ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  flval GIF version

Theorem flval 10274
Description: Value of the floor (greatest integer) function. The floor of 𝐴 is the (unique) integer less than or equal to 𝐴 whose successor is strictly greater than 𝐴. (Contributed by NM, 14-Nov-2004.) (Revised by Mario Carneiro, 2-Nov-2013.)
Assertion
Ref Expression
flval (𝐴 ∈ ℝ → (⌊‘𝐴) = (𝑥 ∈ ℤ (𝑥𝐴𝐴 < (𝑥 + 1))))
Distinct variable group:   𝑥,𝐴

Proof of Theorem flval
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 breq2 4009 . . . 4 (𝑦 = 𝐴 → (𝑥𝑦𝑥𝐴))
2 breq1 4008 . . . 4 (𝑦 = 𝐴 → (𝑦 < (𝑥 + 1) ↔ 𝐴 < (𝑥 + 1)))
31, 2anbi12d 473 . . 3 (𝑦 = 𝐴 → ((𝑥𝑦𝑦 < (𝑥 + 1)) ↔ (𝑥𝐴𝐴 < (𝑥 + 1))))
43riotabidv 5835 . 2 (𝑦 = 𝐴 → (𝑥 ∈ ℤ (𝑥𝑦𝑦 < (𝑥 + 1))) = (𝑥 ∈ ℤ (𝑥𝐴𝐴 < (𝑥 + 1))))
5 df-fl 10272 . 2 ⌊ = (𝑦 ∈ ℝ ↦ (𝑥 ∈ ℤ (𝑥𝑦𝑦 < (𝑥 + 1))))
6 zex 9264 . . 3 ℤ ∈ V
7 riotaexg 5837 . . 3 (ℤ ∈ V → (𝑥 ∈ ℤ (𝑥𝑦𝑦 < (𝑥 + 1))) ∈ V)
86, 7ax-mp 5 . 2 (𝑥 ∈ ℤ (𝑥𝑦𝑦 < (𝑥 + 1))) ∈ V
94, 5, 8fvmpt3i 5598 1 (𝐴 ∈ ℝ → (⌊‘𝐴) = (𝑥 ∈ ℤ (𝑥𝐴𝐴 < (𝑥 + 1))))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1353  wcel 2148  Vcvv 2739   class class class wbr 4005  cfv 5218  crio 5832  (class class class)co 5877  cr 7812  1c1 7814   + caddc 7816   < clt 7994  cle 7995  cz 9255  cfl 10270
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4123  ax-pow 4176  ax-pr 4211  ax-un 4435  ax-cnex 7904  ax-resscn 7905
This theorem depends on definitions:  df-bi 117  df-3or 979  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-rex 2461  df-rab 2464  df-v 2741  df-sbc 2965  df-un 3135  df-in 3137  df-ss 3144  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-br 4006  df-opab 4067  df-mpt 4068  df-id 4295  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-iota 5180  df-fun 5220  df-fv 5226  df-riota 5833  df-ov 5880  df-neg 8133  df-z 9256  df-fl 10272
This theorem is referenced by:  flqcl  10275  flapcl  10277  flqlelt  10278  flqbi  10292
  Copyright terms: Public domain W3C validator