Step | Hyp | Ref
| Expression |
1 | | ltrenn 7856 |
. . . . . . . . . 10
β’ (π <N
π β
β¨[β¨(β¨{π
β£ π
<Q [β¨π, 1oβ©]
~Q }, {π’ β£ [β¨π, 1oβ©]
~Q <Q π’}β© +P
1P), 1Pβ©]
~R , 0Rβ©
<β β¨[β¨(β¨{π β£ π <Q [β¨π, 1oβ©]
~Q }, {π’ β£ [β¨π, 1oβ©]
~Q <Q π’}β© +P
1P), 1Pβ©]
~R ,
0Rβ©) |
2 | 1 | adantl 277 |
. . . . . . . . 9
β’ ((((π β§ π β N) β§ π β N) β§
π
<N π) β β¨[β¨(β¨{π β£ π <Q [β¨π, 1oβ©]
~Q }, {π’ β£ [β¨π, 1oβ©]
~Q <Q π’}β© +P
1P), 1Pβ©]
~R , 0Rβ©
<β β¨[β¨(β¨{π β£ π <Q [β¨π, 1oβ©]
~Q }, {π’ β£ [β¨π, 1oβ©]
~Q <Q π’}β© +P
1P), 1Pβ©]
~R ,
0Rβ©) |
3 | | breq2 4009 |
. . . . . . . . . . 11
β’ (π = β¨[β¨(β¨{π β£ π <Q [β¨π, 1oβ©]
~Q }, {π’ β£ [β¨π, 1oβ©]
~Q <Q π’}β© +P
1P), 1Pβ©]
~R , 0Rβ© β
(β¨[β¨(β¨{π
β£ π
<Q [β¨π, 1oβ©]
~Q }, {π’ β£ [β¨π, 1oβ©]
~Q <Q π’}β© +P
1P), 1Pβ©]
~R , 0Rβ©
<β π
β β¨[β¨(β¨{π β£ π <Q [β¨π, 1oβ©]
~Q }, {π’ β£ [β¨π, 1oβ©]
~Q <Q π’}β© +P
1P), 1Pβ©]
~R , 0Rβ©
<β β¨[β¨(β¨{π β£ π <Q [β¨π, 1oβ©]
~Q }, {π’ β£ [β¨π, 1oβ©]
~Q <Q π’}β© +P
1P), 1Pβ©]
~R ,
0Rβ©)) |
4 | | fveq2 5517 |
. . . . . . . . . . . . . 14
β’ (π = β¨[β¨(β¨{π β£ π <Q [β¨π, 1oβ©]
~Q }, {π’ β£ [β¨π, 1oβ©]
~Q <Q π’}β© +P
1P), 1Pβ©]
~R , 0Rβ© β (πΉβπ) = (πΉββ¨[β¨(β¨{π β£ π <Q [β¨π, 1oβ©]
~Q }, {π’ β£ [β¨π, 1oβ©]
~Q <Q π’}β© +P
1P), 1Pβ©]
~R ,
0Rβ©)) |
5 | 4 | oveq1d 5892 |
. . . . . . . . . . . . 13
β’ (π = β¨[β¨(β¨{π β£ π <Q [β¨π, 1oβ©]
~Q }, {π’ β£ [β¨π, 1oβ©]
~Q <Q π’}β© +P
1P), 1Pβ©]
~R , 0Rβ© β ((πΉβπ) + (β©π β β (β¨[β¨(β¨{π β£ π <Q [β¨π, 1oβ©]
~Q }, {π’ β£ [β¨π, 1oβ©]
~Q <Q π’}β© +P
1P), 1Pβ©]
~R , 0Rβ© Β· π) = 1)) = ((πΉββ¨[β¨(β¨{π β£ π <Q [β¨π, 1oβ©]
~Q }, {π’ β£ [β¨π, 1oβ©]
~Q <Q π’}β© +P
1P), 1Pβ©]
~R , 0Rβ©) +
(β©π β
β (β¨[β¨(β¨{π β£ π <Q [β¨π, 1oβ©]
~Q }, {π’ β£ [β¨π, 1oβ©]
~Q <Q π’}β© +P
1P), 1Pβ©]
~R , 0Rβ© Β· π) = 1))) |
6 | 5 | breq2d 4017 |
. . . . . . . . . . . 12
β’ (π = β¨[β¨(β¨{π β£ π <Q [β¨π, 1oβ©]
~Q }, {π’ β£ [β¨π, 1oβ©]
~Q <Q π’}β© +P
1P), 1Pβ©]
~R , 0Rβ© β ((πΉββ¨[β¨(β¨{π β£ π <Q [β¨π, 1oβ©]
~Q }, {π’ β£ [β¨π, 1oβ©]
~Q <Q π’}β© +P
1P), 1Pβ©]
~R , 0Rβ©)
<β ((πΉβπ) + (β©π β β (β¨[β¨(β¨{π β£ π <Q [β¨π, 1oβ©]
~Q }, {π’ β£ [β¨π, 1oβ©]
~Q <Q π’}β© +P
1P), 1Pβ©]
~R , 0Rβ© Β· π) = 1)) β (πΉββ¨[β¨(β¨{π β£ π <Q [β¨π, 1oβ©]
~Q }, {π’ β£ [β¨π, 1oβ©]
~Q <Q π’}β© +P
1P), 1Pβ©]
~R , 0Rβ©)
<β ((πΉββ¨[β¨(β¨{π β£ π <Q [β¨π, 1oβ©]
~Q }, {π’ β£ [β¨π, 1oβ©]
~Q <Q π’}β© +P
1P), 1Pβ©]
~R , 0Rβ©) +
(β©π β
β (β¨[β¨(β¨{π β£ π <Q [β¨π, 1oβ©]
~Q }, {π’ β£ [β¨π, 1oβ©]
~Q <Q π’}β© +P
1P), 1Pβ©]
~R , 0Rβ© Β· π) = 1)))) |
7 | 4 | breq1d 4015 |
. . . . . . . . . . . 12
β’ (π = β¨[β¨(β¨{π β£ π <Q [β¨π, 1oβ©]
~Q }, {π’ β£ [β¨π, 1oβ©]
~Q <Q π’}β© +P
1P), 1Pβ©]
~R , 0Rβ© β ((πΉβπ) <β ((πΉββ¨[β¨(β¨{π β£ π <Q [β¨π, 1oβ©]
~Q }, {π’ β£ [β¨π, 1oβ©]
~Q <Q π’}β© +P
1P), 1Pβ©]
~R , 0Rβ©) +
(β©π β
β (β¨[β¨(β¨{π β£ π <Q [β¨π, 1oβ©]
~Q }, {π’ β£ [β¨π, 1oβ©]
~Q <Q π’}β© +P
1P), 1Pβ©]
~R , 0Rβ© Β· π) = 1)) β (πΉββ¨[β¨(β¨{π β£ π <Q [β¨π, 1oβ©]
~Q }, {π’ β£ [β¨π, 1oβ©]
~Q <Q π’}β© +P
1P), 1Pβ©]
~R , 0Rβ©)
<β ((πΉββ¨[β¨(β¨{π β£ π <Q [β¨π, 1oβ©]
~Q }, {π’ β£ [β¨π, 1oβ©]
~Q <Q π’}β© +P
1P), 1Pβ©]
~R , 0Rβ©) +
(β©π β
β (β¨[β¨(β¨{π β£ π <Q [β¨π, 1oβ©]
~Q }, {π’ β£ [β¨π, 1oβ©]
~Q <Q π’}β© +P
1P), 1Pβ©]
~R , 0Rβ© Β· π) = 1)))) |
8 | 6, 7 | anbi12d 473 |
. . . . . . . . . . 11
β’ (π = β¨[β¨(β¨{π β£ π <Q [β¨π, 1oβ©]
~Q }, {π’ β£ [β¨π, 1oβ©]
~Q <Q π’}β© +P
1P), 1Pβ©]
~R , 0Rβ© β (((πΉββ¨[β¨(β¨{π β£ π <Q [β¨π, 1oβ©]
~Q }, {π’ β£ [β¨π, 1oβ©]
~Q <Q π’}β© +P
1P), 1Pβ©]
~R , 0Rβ©)
<β ((πΉβπ) + (β©π β β (β¨[β¨(β¨{π β£ π <Q [β¨π, 1oβ©]
~Q }, {π’ β£ [β¨π, 1oβ©]
~Q <Q π’}β© +P
1P), 1Pβ©]
~R , 0Rβ© Β· π) = 1)) β§ (πΉβπ) <β ((πΉββ¨[β¨(β¨{π β£ π <Q [β¨π, 1oβ©]
~Q }, {π’ β£ [β¨π, 1oβ©]
~Q <Q π’}β© +P
1P), 1Pβ©]
~R , 0Rβ©) +
(β©π β
β (β¨[β¨(β¨{π β£ π <Q [β¨π, 1oβ©]
~Q }, {π’ β£ [β¨π, 1oβ©]
~Q <Q π’}β© +P
1P), 1Pβ©]
~R , 0Rβ© Β· π) = 1))) β ((πΉββ¨[β¨(β¨{π β£ π <Q [β¨π, 1oβ©]
~Q }, {π’ β£ [β¨π, 1oβ©]
~Q <Q π’}β© +P
1P), 1Pβ©]
~R , 0Rβ©)
<β ((πΉββ¨[β¨(β¨{π β£ π <Q [β¨π, 1oβ©]
~Q }, {π’ β£ [β¨π, 1oβ©]
~Q <Q π’}β© +P
1P), 1Pβ©]
~R , 0Rβ©) +
(β©π β
β (β¨[β¨(β¨{π β£ π <Q [β¨π, 1oβ©]
~Q }, {π’ β£ [β¨π, 1oβ©]
~Q <Q π’}β© +P
1P), 1Pβ©]
~R , 0Rβ© Β· π) = 1)) β§ (πΉββ¨[β¨(β¨{π β£ π <Q [β¨π, 1oβ©]
~Q }, {π’ β£ [β¨π, 1oβ©]
~Q <Q π’}β© +P
1P), 1Pβ©]
~R , 0Rβ©)
<β ((πΉββ¨[β¨(β¨{π β£ π <Q [β¨π, 1oβ©]
~Q }, {π’ β£ [β¨π, 1oβ©]
~Q <Q π’}β© +P
1P), 1Pβ©]
~R , 0Rβ©) +
(β©π β
β (β¨[β¨(β¨{π β£ π <Q [β¨π, 1oβ©]
~Q }, {π’ β£ [β¨π, 1oβ©]
~Q <Q π’}β© +P
1P), 1Pβ©]
~R , 0Rβ© Β· π) = 1))))) |
9 | 3, 8 | imbi12d 234 |
. . . . . . . . . 10
β’ (π = β¨[β¨(β¨{π β£ π <Q [β¨π, 1oβ©]
~Q }, {π’ β£ [β¨π, 1oβ©]
~Q <Q π’}β© +P
1P), 1Pβ©]
~R , 0Rβ© β
((β¨[β¨(β¨{π
β£ π
<Q [β¨π, 1oβ©]
~Q }, {π’ β£ [β¨π, 1oβ©]
~Q <Q π’}β© +P
1P), 1Pβ©]
~R , 0Rβ©
<β π
β ((πΉββ¨[β¨(β¨{π β£ π <Q [β¨π, 1oβ©]
~Q }, {π’ β£ [β¨π, 1oβ©]
~Q <Q π’}β© +P
1P), 1Pβ©]
~R , 0Rβ©)
<β ((πΉβπ) + (β©π β β (β¨[β¨(β¨{π β£ π <Q [β¨π, 1oβ©]
~Q }, {π’ β£ [β¨π, 1oβ©]
~Q <Q π’}β© +P
1P), 1Pβ©]
~R , 0Rβ© Β· π) = 1)) β§ (πΉβπ) <β ((πΉββ¨[β¨(β¨{π β£ π <Q [β¨π, 1oβ©]
~Q }, {π’ β£ [β¨π, 1oβ©]
~Q <Q π’}β© +P
1P), 1Pβ©]
~R , 0Rβ©) +
(β©π β
β (β¨[β¨(β¨{π β£ π <Q [β¨π, 1oβ©]
~Q }, {π’ β£ [β¨π, 1oβ©]
~Q <Q π’}β© +P
1P), 1Pβ©]
~R , 0Rβ© Β· π) = 1)))) β
(β¨[β¨(β¨{π
β£ π
<Q [β¨π, 1oβ©]
~Q }, {π’ β£ [β¨π, 1oβ©]
~Q <Q π’}β© +P
1P), 1Pβ©]
~R , 0Rβ©
<β β¨[β¨(β¨{π β£ π <Q [β¨π, 1oβ©]
~Q }, {π’ β£ [β¨π, 1oβ©]
~Q <Q π’}β© +P
1P), 1Pβ©]
~R , 0Rβ© β ((πΉββ¨[β¨(β¨{π β£ π <Q [β¨π, 1oβ©]
~Q }, {π’ β£ [β¨π, 1oβ©]
~Q <Q π’}β© +P
1P), 1Pβ©]
~R , 0Rβ©)
<β ((πΉββ¨[β¨(β¨{π β£ π <Q [β¨π, 1oβ©]
~Q }, {π’ β£ [β¨π, 1oβ©]
~Q <Q π’}β© +P
1P), 1Pβ©]
~R , 0Rβ©) +
(β©π β
β (β¨[β¨(β¨{π β£ π <Q [β¨π, 1oβ©]
~Q }, {π’ β£ [β¨π, 1oβ©]
~Q <Q π’}β© +P
1P), 1Pβ©]
~R , 0Rβ© Β· π) = 1)) β§ (πΉββ¨[β¨(β¨{π β£ π <Q [β¨π, 1oβ©]
~Q }, {π’ β£ [β¨π, 1oβ©]
~Q <Q π’}β© +P
1P), 1Pβ©]
~R , 0Rβ©)
<β ((πΉββ¨[β¨(β¨{π β£ π <Q [β¨π, 1oβ©]
~Q }, {π’ β£ [β¨π, 1oβ©]
~Q <Q π’}β© +P
1P), 1Pβ©]
~R , 0Rβ©) +
(β©π β
β (β¨[β¨(β¨{π β£ π <Q [β¨π, 1oβ©]
~Q }, {π’ β£ [β¨π, 1oβ©]
~Q <Q π’}β© +P
1P), 1Pβ©]
~R , 0Rβ© Β· π) = 1)))))) |
10 | | breq1 4008 |
. . . . . . . . . . . . 13
β’ (π = β¨[β¨(β¨{π β£ π <Q [β¨π, 1oβ©]
~Q }, {π’ β£ [β¨π, 1oβ©]
~Q <Q π’}β© +P
1P), 1Pβ©]
~R , 0Rβ© β (π <β π β
β¨[β¨(β¨{π
β£ π
<Q [β¨π, 1oβ©]
~Q }, {π’ β£ [β¨π, 1oβ©]
~Q <Q π’}β© +P
1P), 1Pβ©]
~R , 0Rβ©
<β π)) |
11 | | fveq2 5517 |
. . . . . . . . . . . . . . 15
β’ (π = β¨[β¨(β¨{π β£ π <Q [β¨π, 1oβ©]
~Q }, {π’ β£ [β¨π, 1oβ©]
~Q <Q π’}β© +P
1P), 1Pβ©]
~R , 0Rβ© β (πΉβπ) = (πΉββ¨[β¨(β¨{π β£ π <Q [β¨π, 1oβ©]
~Q }, {π’ β£ [β¨π, 1oβ©]
~Q <Q π’}β© +P
1P), 1Pβ©]
~R ,
0Rβ©)) |
12 | | oveq1 5884 |
. . . . . . . . . . . . . . . . . 18
β’ (π = β¨[β¨(β¨{π β£ π <Q [β¨π, 1oβ©]
~Q }, {π’ β£ [β¨π, 1oβ©]
~Q <Q π’}β© +P
1P), 1Pβ©]
~R , 0Rβ© β (π Β· π) = (β¨[β¨(β¨{π β£ π <Q [β¨π, 1oβ©]
~Q }, {π’ β£ [β¨π, 1oβ©]
~Q <Q π’}β© +P
1P), 1Pβ©]
~R , 0Rβ© Β· π)) |
13 | 12 | eqeq1d 2186 |
. . . . . . . . . . . . . . . . 17
β’ (π = β¨[β¨(β¨{π β£ π <Q [β¨π, 1oβ©]
~Q }, {π’ β£ [β¨π, 1oβ©]
~Q <Q π’}β© +P
1P), 1Pβ©]
~R , 0Rβ© β ((π Β· π) = 1 β (β¨[β¨(β¨{π β£ π <Q [β¨π, 1oβ©]
~Q }, {π’ β£ [β¨π, 1oβ©]
~Q <Q π’}β© +P
1P), 1Pβ©]
~R , 0Rβ© Β· π) = 1)) |
14 | 13 | riotabidv 5835 |
. . . . . . . . . . . . . . . 16
β’ (π = β¨[β¨(β¨{π β£ π <Q [β¨π, 1oβ©]
~Q }, {π’ β£ [β¨π, 1oβ©]
~Q <Q π’}β© +P
1P), 1Pβ©]
~R , 0Rβ© β
(β©π β
β (π Β· π) = 1) = (β©π β β
(β¨[β¨(β¨{π
β£ π
<Q [β¨π, 1oβ©]
~Q }, {π’ β£ [β¨π, 1oβ©]
~Q <Q π’}β© +P
1P), 1Pβ©]
~R , 0Rβ© Β· π) = 1)) |
15 | 14 | oveq2d 5893 |
. . . . . . . . . . . . . . 15
β’ (π = β¨[β¨(β¨{π β£ π <Q [β¨π, 1oβ©]
~Q }, {π’ β£ [β¨π, 1oβ©]
~Q <Q π’}β© +P
1P), 1Pβ©]
~R , 0Rβ© β ((πΉβπ) + (β©π β β (π Β· π) = 1)) = ((πΉβπ) + (β©π β β (β¨[β¨(β¨{π β£ π <Q [β¨π, 1oβ©]
~Q }, {π’ β£ [β¨π, 1oβ©]
~Q <Q π’}β© +P
1P), 1Pβ©]
~R , 0Rβ© Β· π) = 1))) |
16 | 11, 15 | breq12d 4018 |
. . . . . . . . . . . . . 14
β’ (π = β¨[β¨(β¨{π β£ π <Q [β¨π, 1oβ©]
~Q }, {π’ β£ [β¨π, 1oβ©]
~Q <Q π’}β© +P
1P), 1Pβ©]
~R , 0Rβ© β ((πΉβπ) <β ((πΉβπ) + (β©π β β (π Β· π) = 1)) β (πΉββ¨[β¨(β¨{π β£ π <Q [β¨π, 1oβ©]
~Q }, {π’ β£ [β¨π, 1oβ©]
~Q <Q π’}β© +P
1P), 1Pβ©]
~R , 0Rβ©)
<β ((πΉβπ) + (β©π β β (β¨[β¨(β¨{π β£ π <Q [β¨π, 1oβ©]
~Q }, {π’ β£ [β¨π, 1oβ©]
~Q <Q π’}β© +P
1P), 1Pβ©]
~R , 0Rβ© Β· π) = 1)))) |
17 | 11, 14 | oveq12d 5895 |
. . . . . . . . . . . . . . 15
β’ (π = β¨[β¨(β¨{π β£ π <Q [β¨π, 1oβ©]
~Q }, {π’ β£ [β¨π, 1oβ©]
~Q <Q π’}β© +P
1P), 1Pβ©]
~R , 0Rβ© β ((πΉβπ) + (β©π β β (π Β· π) = 1)) = ((πΉββ¨[β¨(β¨{π β£ π <Q [β¨π, 1oβ©]
~Q }, {π’ β£ [β¨π, 1oβ©]
~Q <Q π’}β© +P
1P), 1Pβ©]
~R , 0Rβ©) +
(β©π β
β (β¨[β¨(β¨{π β£ π <Q [β¨π, 1oβ©]
~Q }, {π’ β£ [β¨π, 1oβ©]
~Q <Q π’}β© +P
1P), 1Pβ©]
~R , 0Rβ© Β· π) = 1))) |
18 | 17 | breq2d 4017 |
. . . . . . . . . . . . . 14
β’ (π = β¨[β¨(β¨{π β£ π <Q [β¨π, 1oβ©]
~Q }, {π’ β£ [β¨π, 1oβ©]
~Q <Q π’}β© +P
1P), 1Pβ©]
~R , 0Rβ© β ((πΉβπ) <β ((πΉβπ) + (β©π β β (π Β· π) = 1)) β (πΉβπ) <β ((πΉββ¨[β¨(β¨{π β£ π <Q [β¨π, 1oβ©]
~Q }, {π’ β£ [β¨π, 1oβ©]
~Q <Q π’}β© +P
1P), 1Pβ©]
~R , 0Rβ©) +
(β©π β
β (β¨[β¨(β¨{π β£ π <Q [β¨π, 1oβ©]
~Q }, {π’ β£ [β¨π, 1oβ©]
~Q <Q π’}β© +P
1P), 1Pβ©]
~R , 0Rβ© Β· π) = 1)))) |
19 | 16, 18 | anbi12d 473 |
. . . . . . . . . . . . 13
β’ (π = β¨[β¨(β¨{π β£ π <Q [β¨π, 1oβ©]
~Q }, {π’ β£ [β¨π, 1oβ©]
~Q <Q π’}β© +P
1P), 1Pβ©]
~R , 0Rβ© β (((πΉβπ) <β ((πΉβπ) + (β©π β β (π Β· π) = 1)) β§ (πΉβπ) <β ((πΉβπ) + (β©π β β (π Β· π) = 1))) β ((πΉββ¨[β¨(β¨{π β£ π <Q [β¨π, 1oβ©]
~Q }, {π’ β£ [β¨π, 1oβ©]
~Q <Q π’}β© +P
1P), 1Pβ©]
~R , 0Rβ©)
<β ((πΉβπ) + (β©π β β (β¨[β¨(β¨{π β£ π <Q [β¨π, 1oβ©]
~Q }, {π’ β£ [β¨π, 1oβ©]
~Q <Q π’}β© +P
1P), 1Pβ©]
~R , 0Rβ© Β· π) = 1)) β§ (πΉβπ) <β ((πΉββ¨[β¨(β¨{π β£ π <Q [β¨π, 1oβ©]
~Q }, {π’ β£ [β¨π, 1oβ©]
~Q <Q π’}β© +P
1P), 1Pβ©]
~R , 0Rβ©) +
(β©π β
β (β¨[β¨(β¨{π β£ π <Q [β¨π, 1oβ©]
~Q }, {π’ β£ [β¨π, 1oβ©]
~Q <Q π’}β© +P
1P), 1Pβ©]
~R , 0Rβ© Β· π) = 1))))) |
20 | 10, 19 | imbi12d 234 |
. . . . . . . . . . . 12
β’ (π = β¨[β¨(β¨{π β£ π <Q [β¨π, 1oβ©]
~Q }, {π’ β£ [β¨π, 1oβ©]
~Q <Q π’}β© +P
1P), 1Pβ©]
~R , 0Rβ© β ((π <β π β ((πΉβπ) <β ((πΉβπ) + (β©π β β (π Β· π) = 1)) β§ (πΉβπ) <β ((πΉβπ) + (β©π β β (π Β· π) = 1)))) β (β¨[β¨(β¨{π β£ π <Q [β¨π, 1oβ©]
~Q }, {π’ β£ [β¨π, 1oβ©]
~Q <Q π’}β© +P
1P), 1Pβ©]
~R , 0Rβ©
<β π
β ((πΉββ¨[β¨(β¨{π β£ π <Q [β¨π, 1oβ©]
~Q }, {π’ β£ [β¨π, 1oβ©]
~Q <Q π’}β© +P
1P), 1Pβ©]
~R , 0Rβ©)
<β ((πΉβπ) + (β©π β β (β¨[β¨(β¨{π β£ π <Q [β¨π, 1oβ©]
~Q }, {π’ β£ [β¨π, 1oβ©]
~Q <Q π’}β© +P
1P), 1Pβ©]
~R , 0Rβ© Β· π) = 1)) β§ (πΉβπ) <β ((πΉββ¨[β¨(β¨{π β£ π <Q [β¨π, 1oβ©]
~Q }, {π’ β£ [β¨π, 1oβ©]
~Q <Q π’}β© +P
1P), 1Pβ©]
~R , 0Rβ©) +
(β©π β
β (β¨[β¨(β¨{π β£ π <Q [β¨π, 1oβ©]
~Q }, {π’ β£ [β¨π, 1oβ©]
~Q <Q π’}β© +P
1P), 1Pβ©]
~R , 0Rβ© Β· π) = 1)))))) |
21 | 20 | ralbidv 2477 |
. . . . . . . . . . 11
β’ (π = β¨[β¨(β¨{π β£ π <Q [β¨π, 1oβ©]
~Q }, {π’ β£ [β¨π, 1oβ©]
~Q <Q π’}β© +P
1P), 1Pβ©]
~R , 0Rβ© β
(βπ β π (π <β π β ((πΉβπ) <β ((πΉβπ) + (β©π β β (π Β· π) = 1)) β§ (πΉβπ) <β ((πΉβπ) + (β©π β β (π Β· π) = 1)))) β βπ β π (β¨[β¨(β¨{π β£ π <Q [β¨π, 1oβ©]
~Q }, {π’ β£ [β¨π, 1oβ©]
~Q <Q π’}β© +P
1P), 1Pβ©]
~R , 0Rβ©
<β π
β ((πΉββ¨[β¨(β¨{π β£ π <Q [β¨π, 1oβ©]
~Q }, {π’ β£ [β¨π, 1oβ©]
~Q <Q π’}β© +P
1P), 1Pβ©]
~R , 0Rβ©)
<β ((πΉβπ) + (β©π β β (β¨[β¨(β¨{π β£ π <Q [β¨π, 1oβ©]
~Q }, {π’ β£ [β¨π, 1oβ©]
~Q <Q π’}β© +P
1P), 1Pβ©]
~R , 0Rβ© Β· π) = 1)) β§ (πΉβπ) <β ((πΉββ¨[β¨(β¨{π β£ π <Q [β¨π, 1oβ©]
~Q }, {π’ β£ [β¨π, 1oβ©]
~Q <Q π’}β© +P
1P), 1Pβ©]
~R , 0Rβ©) +
(β©π β
β (β¨[β¨(β¨{π β£ π <Q [β¨π, 1oβ©]
~Q }, {π’ β£ [β¨π, 1oβ©]
~Q <Q π’}β© +P
1P), 1Pβ©]
~R , 0Rβ© Β· π) = 1)))))) |
22 | | axcaucvg.cau |
. . . . . . . . . . . . 13
β’ (π β βπ β π βπ β π (π <β π β ((πΉβπ) <β ((πΉβπ) + (β©π β β (π Β· π) = 1)) β§ (πΉβπ) <β ((πΉβπ) + (β©π β β (π Β· π) = 1))))) |
23 | | breq1 4008 |
. . . . . . . . . . . . . . 15
β’ (π = π β (π <β π β π <β π)) |
24 | | fveq2 5517 |
. . . . . . . . . . . . . . . . 17
β’ (π = π β (πΉβπ) = (πΉβπ)) |
25 | | oveq1 5884 |
. . . . . . . . . . . . . . . . . . . 20
β’ (π = π β (π Β· π) = (π Β· π)) |
26 | 25 | eqeq1d 2186 |
. . . . . . . . . . . . . . . . . . 19
β’ (π = π β ((π Β· π) = 1 β (π Β· π) = 1)) |
27 | 26 | riotabidv 5835 |
. . . . . . . . . . . . . . . . . 18
β’ (π = π β (β©π β β (π Β· π) = 1) = (β©π β β (π Β· π) = 1)) |
28 | 27 | oveq2d 5893 |
. . . . . . . . . . . . . . . . 17
β’ (π = π β ((πΉβπ) + (β©π β β (π Β· π) = 1)) = ((πΉβπ) + (β©π β β (π Β· π) = 1))) |
29 | 24, 28 | breq12d 4018 |
. . . . . . . . . . . . . . . 16
β’ (π = π β ((πΉβπ) <β ((πΉβπ) + (β©π β β (π Β· π) = 1)) β (πΉβπ) <β ((πΉβπ) + (β©π β β (π Β· π) = 1)))) |
30 | 24, 27 | oveq12d 5895 |
. . . . . . . . . . . . . . . . 17
β’ (π = π β ((πΉβπ) + (β©π β β (π Β· π) = 1)) = ((πΉβπ) + (β©π β β (π Β· π) = 1))) |
31 | 30 | breq2d 4017 |
. . . . . . . . . . . . . . . 16
β’ (π = π β ((πΉβπ) <β ((πΉβπ) + (β©π β β (π Β· π) = 1)) β (πΉβπ) <β ((πΉβπ) + (β©π β β (π Β· π) = 1)))) |
32 | 29, 31 | anbi12d 473 |
. . . . . . . . . . . . . . 15
β’ (π = π β (((πΉβπ) <β ((πΉβπ) + (β©π β β (π Β· π) = 1)) β§ (πΉβπ) <β ((πΉβπ) + (β©π β β (π Β· π) = 1))) β ((πΉβπ) <β ((πΉβπ) + (β©π β β (π Β· π) = 1)) β§ (πΉβπ) <β ((πΉβπ) + (β©π β β (π Β· π) = 1))))) |
33 | 23, 32 | imbi12d 234 |
. . . . . . . . . . . . . 14
β’ (π = π β ((π <β π β ((πΉβπ) <β ((πΉβπ) + (β©π β β (π Β· π) = 1)) β§ (πΉβπ) <β ((πΉβπ) + (β©π β β (π Β· π) = 1)))) β (π <β π β ((πΉβπ) <β ((πΉβπ) + (β©π β β (π Β· π) = 1)) β§ (πΉβπ) <β ((πΉβπ) + (β©π β β (π Β· π) = 1)))))) |
34 | | breq2 4009 |
. . . . . . . . . . . . . . 15
β’ (π = π β (π <β π β π <β π)) |
35 | | fveq2 5517 |
. . . . . . . . . . . . . . . . . 18
β’ (π = π β (πΉβπ) = (πΉβπ)) |
36 | 35 | oveq1d 5892 |
. . . . . . . . . . . . . . . . 17
β’ (π = π β ((πΉβπ) + (β©π β β (π Β· π) = 1)) = ((πΉβπ) + (β©π β β (π Β· π) = 1))) |
37 | 36 | breq2d 4017 |
. . . . . . . . . . . . . . . 16
β’ (π = π β ((πΉβπ) <β ((πΉβπ) + (β©π β β (π Β· π) = 1)) β (πΉβπ) <β ((πΉβπ) + (β©π β β (π Β· π) = 1)))) |
38 | 35 | breq1d 4015 |
. . . . . . . . . . . . . . . 16
β’ (π = π β ((πΉβπ) <β ((πΉβπ) + (β©π β β (π Β· π) = 1)) β (πΉβπ) <β ((πΉβπ) + (β©π β β (π Β· π) = 1)))) |
39 | 37, 38 | anbi12d 473 |
. . . . . . . . . . . . . . 15
β’ (π = π β (((πΉβπ) <β ((πΉβπ) + (β©π β β (π Β· π) = 1)) β§ (πΉβπ) <β ((πΉβπ) + (β©π β β (π Β· π) = 1))) β ((πΉβπ) <β ((πΉβπ) + (β©π β β (π Β· π) = 1)) β§ (πΉβπ) <β ((πΉβπ) + (β©π β β (π Β· π) = 1))))) |
40 | 34, 39 | imbi12d 234 |
. . . . . . . . . . . . . 14
β’ (π = π β ((π <β π β ((πΉβπ) <β ((πΉβπ) + (β©π β β (π Β· π) = 1)) β§ (πΉβπ) <β ((πΉβπ) + (β©π β β (π Β· π) = 1)))) β (π <β π β ((πΉβπ) <β ((πΉβπ) + (β©π β β (π Β· π) = 1)) β§ (πΉβπ) <β ((πΉβπ) + (β©π β β (π Β· π) = 1)))))) |
41 | 33, 40 | cbvral2v 2718 |
. . . . . . . . . . . . 13
β’
(βπ β
π βπ β π (π <β π β ((πΉβπ) <β ((πΉβπ) + (β©π β β (π Β· π) = 1)) β§ (πΉβπ) <β ((πΉβπ) + (β©π β β (π Β· π) = 1)))) β βπ β π βπ β π (π <β π β ((πΉβπ) <β ((πΉβπ) + (β©π β β (π Β· π) = 1)) β§ (πΉβπ) <β ((πΉβπ) + (β©π β β (π Β· π) = 1))))) |
42 | 22, 41 | sylib 122 |
. . . . . . . . . . . 12
β’ (π β βπ β π βπ β π (π <β π β ((πΉβπ) <β ((πΉβπ) + (β©π β β (π Β· π) = 1)) β§ (πΉβπ) <β ((πΉβπ) + (β©π β β (π Β· π) = 1))))) |
43 | 42 | ad3antrrr 492 |
. . . . . . . . . . 11
β’ ((((π β§ π β N) β§ π β N) β§
π
<N π) β βπ β π βπ β π (π <β π β ((πΉβπ) <β ((πΉβπ) + (β©π β β (π Β· π) = 1)) β§ (πΉβπ) <β ((πΉβπ) + (β©π β β (π Β· π) = 1))))) |
44 | | pitonn 7849 |
. . . . . . . . . . . . 13
β’ (π β N β
β¨[β¨(β¨{π
β£ π
<Q [β¨π, 1oβ©]
~Q }, {π’ β£ [β¨π, 1oβ©]
~Q <Q π’}β© +P
1P), 1Pβ©]
~R , 0Rβ© β β© {π₯
β£ (1 β π₯ β§
βπ¦ β π₯ (π¦ + 1) β π₯)}) |
45 | | axcaucvg.n |
. . . . . . . . . . . . 13
β’ π = β©
{π₯ β£ (1 β π₯ β§ βπ¦ β π₯ (π¦ + 1) β π₯)} |
46 | 44, 45 | eleqtrrdi 2271 |
. . . . . . . . . . . 12
β’ (π β N β
β¨[β¨(β¨{π
β£ π
<Q [β¨π, 1oβ©]
~Q }, {π’ β£ [β¨π, 1oβ©]
~Q <Q π’}β© +P
1P), 1Pβ©]
~R , 0Rβ© β π) |
47 | 46 | ad3antlr 493 |
. . . . . . . . . . 11
β’ ((((π β§ π β N) β§ π β N) β§
π
<N π) β β¨[β¨(β¨{π β£ π <Q [β¨π, 1oβ©]
~Q }, {π’ β£ [β¨π, 1oβ©]
~Q <Q π’}β© +P
1P), 1Pβ©]
~R , 0Rβ© β π) |
48 | 21, 43, 47 | rspcdva 2848 |
. . . . . . . . . 10
β’ ((((π β§ π β N) β§ π β N) β§
π
<N π) β βπ β π (β¨[β¨(β¨{π β£ π <Q [β¨π, 1oβ©]
~Q }, {π’ β£ [β¨π, 1oβ©]
~Q <Q π’}β© +P
1P), 1Pβ©]
~R , 0Rβ©
<β π
β ((πΉββ¨[β¨(β¨{π β£ π <Q [β¨π, 1oβ©]
~Q }, {π’ β£ [β¨π, 1oβ©]
~Q <Q π’}β© +P
1P), 1Pβ©]
~R , 0Rβ©)
<β ((πΉβπ) + (β©π β β (β¨[β¨(β¨{π β£ π <Q [β¨π, 1oβ©]
~Q }, {π’ β£ [β¨π, 1oβ©]
~Q <Q π’}β© +P
1P), 1Pβ©]
~R , 0Rβ© Β· π) = 1)) β§ (πΉβπ) <β ((πΉββ¨[β¨(β¨{π β£ π <Q [β¨π, 1oβ©]
~Q }, {π’ β£ [β¨π, 1oβ©]
~Q <Q π’}β© +P
1P), 1Pβ©]
~R , 0Rβ©) +
(β©π β
β (β¨[β¨(β¨{π β£ π <Q [β¨π, 1oβ©]
~Q }, {π’ β£ [β¨π, 1oβ©]
~Q <Q π’}β© +P
1P), 1Pβ©]
~R , 0Rβ© Β· π) = 1))))) |
49 | | pitonn 7849 |
. . . . . . . . . . . 12
β’ (π β N β
β¨[β¨(β¨{π
β£ π
<Q [β¨π, 1oβ©]
~Q }, {π’ β£ [β¨π, 1oβ©]
~Q <Q π’}β© +P
1P), 1Pβ©]
~R , 0Rβ© β β© {π₯
β£ (1 β π₯ β§
βπ¦ β π₯ (π¦ + 1) β π₯)}) |
50 | 49, 45 | eleqtrrdi 2271 |
. . . . . . . . . . 11
β’ (π β N β
β¨[β¨(β¨{π
β£ π
<Q [β¨π, 1oβ©]
~Q }, {π’ β£ [β¨π, 1oβ©]
~Q <Q π’}β© +P
1P), 1Pβ©]
~R , 0Rβ© β π) |
51 | 50 | ad2antlr 489 |
. . . . . . . . . 10
β’ ((((π β§ π β N) β§ π β N) β§
π
<N π) β β¨[β¨(β¨{π β£ π <Q [β¨π, 1oβ©]
~Q }, {π’ β£ [β¨π, 1oβ©]
~Q <Q π’}β© +P
1P), 1Pβ©]
~R , 0Rβ© β π) |
52 | 9, 48, 51 | rspcdva 2848 |
. . . . . . . . 9
β’ ((((π β§ π β N) β§ π β N) β§
π
<N π) β (β¨[β¨(β¨{π β£ π <Q [β¨π, 1oβ©]
~Q }, {π’ β£ [β¨π, 1oβ©]
~Q <Q π’}β© +P
1P), 1Pβ©]
~R , 0Rβ©
<β β¨[β¨(β¨{π β£ π <Q [β¨π, 1oβ©]
~Q }, {π’ β£ [β¨π, 1oβ©]
~Q <Q π’}β© +P
1P), 1Pβ©]
~R , 0Rβ© β ((πΉββ¨[β¨(β¨{π β£ π <Q [β¨π, 1oβ©]
~Q }, {π’ β£ [β¨π, 1oβ©]
~Q <Q π’}β© +P
1P), 1Pβ©]
~R , 0Rβ©)
<β ((πΉββ¨[β¨(β¨{π β£ π <Q [β¨π, 1oβ©]
~Q }, {π’ β£ [β¨π, 1oβ©]
~Q <Q π’}β© +P
1P), 1Pβ©]
~R , 0Rβ©) +
(β©π β
β (β¨[β¨(β¨{π β£ π <Q [β¨π, 1oβ©]
~Q }, {π’ β£ [β¨π, 1oβ©]
~Q <Q π’}β© +P
1P), 1Pβ©]
~R , 0Rβ© Β· π) = 1)) β§ (πΉββ¨[β¨(β¨{π β£ π <Q [β¨π, 1oβ©]
~Q }, {π’ β£ [β¨π, 1oβ©]
~Q <Q π’}β© +P
1P), 1Pβ©]
~R , 0Rβ©)
<β ((πΉββ¨[β¨(β¨{π β£ π <Q [β¨π, 1oβ©]
~Q }, {π’ β£ [β¨π, 1oβ©]
~Q <Q π’}β© +P
1P), 1Pβ©]
~R , 0Rβ©) +
(β©π β
β (β¨[β¨(β¨{π β£ π <Q [β¨π, 1oβ©]
~Q }, {π’ β£ [β¨π, 1oβ©]
~Q <Q π’}β© +P
1P), 1Pβ©]
~R , 0Rβ© Β· π) = 1))))) |
53 | 2, 52 | mpd 13 |
. . . . . . . 8
β’ ((((π β§ π β N) β§ π β N) β§
π
<N π) β ((πΉββ¨[β¨(β¨{π β£ π <Q [β¨π, 1oβ©]
~Q }, {π’ β£ [β¨π, 1oβ©]
~Q <Q π’}β© +P
1P), 1Pβ©]
~R , 0Rβ©)
<β ((πΉββ¨[β¨(β¨{π β£ π <Q [β¨π, 1oβ©]
~Q }, {π’ β£ [β¨π, 1oβ©]
~Q <Q π’}β© +P
1P), 1Pβ©]
~R , 0Rβ©) +
(β©π β
β (β¨[β¨(β¨{π β£ π <Q [β¨π, 1oβ©]
~Q }, {π’ β£ [β¨π, 1oβ©]
~Q <Q π’}β© +P
1P), 1Pβ©]
~R , 0Rβ© Β· π) = 1)) β§ (πΉββ¨[β¨(β¨{π β£ π <Q [β¨π, 1oβ©]
~Q }, {π’ β£ [β¨π, 1oβ©]
~Q <Q π’}β© +P
1P), 1Pβ©]
~R , 0Rβ©)
<β ((πΉββ¨[β¨(β¨{π β£ π <Q [β¨π, 1oβ©]
~Q }, {π’ β£ [β¨π, 1oβ©]
~Q <Q π’}β© +P
1P), 1Pβ©]
~R , 0Rβ©) +
(β©π β
β (β¨[β¨(β¨{π β£ π <Q [β¨π, 1oβ©]
~Q }, {π’ β£ [β¨π, 1oβ©]
~Q <Q π’}β© +P
1P), 1Pβ©]
~R , 0Rβ© Β· π) = 1)))) |
54 | 53 | simpld 112 |
. . . . . . 7
β’ ((((π β§ π β N) β§ π β N) β§
π
<N π) β (πΉββ¨[β¨(β¨{π β£ π <Q [β¨π, 1oβ©]
~Q }, {π’ β£ [β¨π, 1oβ©]
~Q <Q π’}β© +P
1P), 1Pβ©]
~R , 0Rβ©)
<β ((πΉββ¨[β¨(β¨{π β£ π <Q [β¨π, 1oβ©]
~Q }, {π’ β£ [β¨π, 1oβ©]
~Q <Q π’}β© +P
1P), 1Pβ©]
~R , 0Rβ©) +
(β©π β
β (β¨[β¨(β¨{π β£ π <Q [β¨π, 1oβ©]
~Q }, {π’ β£ [β¨π, 1oβ©]
~Q <Q π’}β© +P
1P), 1Pβ©]
~R , 0Rβ© Β· π) = 1))) |
55 | | axcaucvg.f |
. . . . . . . . 9
β’ (π β πΉ:πβΆβ) |
56 | | axcaucvg.g |
. . . . . . . . 9
β’ πΊ = (π β N β¦
(β©π§ β
R (πΉββ¨[β¨(β¨{π β£ π <Q [β¨π, 1oβ©]
~Q }, {π’ β£ [β¨π, 1oβ©]
~Q <Q π’}β© +P
1P), 1Pβ©]
~R , 0Rβ©) = β¨π§,
0Rβ©)) |
57 | 45, 55, 22, 56 | axcaucvglemval 7898 |
. . . . . . . 8
β’ ((π β§ π β N) β (πΉββ¨[β¨(β¨{π β£ π <Q [β¨π, 1oβ©]
~Q }, {π’ β£ [β¨π, 1oβ©]
~Q <Q π’}β© +P
1P), 1Pβ©]
~R , 0Rβ©) = β¨(πΊβπ),
0Rβ©) |
58 | 57 | ad2antrr 488 |
. . . . . . 7
β’ ((((π β§ π β N) β§ π β N) β§
π
<N π) β (πΉββ¨[β¨(β¨{π β£ π <Q [β¨π, 1oβ©]
~Q }, {π’ β£ [β¨π, 1oβ©]
~Q <Q π’}β© +P
1P), 1Pβ©]
~R , 0Rβ©) = β¨(πΊβπ),
0Rβ©) |
59 | 45, 55, 22, 56 | axcaucvglemval 7898 |
. . . . . . . . . . 11
β’ ((π β§ π β N) β (πΉββ¨[β¨(β¨{π β£ π <Q [β¨π, 1oβ©]
~Q }, {π’ β£ [β¨π, 1oβ©]
~Q <Q π’}β© +P
1P), 1Pβ©]
~R , 0Rβ©) = β¨(πΊβπ),
0Rβ©) |
60 | 59 | adantlr 477 |
. . . . . . . . . 10
β’ (((π β§ π β N) β§ π β N) β
(πΉββ¨[β¨(β¨{π β£ π <Q [β¨π, 1oβ©]
~Q }, {π’ β£ [β¨π, 1oβ©]
~Q <Q π’}β© +P
1P), 1Pβ©]
~R , 0Rβ©) = β¨(πΊβπ),
0Rβ©) |
61 | 60 | adantr 276 |
. . . . . . . . 9
β’ ((((π β§ π β N) β§ π β N) β§
π
<N π) β (πΉββ¨[β¨(β¨{π β£ π <Q [β¨π, 1oβ©]
~Q }, {π’ β£ [β¨π, 1oβ©]
~Q <Q π’}β© +P
1P), 1Pβ©]
~R , 0Rβ©) = β¨(πΊβπ),
0Rβ©) |
62 | | recriota 7891 |
. . . . . . . . . 10
β’ (π β N β
(β©π β
β (β¨[β¨(β¨{π β£ π <Q [β¨π, 1oβ©]
~Q }, {π’ β£ [β¨π, 1oβ©]
~Q <Q π’}β© +P
1P), 1Pβ©]
~R , 0Rβ© Β· π) = 1) =
β¨[β¨(β¨{π
β£ π
<Q (*Qβ[β¨π, 1oβ©]
~Q )}, {π’ β£
(*Qβ[β¨π, 1oβ©]
~Q ) <Q π’}β© +P
1P), 1Pβ©]
~R ,
0Rβ©) |
63 | 62 | ad3antlr 493 |
. . . . . . . . 9
β’ ((((π β§ π β N) β§ π β N) β§
π
<N π) β (β©π β β (β¨[β¨(β¨{π β£ π <Q [β¨π, 1oβ©]
~Q }, {π’ β£ [β¨π, 1oβ©]
~Q <Q π’}β© +P
1P), 1Pβ©]
~R , 0Rβ© Β· π) = 1) =
β¨[β¨(β¨{π
β£ π
<Q (*Qβ[β¨π, 1oβ©]
~Q )}, {π’ β£
(*Qβ[β¨π, 1oβ©]
~Q ) <Q π’}β© +P
1P), 1Pβ©]
~R ,
0Rβ©) |
64 | 61, 63 | oveq12d 5895 |
. . . . . . . 8
β’ ((((π β§ π β N) β§ π β N) β§
π
<N π) β ((πΉββ¨[β¨(β¨{π β£ π <Q [β¨π, 1oβ©]
~Q }, {π’ β£ [β¨π, 1oβ©]
~Q <Q π’}β© +P
1P), 1Pβ©]
~R , 0Rβ©) +
(β©π β
β (β¨[β¨(β¨{π β£ π <Q [β¨π, 1oβ©]
~Q }, {π’ β£ [β¨π, 1oβ©]
~Q <Q π’}β© +P
1P), 1Pβ©]
~R , 0Rβ© Β· π) = 1)) = (β¨(πΊβπ), 0Rβ© +
β¨[β¨(β¨{π
β£ π
<Q (*Qβ[β¨π, 1oβ©]
~Q )}, {π’ β£
(*Qβ[β¨π, 1oβ©]
~Q ) <Q π’}β© +P
1P), 1Pβ©]
~R ,
0Rβ©)) |
65 | 45, 55, 22, 56 | axcaucvglemf 7897 |
. . . . . . . . . . 11
β’ (π β πΊ:NβΆR) |
66 | 65 | ad3antrrr 492 |
. . . . . . . . . 10
β’ ((((π β§ π β N) β§ π β N) β§
π
<N π) β πΊ:NβΆR) |
67 | | simplr 528 |
. . . . . . . . . 10
β’ ((((π β§ π β N) β§ π β N) β§
π
<N π) β π β N) |
68 | 66, 67 | ffvelcdmd 5654 |
. . . . . . . . 9
β’ ((((π β§ π β N) β§ π β N) β§
π
<N π) β (πΊβπ) β R) |
69 | | recnnpr 7549 |
. . . . . . . . . . 11
β’ (π β N β
β¨{π β£ π <Q
(*Qβ[β¨π, 1oβ©]
~Q )}, {π’ β£
(*Qβ[β¨π, 1oβ©]
~Q ) <Q π’}β© β
P) |
70 | | prsrcl 7785 |
. . . . . . . . . . 11
β’
(β¨{π β£
π
<Q (*Qβ[β¨π, 1oβ©]
~Q )}, {π’ β£
(*Qβ[β¨π, 1oβ©]
~Q ) <Q π’}β© β P β
[β¨(β¨{π β£
π
<Q (*Qβ[β¨π, 1oβ©]
~Q )}, {π’ β£
(*Qβ[β¨π, 1oβ©]
~Q ) <Q π’}β© +P
1P), 1Pβ©]
~R β R) |
71 | 69, 70 | syl 14 |
. . . . . . . . . 10
β’ (π β N β
[β¨(β¨{π β£
π
<Q (*Qβ[β¨π, 1oβ©]
~Q )}, {π’ β£
(*Qβ[β¨π, 1oβ©]
~Q ) <Q π’}β© +P
1P), 1Pβ©]
~R β R) |
72 | 71 | ad3antlr 493 |
. . . . . . . . 9
β’ ((((π β§ π β N) β§ π β N) β§
π
<N π) β [β¨(β¨{π β£ π <Q
(*Qβ[β¨π, 1oβ©]
~Q )}, {π’ β£
(*Qβ[β¨π, 1oβ©]
~Q ) <Q π’}β© +P
1P), 1Pβ©]
~R β R) |
73 | | addresr 7838 |
. . . . . . . . 9
β’ (((πΊβπ) β R β§
[β¨(β¨{π β£
π
<Q (*Qβ[β¨π, 1oβ©]
~Q )}, {π’ β£
(*Qβ[β¨π, 1oβ©]
~Q ) <Q π’}β© +P
1P), 1Pβ©]
~R β R) β (β¨(πΊβπ), 0Rβ© +
β¨[β¨(β¨{π
β£ π
<Q (*Qβ[β¨π, 1oβ©]
~Q )}, {π’ β£
(*Qβ[β¨π, 1oβ©]
~Q ) <Q π’}β© +P
1P), 1Pβ©]
~R , 0Rβ©) =
β¨((πΊβπ) +R
[β¨(β¨{π β£
π
<Q (*Qβ[β¨π, 1oβ©]
~Q )}, {π’ β£
(*Qβ[β¨π, 1oβ©]
~Q ) <Q π’}β© +P
1P), 1Pβ©]
~R ),
0Rβ©) |
74 | 68, 72, 73 | syl2anc 411 |
. . . . . . . 8
β’ ((((π β§ π β N) β§ π β N) β§
π
<N π) β (β¨(πΊβπ), 0Rβ© +
β¨[β¨(β¨{π
β£ π
<Q (*Qβ[β¨π, 1oβ©]
~Q )}, {π’ β£
(*Qβ[β¨π, 1oβ©]
~Q ) <Q π’}β© +P
1P), 1Pβ©]
~R , 0Rβ©) =
β¨((πΊβπ) +R
[β¨(β¨{π β£
π
<Q (*Qβ[β¨π, 1oβ©]
~Q )}, {π’ β£
(*Qβ[β¨π, 1oβ©]
~Q ) <Q π’}β© +P
1P), 1Pβ©]
~R ),
0Rβ©) |
75 | 64, 74 | eqtrd 2210 |
. . . . . . 7
β’ ((((π β§ π β N) β§ π β N) β§
π
<N π) β ((πΉββ¨[β¨(β¨{π β£ π <Q [β¨π, 1oβ©]
~Q }, {π’ β£ [β¨π, 1oβ©]
~Q <Q π’}β© +P
1P), 1Pβ©]
~R , 0Rβ©) +
(β©π β
β (β¨[β¨(β¨{π β£ π <Q [β¨π, 1oβ©]
~Q }, {π’ β£ [β¨π, 1oβ©]
~Q <Q π’}β© +P
1P), 1Pβ©]
~R , 0Rβ© Β· π) = 1)) = β¨((πΊβπ) +R
[β¨(β¨{π β£
π
<Q (*Qβ[β¨π, 1oβ©]
~Q )}, {π’ β£
(*Qβ[β¨π, 1oβ©]
~Q ) <Q π’}β© +P
1P), 1Pβ©]
~R ),
0Rβ©) |
76 | 54, 58, 75 | 3brtr3d 4036 |
. . . . . 6
β’ ((((π β§ π β N) β§ π β N) β§
π
<N π) β β¨(πΊβπ), 0Rβ©
<β β¨((πΊβπ) +R
[β¨(β¨{π β£
π
<Q (*Qβ[β¨π, 1oβ©]
~Q )}, {π’ β£
(*Qβ[β¨π, 1oβ©]
~Q ) <Q π’}β© +P
1P), 1Pβ©]
~R ),
0Rβ©) |
77 | | ltresr 7840 |
. . . . . 6
β’
(β¨(πΊβπ), 0Rβ©
<β β¨((πΊβπ) +R
[β¨(β¨{π β£
π
<Q (*Qβ[β¨π, 1oβ©]
~Q )}, {π’ β£
(*Qβ[β¨π, 1oβ©]
~Q ) <Q π’}β© +P
1P), 1Pβ©]
~R ), 0Rβ© β (πΊβπ) <R ((πΊβπ) +R
[β¨(β¨{π β£
π
<Q (*Qβ[β¨π, 1oβ©]
~Q )}, {π’ β£
(*Qβ[β¨π, 1oβ©]
~Q ) <Q π’}β© +P
1P), 1Pβ©]
~R )) |
78 | 76, 77 | sylib 122 |
. . . . 5
β’ ((((π β§ π β N) β§ π β N) β§
π
<N π) β (πΊβπ) <R ((πΊβπ) +R
[β¨(β¨{π β£
π
<Q (*Qβ[β¨π, 1oβ©]
~Q )}, {π’ β£
(*Qβ[β¨π, 1oβ©]
~Q ) <Q π’}β© +P
1P), 1Pβ©]
~R )) |
79 | 53 | simprd 114 |
. . . . . . 7
β’ ((((π β§ π β N) β§ π β N) β§
π
<N π) β (πΉββ¨[β¨(β¨{π β£ π <Q [β¨π, 1oβ©]
~Q }, {π’ β£ [β¨π, 1oβ©]
~Q <Q π’}β© +P
1P), 1Pβ©]
~R , 0Rβ©)
<β ((πΉββ¨[β¨(β¨{π β£ π <Q [β¨π, 1oβ©]
~Q }, {π’ β£ [β¨π, 1oβ©]
~Q <Q π’}β© +P
1P), 1Pβ©]
~R , 0Rβ©) +
(β©π β
β (β¨[β¨(β¨{π β£ π <Q [β¨π, 1oβ©]
~Q }, {π’ β£ [β¨π, 1oβ©]
~Q <Q π’}β© +P
1P), 1Pβ©]
~R , 0Rβ© Β· π) = 1))) |
80 | 58, 63 | oveq12d 5895 |
. . . . . . . 8
β’ ((((π β§ π β N) β§ π β N) β§
π
<N π) β ((πΉββ¨[β¨(β¨{π β£ π <Q [β¨π, 1oβ©]
~Q }, {π’ β£ [β¨π, 1oβ©]
~Q <Q π’}β© +P
1P), 1Pβ©]
~R , 0Rβ©) +
(β©π β
β (β¨[β¨(β¨{π β£ π <Q [β¨π, 1oβ©]
~Q }, {π’ β£ [β¨π, 1oβ©]
~Q <Q π’}β© +P
1P), 1Pβ©]
~R , 0Rβ© Β· π) = 1)) = (β¨(πΊβπ), 0Rβ© +
β¨[β¨(β¨{π
β£ π
<Q (*Qβ[β¨π, 1oβ©]
~Q )}, {π’ β£
(*Qβ[β¨π, 1oβ©]
~Q ) <Q π’}β© +P
1P), 1Pβ©]
~R ,
0Rβ©)) |
81 | | simpllr 534 |
. . . . . . . . . 10
β’ ((((π β§ π β N) β§ π β N) β§
π
<N π) β π β N) |
82 | 66, 81 | ffvelcdmd 5654 |
. . . . . . . . 9
β’ ((((π β§ π β N) β§ π β N) β§
π
<N π) β (πΊβπ) β R) |
83 | | addresr 7838 |
. . . . . . . . 9
β’ (((πΊβπ) β R β§
[β¨(β¨{π β£
π
<Q (*Qβ[β¨π, 1oβ©]
~Q )}, {π’ β£
(*Qβ[β¨π, 1oβ©]
~Q ) <Q π’}β© +P
1P), 1Pβ©]
~R β R) β (β¨(πΊβπ), 0Rβ© +
β¨[β¨(β¨{π
β£ π
<Q (*Qβ[β¨π, 1oβ©]
~Q )}, {π’ β£
(*Qβ[β¨π, 1oβ©]
~Q ) <Q π’}β© +P
1P), 1Pβ©]
~R , 0Rβ©) =
β¨((πΊβπ) +R
[β¨(β¨{π β£
π
<Q (*Qβ[β¨π, 1oβ©]
~Q )}, {π’ β£
(*Qβ[β¨π, 1oβ©]
~Q ) <Q π’}β© +P
1P), 1Pβ©]
~R ),
0Rβ©) |
84 | 82, 72, 83 | syl2anc 411 |
. . . . . . . 8
β’ ((((π β§ π β N) β§ π β N) β§
π
<N π) β (β¨(πΊβπ), 0Rβ© +
β¨[β¨(β¨{π
β£ π
<Q (*Qβ[β¨π, 1oβ©]
~Q )}, {π’ β£
(*Qβ[β¨π, 1oβ©]
~Q ) <Q π’}β© +P
1P), 1Pβ©]
~R , 0Rβ©) =
β¨((πΊβπ) +R
[β¨(β¨{π β£
π
<Q (*Qβ[β¨π, 1oβ©]
~Q )}, {π’ β£
(*Qβ[β¨π, 1oβ©]
~Q ) <Q π’}β© +P
1P), 1Pβ©]
~R ),
0Rβ©) |
85 | 80, 84 | eqtrd 2210 |
. . . . . . 7
β’ ((((π β§ π β N) β§ π β N) β§
π
<N π) β ((πΉββ¨[β¨(β¨{π β£ π <Q [β¨π, 1oβ©]
~Q }, {π’ β£ [β¨π, 1oβ©]
~Q <Q π’}β© +P
1P), 1Pβ©]
~R , 0Rβ©) +
(β©π β
β (β¨[β¨(β¨{π β£ π <Q [β¨π, 1oβ©]
~Q }, {π’ β£ [β¨π, 1oβ©]
~Q <Q π’}β© +P
1P), 1Pβ©]
~R , 0Rβ© Β· π) = 1)) = β¨((πΊβπ) +R
[β¨(β¨{π β£
π
<Q (*Qβ[β¨π, 1oβ©]
~Q )}, {π’ β£
(*Qβ[β¨π, 1oβ©]
~Q ) <Q π’}β© +P
1P), 1Pβ©]
~R ),
0Rβ©) |
86 | 79, 61, 85 | 3brtr3d 4036 |
. . . . . 6
β’ ((((π β§ π β N) β§ π β N) β§
π
<N π) β β¨(πΊβπ), 0Rβ©
<β β¨((πΊβπ) +R
[β¨(β¨{π β£
π
<Q (*Qβ[β¨π, 1oβ©]
~Q )}, {π’ β£
(*Qβ[β¨π, 1oβ©]
~Q ) <Q π’}β© +P
1P), 1Pβ©]
~R ),
0Rβ©) |
87 | | ltresr 7840 |
. . . . . 6
β’
(β¨(πΊβπ), 0Rβ©
<β β¨((πΊβπ) +R
[β¨(β¨{π β£
π
<Q (*Qβ[β¨π, 1oβ©]
~Q )}, {π’ β£
(*Qβ[β¨π, 1oβ©]
~Q ) <Q π’}β© +P
1P), 1Pβ©]
~R ), 0Rβ© β (πΊβπ) <R ((πΊβπ) +R
[β¨(β¨{π β£
π
<Q (*Qβ[β¨π, 1oβ©]
~Q )}, {π’ β£
(*Qβ[β¨π, 1oβ©]
~Q ) <Q π’}β© +P
1P), 1Pβ©]
~R )) |
88 | 86, 87 | sylib 122 |
. . . . 5
β’ ((((π β§ π β N) β§ π β N) β§
π
<N π) β (πΊβπ) <R ((πΊβπ) +R
[β¨(β¨{π β£
π
<Q (*Qβ[β¨π, 1oβ©]
~Q )}, {π’ β£
(*Qβ[β¨π, 1oβ©]
~Q ) <Q π’}β© +P
1P), 1Pβ©]
~R )) |
89 | 78, 88 | jca 306 |
. . . 4
β’ ((((π β§ π β N) β§ π β N) β§
π
<N π) β ((πΊβπ) <R ((πΊβπ) +R
[β¨(β¨{π β£
π
<Q (*Qβ[β¨π, 1oβ©]
~Q )}, {π’ β£
(*Qβ[β¨π, 1oβ©]
~Q ) <Q π’}β© +P
1P), 1Pβ©]
~R ) β§ (πΊβπ) <R ((πΊβπ) +R
[β¨(β¨{π β£
π
<Q (*Qβ[β¨π, 1oβ©]
~Q )}, {π’ β£
(*Qβ[β¨π, 1oβ©]
~Q ) <Q π’}β© +P
1P), 1Pβ©]
~R ))) |
90 | 89 | ex 115 |
. . 3
β’ (((π β§ π β N) β§ π β N) β
(π
<N π β ((πΊβπ) <R ((πΊβπ) +R
[β¨(β¨{π β£
π
<Q (*Qβ[β¨π, 1oβ©]
~Q )}, {π’ β£
(*Qβ[β¨π, 1oβ©]
~Q ) <Q π’}β© +P
1P), 1Pβ©]
~R ) β§ (πΊβπ) <R ((πΊβπ) +R
[β¨(β¨{π β£
π
<Q (*Qβ[β¨π, 1oβ©]
~Q )}, {π’ β£
(*Qβ[β¨π, 1oβ©]
~Q ) <Q π’}β© +P
1P), 1Pβ©]
~R )))) |
91 | 90 | ralrimiva 2550 |
. 2
β’ ((π β§ π β N) β βπ β N (π <N
π β ((πΊβπ) <R ((πΊβπ) +R
[β¨(β¨{π β£
π
<Q (*Qβ[β¨π, 1oβ©]
~Q )}, {π’ β£
(*Qβ[β¨π, 1oβ©]
~Q ) <Q π’}β© +P
1P), 1Pβ©]
~R ) β§ (πΊβπ) <R ((πΊβπ) +R
[β¨(β¨{π β£
π
<Q (*Qβ[β¨π, 1oβ©]
~Q )}, {π’ β£
(*Qβ[β¨π, 1oβ©]
~Q ) <Q π’}β© +P
1P), 1Pβ©]
~R )))) |
92 | 91 | ralrimiva 2550 |
1
β’ (π β βπ β N βπ β N (π <N
π β ((πΊβπ) <R ((πΊβπ) +R
[β¨(β¨{π β£
π
<Q (*Qβ[β¨π, 1oβ©]
~Q )}, {π’ β£
(*Qβ[β¨π, 1oβ©]
~Q ) <Q π’}β© +P
1P), 1Pβ©]
~R ) β§ (πΊβπ) <R ((πΊβπ) +R
[β¨(β¨{π β£
π
<Q (*Qβ[β¨π, 1oβ©]
~Q )}, {π’ β£
(*Qβ[β¨π, 1oβ©]
~Q ) <Q π’}β© +P
1P), 1Pβ©]
~R )))) |