![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > flval | GIF version |
Description: Value of the floor (greatest integer) function. The floor of 𝐴 is the (unique) integer less than or equal to 𝐴 whose successor is strictly greater than 𝐴. (Contributed by NM, 14-Nov-2004.) (Revised by Mario Carneiro, 2-Nov-2013.) |
Ref | Expression |
---|---|
flval | ⊢ (𝐴 ∈ ℝ → (⌊‘𝐴) = (℩𝑥 ∈ ℤ (𝑥 ≤ 𝐴 ∧ 𝐴 < (𝑥 + 1)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | breq2 4034 | . . . 4 ⊢ (𝑦 = 𝐴 → (𝑥 ≤ 𝑦 ↔ 𝑥 ≤ 𝐴)) | |
2 | breq1 4033 | . . . 4 ⊢ (𝑦 = 𝐴 → (𝑦 < (𝑥 + 1) ↔ 𝐴 < (𝑥 + 1))) | |
3 | 1, 2 | anbi12d 473 | . . 3 ⊢ (𝑦 = 𝐴 → ((𝑥 ≤ 𝑦 ∧ 𝑦 < (𝑥 + 1)) ↔ (𝑥 ≤ 𝐴 ∧ 𝐴 < (𝑥 + 1)))) |
4 | 3 | riotabidv 5876 | . 2 ⊢ (𝑦 = 𝐴 → (℩𝑥 ∈ ℤ (𝑥 ≤ 𝑦 ∧ 𝑦 < (𝑥 + 1))) = (℩𝑥 ∈ ℤ (𝑥 ≤ 𝐴 ∧ 𝐴 < (𝑥 + 1)))) |
5 | df-fl 10342 | . 2 ⊢ ⌊ = (𝑦 ∈ ℝ ↦ (℩𝑥 ∈ ℤ (𝑥 ≤ 𝑦 ∧ 𝑦 < (𝑥 + 1)))) | |
6 | zex 9329 | . . 3 ⊢ ℤ ∈ V | |
7 | riotaexg 5878 | . . 3 ⊢ (ℤ ∈ V → (℩𝑥 ∈ ℤ (𝑥 ≤ 𝑦 ∧ 𝑦 < (𝑥 + 1))) ∈ V) | |
8 | 6, 7 | ax-mp 5 | . 2 ⊢ (℩𝑥 ∈ ℤ (𝑥 ≤ 𝑦 ∧ 𝑦 < (𝑥 + 1))) ∈ V |
9 | 4, 5, 8 | fvmpt3i 5638 | 1 ⊢ (𝐴 ∈ ℝ → (⌊‘𝐴) = (℩𝑥 ∈ ℤ (𝑥 ≤ 𝐴 ∧ 𝐴 < (𝑥 + 1)))) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 = wceq 1364 ∈ wcel 2164 Vcvv 2760 class class class wbr 4030 ‘cfv 5255 ℩crio 5873 (class class class)co 5919 ℝcr 7873 1c1 7875 + caddc 7877 < clt 8056 ≤ cle 8057 ℤcz 9320 ⌊cfl 10340 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-sep 4148 ax-pow 4204 ax-pr 4239 ax-un 4465 ax-cnex 7965 ax-resscn 7966 |
This theorem depends on definitions: df-bi 117 df-3or 981 df-3an 982 df-tru 1367 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ral 2477 df-rex 2478 df-rab 2481 df-v 2762 df-sbc 2987 df-un 3158 df-in 3160 df-ss 3167 df-pw 3604 df-sn 3625 df-pr 3626 df-op 3628 df-uni 3837 df-br 4031 df-opab 4092 df-mpt 4093 df-id 4325 df-xp 4666 df-rel 4667 df-cnv 4668 df-co 4669 df-dm 4670 df-iota 5216 df-fun 5257 df-fv 5263 df-riota 5874 df-ov 5922 df-neg 8195 df-z 9321 df-fl 10342 |
This theorem is referenced by: flqcl 10345 flapcl 10347 flqlelt 10348 flqbi 10362 |
Copyright terms: Public domain | W3C validator |