![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > sqrtrval | GIF version |
Description: Value of square root function. (Contributed by Jim Kingdon, 23-Aug-2020.) |
Ref | Expression |
---|---|
sqrtrval | ⊢ (𝐴 ∈ ℝ → (√‘𝐴) = (℩𝑥 ∈ ℝ ((𝑥↑2) = 𝐴 ∧ 0 ≤ 𝑥))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqeq2 2197 | . . . 4 ⊢ (𝑦 = 𝐴 → ((𝑥↑2) = 𝑦 ↔ (𝑥↑2) = 𝐴)) | |
2 | 1 | anbi1d 465 | . . 3 ⊢ (𝑦 = 𝐴 → (((𝑥↑2) = 𝑦 ∧ 0 ≤ 𝑥) ↔ ((𝑥↑2) = 𝐴 ∧ 0 ≤ 𝑥))) |
3 | 2 | riotabidv 5846 | . 2 ⊢ (𝑦 = 𝐴 → (℩𝑥 ∈ ℝ ((𝑥↑2) = 𝑦 ∧ 0 ≤ 𝑥)) = (℩𝑥 ∈ ℝ ((𝑥↑2) = 𝐴 ∧ 0 ≤ 𝑥))) |
4 | df-rsqrt 11020 | . 2 ⊢ √ = (𝑦 ∈ ℝ ↦ (℩𝑥 ∈ ℝ ((𝑥↑2) = 𝑦 ∧ 0 ≤ 𝑥))) | |
5 | reex 7958 | . . 3 ⊢ ℝ ∈ V | |
6 | riotaexg 5848 | . . 3 ⊢ (ℝ ∈ V → (℩𝑥 ∈ ℝ ((𝑥↑2) = 𝐴 ∧ 0 ≤ 𝑥)) ∈ V) | |
7 | 5, 6 | ax-mp 5 | . 2 ⊢ (℩𝑥 ∈ ℝ ((𝑥↑2) = 𝐴 ∧ 0 ≤ 𝑥)) ∈ V |
8 | 3, 4, 7 | fvmpt 5606 | 1 ⊢ (𝐴 ∈ ℝ → (√‘𝐴) = (℩𝑥 ∈ ℝ ((𝑥↑2) = 𝐴 ∧ 0 ≤ 𝑥))) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 = wceq 1363 ∈ wcel 2158 Vcvv 2749 class class class wbr 4015 ‘cfv 5228 ℩crio 5843 (class class class)co 5888 ℝcr 7823 0cc0 7824 ≤ cle 8006 2c2 8983 ↑cexp 10532 √csqrt 11018 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1457 ax-7 1458 ax-gen 1459 ax-ie1 1503 ax-ie2 1504 ax-8 1514 ax-10 1515 ax-11 1516 ax-i12 1517 ax-bndl 1519 ax-4 1520 ax-17 1536 ax-i9 1540 ax-ial 1544 ax-i5r 1545 ax-13 2160 ax-14 2161 ax-ext 2169 ax-sep 4133 ax-pow 4186 ax-pr 4221 ax-un 4445 ax-cnex 7915 ax-resscn 7916 |
This theorem depends on definitions: df-bi 117 df-3an 981 df-tru 1366 df-nf 1471 df-sb 1773 df-eu 2039 df-mo 2040 df-clab 2174 df-cleq 2180 df-clel 2183 df-nfc 2318 df-ral 2470 df-rex 2471 df-v 2751 df-sbc 2975 df-un 3145 df-in 3147 df-ss 3154 df-pw 3589 df-sn 3610 df-pr 3611 df-op 3613 df-uni 3822 df-br 4016 df-opab 4077 df-mpt 4078 df-id 4305 df-xp 4644 df-rel 4645 df-cnv 4646 df-co 4647 df-dm 4648 df-iota 5190 df-fun 5230 df-fv 5236 df-riota 5844 df-rsqrt 11020 |
This theorem is referenced by: sqrt0 11026 resqrtcl 11051 rersqrtthlem 11052 sqrtsq 11066 |
Copyright terms: Public domain | W3C validator |