| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > flval | GIF version | ||
| Description: Value of the floor (greatest integer) function. The floor of 𝐴 is the (unique) integer less than or equal to 𝐴 whose successor is strictly greater than 𝐴. (Contributed by NM, 14-Nov-2004.) (Revised by Mario Carneiro, 2-Nov-2013.) |
| Ref | Expression |
|---|---|
| flval | ⊢ (𝐴 ∈ ℝ → (⌊‘𝐴) = (℩𝑥 ∈ ℤ (𝑥 ≤ 𝐴 ∧ 𝐴 < (𝑥 + 1)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | breq2 4086 | . . . 4 ⊢ (𝑦 = 𝐴 → (𝑥 ≤ 𝑦 ↔ 𝑥 ≤ 𝐴)) | |
| 2 | breq1 4085 | . . . 4 ⊢ (𝑦 = 𝐴 → (𝑦 < (𝑥 + 1) ↔ 𝐴 < (𝑥 + 1))) | |
| 3 | 1, 2 | anbi12d 473 | . . 3 ⊢ (𝑦 = 𝐴 → ((𝑥 ≤ 𝑦 ∧ 𝑦 < (𝑥 + 1)) ↔ (𝑥 ≤ 𝐴 ∧ 𝐴 < (𝑥 + 1)))) |
| 4 | 3 | riotabidv 5949 | . 2 ⊢ (𝑦 = 𝐴 → (℩𝑥 ∈ ℤ (𝑥 ≤ 𝑦 ∧ 𝑦 < (𝑥 + 1))) = (℩𝑥 ∈ ℤ (𝑥 ≤ 𝐴 ∧ 𝐴 < (𝑥 + 1)))) |
| 5 | df-fl 10477 | . 2 ⊢ ⌊ = (𝑦 ∈ ℝ ↦ (℩𝑥 ∈ ℤ (𝑥 ≤ 𝑦 ∧ 𝑦 < (𝑥 + 1)))) | |
| 6 | zex 9443 | . . 3 ⊢ ℤ ∈ V | |
| 7 | riotaexg 5951 | . . 3 ⊢ (ℤ ∈ V → (℩𝑥 ∈ ℤ (𝑥 ≤ 𝑦 ∧ 𝑦 < (𝑥 + 1))) ∈ V) | |
| 8 | 6, 7 | ax-mp 5 | . 2 ⊢ (℩𝑥 ∈ ℤ (𝑥 ≤ 𝑦 ∧ 𝑦 < (𝑥 + 1))) ∈ V |
| 9 | 4, 5, 8 | fvmpt3i 5707 | 1 ⊢ (𝐴 ∈ ℝ → (⌊‘𝐴) = (℩𝑥 ∈ ℤ (𝑥 ≤ 𝐴 ∧ 𝐴 < (𝑥 + 1)))) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1395 ∈ wcel 2200 Vcvv 2799 class class class wbr 4082 ‘cfv 5314 ℩crio 5946 (class class class)co 5994 ℝcr 7986 1c1 7988 + caddc 7990 < clt 8169 ≤ cle 8170 ℤcz 9434 ⌊cfl 10475 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4201 ax-pow 4257 ax-pr 4292 ax-un 4521 ax-cnex 8078 ax-resscn 8079 |
| This theorem depends on definitions: df-bi 117 df-3or 1003 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-rab 2517 df-v 2801 df-sbc 3029 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-br 4083 df-opab 4145 df-mpt 4146 df-id 4381 df-xp 4722 df-rel 4723 df-cnv 4724 df-co 4725 df-dm 4726 df-iota 5274 df-fun 5316 df-fv 5322 df-riota 5947 df-ov 5997 df-neg 8308 df-z 9435 df-fl 10477 |
| This theorem is referenced by: flqcl 10480 flapcl 10482 flqlelt 10483 flqbi 10497 |
| Copyright terms: Public domain | W3C validator |