Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > qdenval | GIF version |
Description: Value of the canonical denominator function. (Contributed by Stefan O'Rear, 13-Sep-2014.) |
Ref | Expression |
---|---|
qdenval | ⊢ (𝐴 ∈ ℚ → (denom‘𝐴) = (2nd ‘(℩𝑥 ∈ (ℤ × ℕ)(((1st ‘𝑥) gcd (2nd ‘𝑥)) = 1 ∧ 𝐴 = ((1st ‘𝑥) / (2nd ‘𝑥)))))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqeq1 2172 | . . . . 5 ⊢ (𝑎 = 𝐴 → (𝑎 = ((1st ‘𝑥) / (2nd ‘𝑥)) ↔ 𝐴 = ((1st ‘𝑥) / (2nd ‘𝑥)))) | |
2 | 1 | anbi2d 460 | . . . 4 ⊢ (𝑎 = 𝐴 → ((((1st ‘𝑥) gcd (2nd ‘𝑥)) = 1 ∧ 𝑎 = ((1st ‘𝑥) / (2nd ‘𝑥))) ↔ (((1st ‘𝑥) gcd (2nd ‘𝑥)) = 1 ∧ 𝐴 = ((1st ‘𝑥) / (2nd ‘𝑥))))) |
3 | 2 | riotabidv 5800 | . . 3 ⊢ (𝑎 = 𝐴 → (℩𝑥 ∈ (ℤ × ℕ)(((1st ‘𝑥) gcd (2nd ‘𝑥)) = 1 ∧ 𝑎 = ((1st ‘𝑥) / (2nd ‘𝑥)))) = (℩𝑥 ∈ (ℤ × ℕ)(((1st ‘𝑥) gcd (2nd ‘𝑥)) = 1 ∧ 𝐴 = ((1st ‘𝑥) / (2nd ‘𝑥))))) |
4 | 3 | fveq2d 5490 | . 2 ⊢ (𝑎 = 𝐴 → (2nd ‘(℩𝑥 ∈ (ℤ × ℕ)(((1st ‘𝑥) gcd (2nd ‘𝑥)) = 1 ∧ 𝑎 = ((1st ‘𝑥) / (2nd ‘𝑥))))) = (2nd ‘(℩𝑥 ∈ (ℤ × ℕ)(((1st ‘𝑥) gcd (2nd ‘𝑥)) = 1 ∧ 𝐴 = ((1st ‘𝑥) / (2nd ‘𝑥)))))) |
5 | df-denom 12116 | . 2 ⊢ denom = (𝑎 ∈ ℚ ↦ (2nd ‘(℩𝑥 ∈ (ℤ × ℕ)(((1st ‘𝑥) gcd (2nd ‘𝑥)) = 1 ∧ 𝑎 = ((1st ‘𝑥) / (2nd ‘𝑥)))))) | |
6 | zex 9200 | . . . 4 ⊢ ℤ ∈ V | |
7 | nnex 8863 | . . . 4 ⊢ ℕ ∈ V | |
8 | 6, 7 | xpex 4719 | . . 3 ⊢ (ℤ × ℕ) ∈ V |
9 | riotaexg 5802 | . . 3 ⊢ ((ℤ × ℕ) ∈ V → (℩𝑥 ∈ (ℤ × ℕ)(((1st ‘𝑥) gcd (2nd ‘𝑥)) = 1 ∧ 𝐴 = ((1st ‘𝑥) / (2nd ‘𝑥)))) ∈ V) | |
10 | 2ndexg 6136 | . . 3 ⊢ ((℩𝑥 ∈ (ℤ × ℕ)(((1st ‘𝑥) gcd (2nd ‘𝑥)) = 1 ∧ 𝐴 = ((1st ‘𝑥) / (2nd ‘𝑥)))) ∈ V → (2nd ‘(℩𝑥 ∈ (ℤ × ℕ)(((1st ‘𝑥) gcd (2nd ‘𝑥)) = 1 ∧ 𝐴 = ((1st ‘𝑥) / (2nd ‘𝑥))))) ∈ V) | |
11 | 8, 9, 10 | mp2b 8 | . 2 ⊢ (2nd ‘(℩𝑥 ∈ (ℤ × ℕ)(((1st ‘𝑥) gcd (2nd ‘𝑥)) = 1 ∧ 𝐴 = ((1st ‘𝑥) / (2nd ‘𝑥))))) ∈ V |
12 | 4, 5, 11 | fvmpt 5563 | 1 ⊢ (𝐴 ∈ ℚ → (denom‘𝐴) = (2nd ‘(℩𝑥 ∈ (ℤ × ℕ)(((1st ‘𝑥) gcd (2nd ‘𝑥)) = 1 ∧ 𝐴 = ((1st ‘𝑥) / (2nd ‘𝑥)))))) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 = wceq 1343 ∈ wcel 2136 Vcvv 2726 × cxp 4602 ‘cfv 5188 ℩crio 5797 (class class class)co 5842 1st c1st 6106 2nd c2nd 6107 1c1 7754 / cdiv 8568 ℕcn 8857 ℤcz 9191 ℚcq 9557 gcd cgcd 11875 denomcdenom 12114 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pow 4153 ax-pr 4187 ax-un 4411 ax-cnex 7844 ax-resscn 7845 ax-1re 7847 ax-addrcl 7850 |
This theorem depends on definitions: df-bi 116 df-3or 969 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-rex 2450 df-rab 2453 df-v 2728 df-sbc 2952 df-un 3120 df-in 3122 df-ss 3129 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-int 3825 df-br 3983 df-opab 4044 df-mpt 4045 df-id 4271 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-rn 4615 df-iota 5153 df-fun 5190 df-fn 5191 df-f 5192 df-fo 5194 df-fv 5196 df-riota 5798 df-ov 5845 df-2nd 6109 df-neg 8072 df-inn 8858 df-z 9192 df-denom 12116 |
This theorem is referenced by: qnumdencl 12119 fden 12123 qnumdenbi 12124 |
Copyright terms: Public domain | W3C validator |