ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  flval GIF version

Theorem flval 10422
Description: Value of the floor (greatest integer) function. The floor of 𝐴 is the (unique) integer less than or equal to 𝐴 whose successor is strictly greater than 𝐴. (Contributed by NM, 14-Nov-2004.) (Revised by Mario Carneiro, 2-Nov-2013.)
Assertion
Ref Expression
flval (𝐴 ∈ ℝ → (⌊‘𝐴) = (𝑥 ∈ ℤ (𝑥𝐴𝐴 < (𝑥 + 1))))
Distinct variable group:   𝑥,𝐴

Proof of Theorem flval
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 breq2 4051 . . . 4 (𝑦 = 𝐴 → (𝑥𝑦𝑥𝐴))
2 breq1 4050 . . . 4 (𝑦 = 𝐴 → (𝑦 < (𝑥 + 1) ↔ 𝐴 < (𝑥 + 1)))
31, 2anbi12d 473 . . 3 (𝑦 = 𝐴 → ((𝑥𝑦𝑦 < (𝑥 + 1)) ↔ (𝑥𝐴𝐴 < (𝑥 + 1))))
43riotabidv 5908 . 2 (𝑦 = 𝐴 → (𝑥 ∈ ℤ (𝑥𝑦𝑦 < (𝑥 + 1))) = (𝑥 ∈ ℤ (𝑥𝐴𝐴 < (𝑥 + 1))))
5 df-fl 10420 . 2 ⌊ = (𝑦 ∈ ℝ ↦ (𝑥 ∈ ℤ (𝑥𝑦𝑦 < (𝑥 + 1))))
6 zex 9388 . . 3 ℤ ∈ V
7 riotaexg 5910 . . 3 (ℤ ∈ V → (𝑥 ∈ ℤ (𝑥𝑦𝑦 < (𝑥 + 1))) ∈ V)
86, 7ax-mp 5 . 2 (𝑥 ∈ ℤ (𝑥𝑦𝑦 < (𝑥 + 1))) ∈ V
94, 5, 8fvmpt3i 5666 1 (𝐴 ∈ ℝ → (⌊‘𝐴) = (𝑥 ∈ ℤ (𝑥𝐴𝐴 < (𝑥 + 1))))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1373  wcel 2177  Vcvv 2773   class class class wbr 4047  cfv 5276  crio 5905  (class class class)co 5951  cr 7931  1c1 7933   + caddc 7935   < clt 8114  cle 8115  cz 9379  cfl 10418
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-sep 4166  ax-pow 4222  ax-pr 4257  ax-un 4484  ax-cnex 8023  ax-resscn 8024
This theorem depends on definitions:  df-bi 117  df-3or 982  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ral 2490  df-rex 2491  df-rab 2494  df-v 2775  df-sbc 3000  df-un 3171  df-in 3173  df-ss 3180  df-pw 3619  df-sn 3640  df-pr 3641  df-op 3643  df-uni 3853  df-br 4048  df-opab 4110  df-mpt 4111  df-id 4344  df-xp 4685  df-rel 4686  df-cnv 4687  df-co 4688  df-dm 4689  df-iota 5237  df-fun 5278  df-fv 5284  df-riota 5906  df-ov 5954  df-neg 8253  df-z 9380  df-fl 10420
This theorem is referenced by:  flqcl  10423  flapcl  10425  flqlelt  10426  flqbi  10440
  Copyright terms: Public domain W3C validator