ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  flval GIF version

Theorem flval 10228
Description: Value of the floor (greatest integer) function. The floor of 𝐴 is the (unique) integer less than or equal to 𝐴 whose successor is strictly greater than 𝐴. (Contributed by NM, 14-Nov-2004.) (Revised by Mario Carneiro, 2-Nov-2013.)
Assertion
Ref Expression
flval (𝐴 ∈ ℝ → (⌊‘𝐴) = (𝑥 ∈ ℤ (𝑥𝐴𝐴 < (𝑥 + 1))))
Distinct variable group:   𝑥,𝐴

Proof of Theorem flval
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 breq2 3993 . . . 4 (𝑦 = 𝐴 → (𝑥𝑦𝑥𝐴))
2 breq1 3992 . . . 4 (𝑦 = 𝐴 → (𝑦 < (𝑥 + 1) ↔ 𝐴 < (𝑥 + 1)))
31, 2anbi12d 470 . . 3 (𝑦 = 𝐴 → ((𝑥𝑦𝑦 < (𝑥 + 1)) ↔ (𝑥𝐴𝐴 < (𝑥 + 1))))
43riotabidv 5811 . 2 (𝑦 = 𝐴 → (𝑥 ∈ ℤ (𝑥𝑦𝑦 < (𝑥 + 1))) = (𝑥 ∈ ℤ (𝑥𝐴𝐴 < (𝑥 + 1))))
5 df-fl 10226 . 2 ⌊ = (𝑦 ∈ ℝ ↦ (𝑥 ∈ ℤ (𝑥𝑦𝑦 < (𝑥 + 1))))
6 zex 9221 . . 3 ℤ ∈ V
7 riotaexg 5813 . . 3 (ℤ ∈ V → (𝑥 ∈ ℤ (𝑥𝑦𝑦 < (𝑥 + 1))) ∈ V)
86, 7ax-mp 5 . 2 (𝑥 ∈ ℤ (𝑥𝑦𝑦 < (𝑥 + 1))) ∈ V
94, 5, 8fvmpt3i 5576 1 (𝐴 ∈ ℝ → (⌊‘𝐴) = (𝑥 ∈ ℤ (𝑥𝐴𝐴 < (𝑥 + 1))))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103   = wceq 1348  wcel 2141  Vcvv 2730   class class class wbr 3989  cfv 5198  crio 5808  (class class class)co 5853  cr 7773  1c1 7775   + caddc 7777   < clt 7954  cle 7955  cz 9212  cfl 10224
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-sep 4107  ax-pow 4160  ax-pr 4194  ax-un 4418  ax-cnex 7865  ax-resscn 7866
This theorem depends on definitions:  df-bi 116  df-3or 974  df-3an 975  df-tru 1351  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ral 2453  df-rex 2454  df-rab 2457  df-v 2732  df-sbc 2956  df-un 3125  df-in 3127  df-ss 3134  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-br 3990  df-opab 4051  df-mpt 4052  df-id 4278  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-iota 5160  df-fun 5200  df-fv 5206  df-riota 5809  df-ov 5856  df-neg 8093  df-z 9213  df-fl 10226
This theorem is referenced by:  flqcl  10229  flapcl  10231  flqlelt  10232  flqbi  10246
  Copyright terms: Public domain W3C validator