → (𝐺𝑘) ∈ R)
69 recnnpr 7668 . . . . . . . . . . 11 (𝑛N → ⟨{𝑙𝑙 <Q (*Q‘[⟨𝑛, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑛, 1o⟩] ~Q ) <Q 𝑢}⟩ ∈ P)
70 prsrcl 7904 . . . . . . . . . . 11 (⟨{𝑙𝑙 <Q (*Q‘[⟨𝑛, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑛, 1o⟩] ~Q ) <Q 𝑢}⟩ ∈ P → [⟨(⟨{𝑙𝑙 <Q (*Q‘[⟨𝑛, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑛, 1o⟩] ~Q ) <Q 𝑢}⟩ +P 1P), 1P⟩] ~RR)
7169, 70syl 14 . . . . . . . . . 10 (𝑛N → [⟨(⟨{𝑙𝑙 <Q (*Q‘[⟨𝑛, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑛, 1o⟩] ~Q ) <Q 𝑢}⟩ +P 1P), 1P⟩] ~RR)
7271ad3antlr 493 . . . . . . . . 9 ((((𝜑𝑛N) ∧ 𝑘N) ∧ 𝑛 <N 𝑘) → [⟨(⟨{𝑙𝑙 <Q (*Q‘[⟨𝑛, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑛, 1o⟩] ~Q ) <Q 𝑢}⟩ +P 1P), 1P⟩] ~RR)
73 addresr 7957 . . . . . . . . 9 (((𝐺𝑘) ∈ R ∧ [⟨(⟨{𝑙𝑙 <Q (*Q‘[⟨𝑛, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑛, 1o⟩] ~Q ) <Q 𝑢}⟩ +P 1P), 1P⟩] ~RR) → (⟨(𝐺𝑘), 0R⟩ + ⟨[⟨(⟨{𝑙𝑙 <Q (*Q‘[⟨𝑛, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑛, 1o⟩] ~Q ) <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩) = ⟨((𝐺𝑘) +R [⟨(⟨{𝑙𝑙 <Q (*Q‘[⟨𝑛, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑛, 1o⟩] ~Q ) <Q 𝑢}⟩ +P 1P), 1P⟩] ~R ), 0R⟩)
7468, 72, 73syl2anc 411 . . . . . . . 8 ((((𝜑𝑛N) ∧ 𝑘N) ∧ 𝑛 <N 𝑘) → (⟨(𝐺𝑘), 0R⟩ + ⟨[⟨(⟨{𝑙𝑙 <Q (*Q‘[⟨𝑛, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑛, 1o⟩] ~Q ) <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩) = ⟨((𝐺𝑘) +R [⟨(⟨{𝑙𝑙 <Q (*Q‘[⟨𝑛, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑛, 1o⟩] ~Q ) <Q 𝑢}⟩ +P 1P), 1P⟩] ~R ), 0R⟩)
7564, 74eqtrd 2239 . . . . . . 7 ((((𝜑𝑛N) ∧ 𝑘N) ∧ 𝑛 <N 𝑘) → ((𝐹‘⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑘, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑘, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩) + (𝑟 ∈ ℝ (⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑛, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑛, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ · 𝑟) = 1)) = ⟨((𝐺𝑘) +R [⟨(⟨{𝑙𝑙 <Q (*Q‘[⟨𝑛, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑛, 1o⟩] ~Q ) <Q 𝑢}⟩ +P 1P), 1P⟩] ~R ), 0R⟩)
7654, 58, 753brtr3d 4078 . . . . . 6 ((((𝜑𝑛N) ∧ 𝑘N) ∧ 𝑛 <N 𝑘) → ⟨(𝐺𝑛), 0R⟩ < ⟨((𝐺𝑘) +R [⟨(⟨{𝑙𝑙 <Q (*Q‘[⟨𝑛, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑛, 1o⟩] ~Q ) <Q 𝑢}⟩ +P 1P), 1P⟩] ~R ), 0R⟩)
77 ltresr 7959 . . . . . 6 (⟨(𝐺𝑛), 0R⟩ < ⟨((𝐺𝑘) +R [⟨(⟨{𝑙𝑙 <Q (*Q‘[⟨𝑛, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑛, 1o⟩] ~Q ) <Q 𝑢}⟩ +P 1P), 1P⟩] ~R ), 0R⟩ ↔ (𝐺𝑛) <R ((𝐺𝑘) +R [⟨(⟨{𝑙𝑙 <Q (*Q‘[⟨𝑛, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑛, 1o⟩] ~Q ) <Q 𝑢}⟩ +P 1P), 1P⟩] ~R ))
7876, 77sylib 122 . . . . 5 ((((𝜑𝑛N) ∧ 𝑘N) ∧ 𝑛 <N 𝑘) → (𝐺𝑛) <R ((𝐺𝑘) +R [⟨(⟨{𝑙𝑙 <Q (*Q‘[⟨𝑛, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑛, 1o⟩] ~Q ) <Q 𝑢}⟩ +P 1P), 1P⟩] ~R ))
7953simprd 114 . . . . . . 7 ((((𝜑𝑛N) ∧ 𝑘N) ∧ 𝑛 <N 𝑘) → (𝐹‘⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑘, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑘, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩) < ((𝐹‘⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑛, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑛, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩) + (𝑟 ∈ ℝ (⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑛, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑛, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ · 𝑟) = 1)))
8058, 63oveq12d 5969 . . . . . . . 8 ((((𝜑𝑛N) ∧ 𝑘N) ∧ 𝑛 <N 𝑘) → ((𝐹‘⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑛, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑛, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩) + (𝑟 ∈ ℝ (⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑛, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑛, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ · 𝑟) = 1)) = (⟨(𝐺𝑛), 0R⟩ + ⟨[⟨(⟨{𝑙𝑙 <Q (*Q‘[⟨𝑛, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑛, 1o⟩] ~Q ) <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩))
81 simpllr 534 . . . . . . . . . 10 ((((𝜑𝑛N) ∧ 𝑘N) ∧ 𝑛 <N 𝑘) → 𝑛N)
8266, 81ffvelcdmd 5723 . . . . . . . . 9 ((((𝜑𝑛N) ∧ 𝑘N) ∧ 𝑛 <N 𝑘) → (𝐺𝑛) ∈ R)
83 addresr 7957 . . . . . . . . 9 (((𝐺𝑛) ∈ R ∧ [⟨(⟨{𝑙𝑙 <Q (*Q‘[⟨𝑛, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑛, 1o⟩] ~Q ) <Q 𝑢}⟩ +P 1P), 1P⟩] ~RR) → (⟨(𝐺𝑛), 0R⟩ + ⟨[⟨(⟨{𝑙𝑙 <Q (*Q‘[⟨𝑛, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑛, 1o⟩] ~Q ) <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩) = ⟨((𝐺𝑛) +R [⟨(⟨{𝑙𝑙 <Q (*Q‘[⟨𝑛, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑛, 1o⟩] ~Q ) <Q 𝑢}⟩ +P 1P), 1P⟩] ~R ), 0R⟩)
8482, 72, 83syl2anc 411 . . . . . . . 8 ((((𝜑𝑛N) ∧ 𝑘N) ∧ 𝑛 <N 𝑘) → (⟨(𝐺𝑛), 0R⟩ + ⟨[⟨(⟨{𝑙𝑙 <Q (*Q‘[⟨𝑛, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑛, 1o⟩] ~Q ) <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩) = ⟨((𝐺𝑛) +R [⟨(⟨{𝑙𝑙 <Q (*Q‘[⟨𝑛, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑛, 1o⟩] ~Q ) <Q 𝑢}⟩ +P 1P), 1P⟩] ~R ), 0R⟩)
8580, 84eqtrd 2239 . . . . . . 7 ((((𝜑𝑛N) ∧ 𝑘N) ∧ 𝑛 <N 𝑘) → ((𝐹‘⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑛, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑛, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩) + (𝑟 ∈ ℝ (⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑛, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑛, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ · 𝑟) = 1)) = ⟨((𝐺𝑛) +R [⟨(⟨{𝑙𝑙 <Q (*Q‘[⟨𝑛, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑛, 1o⟩] ~Q ) <Q 𝑢}⟩ +P 1P), 1P⟩] ~R ), 0R⟩)
8679, 61, 853brtr3d 4078 . . . . . 6 ((((𝜑𝑛N) ∧ 𝑘N) ∧ 𝑛 <N 𝑘) → ⟨(𝐺𝑘), 0R⟩ < ⟨((𝐺𝑛) +R [⟨(⟨{𝑙𝑙 <Q (*Q‘[⟨𝑛, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑛, 1o⟩] ~Q ) <Q 𝑢}⟩ +P 1P), 1P⟩] ~R ), 0R⟩)
87 ltresr 7959 . . . . . 6 (⟨(𝐺𝑘), 0R⟩ < ⟨((𝐺𝑛) +R [⟨(⟨{𝑙𝑙 <Q (*Q‘[⟨𝑛, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑛, 1o⟩] ~Q ) <Q 𝑢}⟩ +P 1P), 1P⟩] ~R ), 0R⟩ ↔ (𝐺𝑘) <R ((𝐺𝑛) +R [⟨(⟨{𝑙𝑙 <Q (*Q‘[⟨𝑛, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑛, 1o⟩] ~Q ) <Q 𝑢}⟩ +P 1P), 1P⟩] ~R ))
8886, 87sylib 122 . . . . 5 ((((𝜑𝑛N) ∧ 𝑘N) ∧ 𝑛 <N 𝑘) → (𝐺𝑘) <R ((𝐺𝑛) +R [⟨(⟨{𝑙𝑙 <Q (*Q‘[⟨𝑛, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑛, 1o⟩] ~Q ) <Q 𝑢}⟩ +P 1P), 1P⟩] ~R ))
8978, 88jca 306 . . . 4 ((((𝜑𝑛N) ∧ 𝑘N) ∧ 𝑛 <N 𝑘) → ((𝐺𝑛) <R ((𝐺𝑘) +R [⟨(⟨{𝑙𝑙 <Q (*Q‘[⟨𝑛, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑛, 1o⟩] ~Q ) <Q 𝑢}⟩ +P 1P), 1P⟩] ~R ) ∧ (𝐺𝑘) <R ((𝐺𝑛) +R [⟨(⟨{𝑙𝑙 <Q (*Q‘[⟨𝑛, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑛, 1o⟩] ~Q ) <Q 𝑢}⟩ +P 1P), 1P⟩] ~R )))
9089ex 115 . . 3 (((𝜑𝑛N) ∧ 𝑘N) → (𝑛 <N 𝑘 → ((𝐺𝑛) <R ((𝐺𝑘) +R [⟨(⟨{𝑙𝑙 <Q (*Q‘[⟨𝑛, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑛, 1o⟩] ~Q ) <Q 𝑢}⟩ +P 1P), 1P⟩] ~R ) ∧ (𝐺𝑘) <R ((𝐺𝑛) +R [⟨(⟨{𝑙𝑙 <Q (*Q‘[⟨𝑛, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑛, 1o⟩] ~Q ) <Q 𝑢}⟩ +P 1P), 1P⟩] ~R ))))
9190ralrimiva 2580 . 2 ((𝜑𝑛N) → ∀𝑘N (𝑛 <N 𝑘 → ((𝐺𝑛) <R ((𝐺𝑘) +R [⟨(⟨{𝑙𝑙 <Q (*Q‘[⟨𝑛, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑛, 1o⟩] ~Q ) <Q 𝑢}⟩ +P 1P), 1P⟩] ~R ) ∧ (𝐺𝑘) <R ((𝐺𝑛) +R [⟨(⟨{𝑙𝑙 <Q (*Q‘[⟨𝑛, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑛, 1o⟩] ~Q ) <Q 𝑢}⟩ +P 1P), 1P⟩] ~R ))))
9291ralrimiva 2580 1 (𝜑 → ∀𝑛N𝑘N (𝑛 <N 𝑘 → ((𝐺𝑛) <R ((𝐺𝑘) +R [⟨(⟨{𝑙𝑙 <Q (*Q‘[⟨𝑛, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑛, 1o⟩] ~Q ) <Q 𝑢}⟩ +P 1P), 1P⟩] ~R ) ∧ (𝐺𝑘) <R ((𝐺𝑛) +R [⟨(⟨{𝑙𝑙 <Q (*Q‘[⟨𝑛, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑛, 1o⟩] ~Q ) <Q 𝑢}⟩ +P 1P), 1P⟩] ~R ))))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1373  wcel 2177  {cab 2192  wral 2485  cop 3637   cint 3887   class class class wbr 4047  cmpt 4109  wf 5272  cfv 5276  crio 5905  (class class class)co 5951  1oc1o 6502  [cec 6625  Ncnpi 7392   <N clti 7395   ~Q ceq 7399  *Qcrq 7404   <Q cltq 7405  Pcnp 7411  1Pc1p 7412   +P cpp 7413   ~R cer 7416  Rcnr 7417  0Rc0r 7418   +R cplr 7421   <R cltr 7423  cr 7931  1c1 7933   + caddc 7935   < cltrr 7936   · cmul 7937
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-coll 4163  ax-sep 4166  ax-nul 4174  ax-pow 4222  ax-pr 4257  ax-un 4484  ax-setind 4589  ax-iinf 4640
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-ral 2490  df-rex 2491  df-reu 2492  df-rmo 2493  df-rab 2494  df-v 2775  df-sbc 3000  df-csb 3095  df-dif 3169  df-un 3171  df-in 3173  df-ss 3180  df-nul 3462  df-pw 3619  df-sn 3640  df-pr 3641  df-op 3643  df-uni 3853  df-int 3888  df-iun 3931  df-br 4048  df-opab 4110  df-mpt 4111  df-tr 4147  df-eprel 4340  df-id 4344  df-po 4347  df-iso 4348  df-iord 4417  df-on 4419  df-suc 4422  df-iom 4643  df-xp 4685  df-rel 4686  df-cnv 4687  df-co 4688  df-dm 4689  df-rn 4690  df-res 4691  df-ima 4692  df-iota 5237  df-fun 5278  df-fn 5279  df-f 5280  df-f1 5281  df-fo 5282  df-f1o 5283  df-fv 5284  df-riota 5906  df-ov 5954  df-oprab 5955  df-mpo 5956  df-1st 6233  df-2nd 6234  df-recs 6398  df-irdg 6463  df-1o 6509  df-2o 6510  df-oadd 6513  df-omul 6514  df-er 6627  df-ec 6629  df-qs 6633  df-ni 7424  df-pli 7425  df-mi 7426  df-lti 7427  df-plpq 7464  df-mpq 7465  df-enq 7467  df-nqqs 7468  df-plqqs 7469  df-mqqs 7470  df-1nqqs 7471  df-rq 7472  df-ltnqqs 7473  df-enq0 7544  df-nq0 7545  df-0nq0 7546  df-plq0 7547  df-mq0 7548  df-inp 7586  df-i1p 7587  df-iplp 7588  df-imp 7589  df-iltp 7590  df-enr 7846  df-nr 7847  df-plr 7848  df-mr 7849  df-ltr 7850  df-0r 7851  df-1r 7852  df-m1r 7853  df-c 7938  df-0 7939  df-1 7940  df-r 7942  df-add 7943  df-mul 7944  df-lt 7945
This theorem is referenced by:  axcaucvglemres  8019
  Copyright terms: Public domain W3C validator