![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > qdenval | GIF version |
Description: Value of the canonical denominator function. (Contributed by Stefan O'Rear, 13-Sep-2014.) |
Ref | Expression |
---|---|
qdenval | ⊢ (𝐴 ∈ ℚ → (denom‘𝐴) = (2nd ‘(℩𝑥 ∈ (ℤ × ℕ)(((1st ‘𝑥) gcd (2nd ‘𝑥)) = 1 ∧ 𝐴 = ((1st ‘𝑥) / (2nd ‘𝑥)))))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqeq1 2121 | . . . . 5 ⊢ (𝑎 = 𝐴 → (𝑎 = ((1st ‘𝑥) / (2nd ‘𝑥)) ↔ 𝐴 = ((1st ‘𝑥) / (2nd ‘𝑥)))) | |
2 | 1 | anbi2d 457 | . . . 4 ⊢ (𝑎 = 𝐴 → ((((1st ‘𝑥) gcd (2nd ‘𝑥)) = 1 ∧ 𝑎 = ((1st ‘𝑥) / (2nd ‘𝑥))) ↔ (((1st ‘𝑥) gcd (2nd ‘𝑥)) = 1 ∧ 𝐴 = ((1st ‘𝑥) / (2nd ‘𝑥))))) |
3 | 2 | riotabidv 5686 | . . 3 ⊢ (𝑎 = 𝐴 → (℩𝑥 ∈ (ℤ × ℕ)(((1st ‘𝑥) gcd (2nd ‘𝑥)) = 1 ∧ 𝑎 = ((1st ‘𝑥) / (2nd ‘𝑥)))) = (℩𝑥 ∈ (ℤ × ℕ)(((1st ‘𝑥) gcd (2nd ‘𝑥)) = 1 ∧ 𝐴 = ((1st ‘𝑥) / (2nd ‘𝑥))))) |
4 | 3 | fveq2d 5379 | . 2 ⊢ (𝑎 = 𝐴 → (2nd ‘(℩𝑥 ∈ (ℤ × ℕ)(((1st ‘𝑥) gcd (2nd ‘𝑥)) = 1 ∧ 𝑎 = ((1st ‘𝑥) / (2nd ‘𝑥))))) = (2nd ‘(℩𝑥 ∈ (ℤ × ℕ)(((1st ‘𝑥) gcd (2nd ‘𝑥)) = 1 ∧ 𝐴 = ((1st ‘𝑥) / (2nd ‘𝑥)))))) |
5 | df-denom 11707 | . 2 ⊢ denom = (𝑎 ∈ ℚ ↦ (2nd ‘(℩𝑥 ∈ (ℤ × ℕ)(((1st ‘𝑥) gcd (2nd ‘𝑥)) = 1 ∧ 𝑎 = ((1st ‘𝑥) / (2nd ‘𝑥)))))) | |
6 | zex 8967 | . . . 4 ⊢ ℤ ∈ V | |
7 | nnex 8636 | . . . 4 ⊢ ℕ ∈ V | |
8 | 6, 7 | xpex 4614 | . . 3 ⊢ (ℤ × ℕ) ∈ V |
9 | riotaexg 5688 | . . 3 ⊢ ((ℤ × ℕ) ∈ V → (℩𝑥 ∈ (ℤ × ℕ)(((1st ‘𝑥) gcd (2nd ‘𝑥)) = 1 ∧ 𝐴 = ((1st ‘𝑥) / (2nd ‘𝑥)))) ∈ V) | |
10 | 2ndexg 6020 | . . 3 ⊢ ((℩𝑥 ∈ (ℤ × ℕ)(((1st ‘𝑥) gcd (2nd ‘𝑥)) = 1 ∧ 𝐴 = ((1st ‘𝑥) / (2nd ‘𝑥)))) ∈ V → (2nd ‘(℩𝑥 ∈ (ℤ × ℕ)(((1st ‘𝑥) gcd (2nd ‘𝑥)) = 1 ∧ 𝐴 = ((1st ‘𝑥) / (2nd ‘𝑥))))) ∈ V) | |
11 | 8, 9, 10 | mp2b 8 | . 2 ⊢ (2nd ‘(℩𝑥 ∈ (ℤ × ℕ)(((1st ‘𝑥) gcd (2nd ‘𝑥)) = 1 ∧ 𝐴 = ((1st ‘𝑥) / (2nd ‘𝑥))))) ∈ V |
12 | 4, 5, 11 | fvmpt 5452 | 1 ⊢ (𝐴 ∈ ℚ → (denom‘𝐴) = (2nd ‘(℩𝑥 ∈ (ℤ × ℕ)(((1st ‘𝑥) gcd (2nd ‘𝑥)) = 1 ∧ 𝐴 = ((1st ‘𝑥) / (2nd ‘𝑥)))))) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 = wceq 1314 ∈ wcel 1463 Vcvv 2657 × cxp 4497 ‘cfv 5081 ℩crio 5683 (class class class)co 5728 1st c1st 5990 2nd c2nd 5991 1c1 7548 / cdiv 8345 ℕcn 8630 ℤcz 8958 ℚcq 9313 gcd cgcd 11483 denomcdenom 11705 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 681 ax-5 1406 ax-7 1407 ax-gen 1408 ax-ie1 1452 ax-ie2 1453 ax-8 1465 ax-10 1466 ax-11 1467 ax-i12 1468 ax-bndl 1469 ax-4 1470 ax-13 1474 ax-14 1475 ax-17 1489 ax-i9 1493 ax-ial 1497 ax-i5r 1498 ax-ext 2097 ax-sep 4006 ax-pow 4058 ax-pr 4091 ax-un 4315 ax-cnex 7636 ax-resscn 7637 ax-1re 7639 ax-addrcl 7642 |
This theorem depends on definitions: df-bi 116 df-3or 946 df-3an 947 df-tru 1317 df-nf 1420 df-sb 1719 df-eu 1978 df-mo 1979 df-clab 2102 df-cleq 2108 df-clel 2111 df-nfc 2244 df-ral 2395 df-rex 2396 df-rab 2399 df-v 2659 df-sbc 2879 df-un 3041 df-in 3043 df-ss 3050 df-pw 3478 df-sn 3499 df-pr 3500 df-op 3502 df-uni 3703 df-int 3738 df-br 3896 df-opab 3950 df-mpt 3951 df-id 4175 df-xp 4505 df-rel 4506 df-cnv 4507 df-co 4508 df-dm 4509 df-rn 4510 df-iota 5046 df-fun 5083 df-fn 5084 df-f 5085 df-fo 5087 df-fv 5089 df-riota 5684 df-ov 5731 df-2nd 5993 df-neg 7859 df-inn 8631 df-z 8959 df-denom 11707 |
This theorem is referenced by: qnumdencl 11710 fden 11714 qnumdenbi 11715 |
Copyright terms: Public domain | W3C validator |