ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  flval GIF version

Theorem flval 9568
Description: Value of the floor (greatest integer) function. The floor of 𝐴 is the (unique) integer less than or equal to 𝐴 whose successor is strictly greater than 𝐴. (Contributed by NM, 14-Nov-2004.) (Revised by Mario Carneiro, 2-Nov-2013.)
Assertion
Ref Expression
flval (𝐴 ∈ ℝ → (⌊‘𝐴) = (𝑥 ∈ ℤ (𝑥𝐴𝐴 < (𝑥 + 1))))
Distinct variable group:   𝑥,𝐴

Proof of Theorem flval
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 breq2 3815 . . . 4 (𝑦 = 𝐴 → (𝑥𝑦𝑥𝐴))
2 breq1 3814 . . . 4 (𝑦 = 𝐴 → (𝑦 < (𝑥 + 1) ↔ 𝐴 < (𝑥 + 1)))
31, 2anbi12d 457 . . 3 (𝑦 = 𝐴 → ((𝑥𝑦𝑦 < (𝑥 + 1)) ↔ (𝑥𝐴𝐴 < (𝑥 + 1))))
43riotabidv 5549 . 2 (𝑦 = 𝐴 → (𝑥 ∈ ℤ (𝑥𝑦𝑦 < (𝑥 + 1))) = (𝑥 ∈ ℤ (𝑥𝐴𝐴 < (𝑥 + 1))))
5 df-fl 9566 . 2 ⌊ = (𝑦 ∈ ℝ ↦ (𝑥 ∈ ℤ (𝑥𝑦𝑦 < (𝑥 + 1))))
6 zex 8655 . . 3 ℤ ∈ V
7 riotaexg 5551 . . 3 (ℤ ∈ V → (𝑥 ∈ ℤ (𝑥𝑦𝑦 < (𝑥 + 1))) ∈ V)
86, 7ax-mp 7 . 2 (𝑥 ∈ ℤ (𝑥𝑦𝑦 < (𝑥 + 1))) ∈ V
94, 5, 8fvmpt3i 5329 1 (𝐴 ∈ ℝ → (⌊‘𝐴) = (𝑥 ∈ ℤ (𝑥𝐴𝐴 < (𝑥 + 1))))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 102   = wceq 1285  wcel 1434  Vcvv 2612   class class class wbr 3811  cfv 4969  crio 5546  (class class class)co 5591  cr 7252  1c1 7254   + caddc 7256   < clt 7425  cle 7426  cz 8646  cfl 9564
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 663  ax-5 1377  ax-7 1378  ax-gen 1379  ax-ie1 1423  ax-ie2 1424  ax-8 1436  ax-10 1437  ax-11 1438  ax-i12 1439  ax-bndl 1440  ax-4 1441  ax-13 1445  ax-14 1446  ax-17 1460  ax-i9 1464  ax-ial 1468  ax-i5r 1469  ax-ext 2065  ax-sep 3922  ax-pow 3974  ax-pr 4000  ax-un 4224  ax-cnex 7339  ax-resscn 7340
This theorem depends on definitions:  df-bi 115  df-3or 921  df-3an 922  df-tru 1288  df-nf 1391  df-sb 1688  df-eu 1946  df-mo 1947  df-clab 2070  df-cleq 2076  df-clel 2079  df-nfc 2212  df-ral 2358  df-rex 2359  df-rab 2362  df-v 2614  df-sbc 2827  df-un 2988  df-in 2990  df-ss 2997  df-pw 3408  df-sn 3428  df-pr 3429  df-op 3431  df-uni 3628  df-br 3812  df-opab 3866  df-mpt 3867  df-id 4084  df-xp 4407  df-rel 4408  df-cnv 4409  df-co 4410  df-dm 4411  df-iota 4934  df-fun 4971  df-fv 4977  df-riota 5547  df-ov 5594  df-neg 7559  df-z 8647  df-fl 9566
This theorem is referenced by:  flqcl  9569  flapcl  9571  flqlelt  9572  flqbi  9586
  Copyright terms: Public domain W3C validator