![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > qdenval | GIF version |
Description: Value of the canonical denominator function. (Contributed by Stefan O'Rear, 13-Sep-2014.) |
Ref | Expression |
---|---|
qdenval | ⊢ (𝐴 ∈ ℚ → (denom‘𝐴) = (2nd ‘(℩𝑥 ∈ (ℤ × ℕ)(((1st ‘𝑥) gcd (2nd ‘𝑥)) = 1 ∧ 𝐴 = ((1st ‘𝑥) / (2nd ‘𝑥)))))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqeq1 2089 | . . . . 5 ⊢ (𝑎 = 𝐴 → (𝑎 = ((1st ‘𝑥) / (2nd ‘𝑥)) ↔ 𝐴 = ((1st ‘𝑥) / (2nd ‘𝑥)))) | |
2 | 1 | anbi2d 452 | . . . 4 ⊢ (𝑎 = 𝐴 → ((((1st ‘𝑥) gcd (2nd ‘𝑥)) = 1 ∧ 𝑎 = ((1st ‘𝑥) / (2nd ‘𝑥))) ↔ (((1st ‘𝑥) gcd (2nd ‘𝑥)) = 1 ∧ 𝐴 = ((1st ‘𝑥) / (2nd ‘𝑥))))) |
3 | 2 | riotabidv 5549 | . . 3 ⊢ (𝑎 = 𝐴 → (℩𝑥 ∈ (ℤ × ℕ)(((1st ‘𝑥) gcd (2nd ‘𝑥)) = 1 ∧ 𝑎 = ((1st ‘𝑥) / (2nd ‘𝑥)))) = (℩𝑥 ∈ (ℤ × ℕ)(((1st ‘𝑥) gcd (2nd ‘𝑥)) = 1 ∧ 𝐴 = ((1st ‘𝑥) / (2nd ‘𝑥))))) |
4 | 3 | fveq2d 5257 | . 2 ⊢ (𝑎 = 𝐴 → (2nd ‘(℩𝑥 ∈ (ℤ × ℕ)(((1st ‘𝑥) gcd (2nd ‘𝑥)) = 1 ∧ 𝑎 = ((1st ‘𝑥) / (2nd ‘𝑥))))) = (2nd ‘(℩𝑥 ∈ (ℤ × ℕ)(((1st ‘𝑥) gcd (2nd ‘𝑥)) = 1 ∧ 𝐴 = ((1st ‘𝑥) / (2nd ‘𝑥)))))) |
5 | df-denom 10942 | . 2 ⊢ denom = (𝑎 ∈ ℚ ↦ (2nd ‘(℩𝑥 ∈ (ℤ × ℕ)(((1st ‘𝑥) gcd (2nd ‘𝑥)) = 1 ∧ 𝑎 = ((1st ‘𝑥) / (2nd ‘𝑥)))))) | |
6 | zex 8655 | . . . 4 ⊢ ℤ ∈ V | |
7 | nnex 8322 | . . . 4 ⊢ ℕ ∈ V | |
8 | 6, 7 | xpex 4511 | . . 3 ⊢ (ℤ × ℕ) ∈ V |
9 | riotaexg 5551 | . . 3 ⊢ ((ℤ × ℕ) ∈ V → (℩𝑥 ∈ (ℤ × ℕ)(((1st ‘𝑥) gcd (2nd ‘𝑥)) = 1 ∧ 𝐴 = ((1st ‘𝑥) / (2nd ‘𝑥)))) ∈ V) | |
10 | 2ndexg 5874 | . . 3 ⊢ ((℩𝑥 ∈ (ℤ × ℕ)(((1st ‘𝑥) gcd (2nd ‘𝑥)) = 1 ∧ 𝐴 = ((1st ‘𝑥) / (2nd ‘𝑥)))) ∈ V → (2nd ‘(℩𝑥 ∈ (ℤ × ℕ)(((1st ‘𝑥) gcd (2nd ‘𝑥)) = 1 ∧ 𝐴 = ((1st ‘𝑥) / (2nd ‘𝑥))))) ∈ V) | |
11 | 8, 9, 10 | mp2b 8 | . 2 ⊢ (2nd ‘(℩𝑥 ∈ (ℤ × ℕ)(((1st ‘𝑥) gcd (2nd ‘𝑥)) = 1 ∧ 𝐴 = ((1st ‘𝑥) / (2nd ‘𝑥))))) ∈ V |
12 | 4, 5, 11 | fvmpt 5326 | 1 ⊢ (𝐴 ∈ ℚ → (denom‘𝐴) = (2nd ‘(℩𝑥 ∈ (ℤ × ℕ)(((1st ‘𝑥) gcd (2nd ‘𝑥)) = 1 ∧ 𝐴 = ((1st ‘𝑥) / (2nd ‘𝑥)))))) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 102 = wceq 1285 ∈ wcel 1434 Vcvv 2612 × cxp 4399 ‘cfv 4969 ℩crio 5546 (class class class)co 5591 1st c1st 5844 2nd c2nd 5845 1c1 7254 / cdiv 8037 ℕcn 8316 ℤcz 8646 ℚcq 8999 gcd cgcd 10718 denomcdenom 10940 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-io 663 ax-5 1377 ax-7 1378 ax-gen 1379 ax-ie1 1423 ax-ie2 1424 ax-8 1436 ax-10 1437 ax-11 1438 ax-i12 1439 ax-bndl 1440 ax-4 1441 ax-13 1445 ax-14 1446 ax-17 1460 ax-i9 1464 ax-ial 1468 ax-i5r 1469 ax-ext 2065 ax-sep 3922 ax-pow 3974 ax-pr 4000 ax-un 4224 ax-cnex 7339 ax-resscn 7340 ax-1re 7342 ax-addrcl 7345 |
This theorem depends on definitions: df-bi 115 df-3or 921 df-3an 922 df-tru 1288 df-nf 1391 df-sb 1688 df-eu 1946 df-mo 1947 df-clab 2070 df-cleq 2076 df-clel 2079 df-nfc 2212 df-ral 2358 df-rex 2359 df-rab 2362 df-v 2614 df-sbc 2827 df-un 2988 df-in 2990 df-ss 2997 df-pw 3408 df-sn 3428 df-pr 3429 df-op 3431 df-uni 3628 df-int 3663 df-br 3812 df-opab 3866 df-mpt 3867 df-id 4084 df-xp 4407 df-rel 4408 df-cnv 4409 df-co 4410 df-dm 4411 df-rn 4412 df-iota 4934 df-fun 4971 df-fn 4972 df-f 4973 df-fo 4975 df-fv 4977 df-riota 5547 df-ov 5594 df-2nd 5847 df-neg 7559 df-inn 8317 df-z 8647 df-denom 10942 |
This theorem is referenced by: qnumdencl 10945 fden 10949 qnumdenbi 10950 |
Copyright terms: Public domain | W3C validator |