ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sqrtrval GIF version

Theorem sqrtrval 10975
Description: Value of square root function. (Contributed by Jim Kingdon, 23-Aug-2020.)
Assertion
Ref Expression
sqrtrval (𝐴 ∈ ℝ → (√‘𝐴) = (𝑥 ∈ ℝ ((𝑥↑2) = 𝐴 ∧ 0 ≤ 𝑥)))
Distinct variable group:   𝑥,𝐴

Proof of Theorem sqrtrval
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 eqeq2 2185 . . . 4 (𝑦 = 𝐴 → ((𝑥↑2) = 𝑦 ↔ (𝑥↑2) = 𝐴))
21anbi1d 465 . . 3 (𝑦 = 𝐴 → (((𝑥↑2) = 𝑦 ∧ 0 ≤ 𝑥) ↔ ((𝑥↑2) = 𝐴 ∧ 0 ≤ 𝑥)))
32riotabidv 5823 . 2 (𝑦 = 𝐴 → (𝑥 ∈ ℝ ((𝑥↑2) = 𝑦 ∧ 0 ≤ 𝑥)) = (𝑥 ∈ ℝ ((𝑥↑2) = 𝐴 ∧ 0 ≤ 𝑥)))
4 df-rsqrt 10973 . 2 √ = (𝑦 ∈ ℝ ↦ (𝑥 ∈ ℝ ((𝑥↑2) = 𝑦 ∧ 0 ≤ 𝑥)))
5 reex 7920 . . 3 ℝ ∈ V
6 riotaexg 5825 . . 3 (ℝ ∈ V → (𝑥 ∈ ℝ ((𝑥↑2) = 𝐴 ∧ 0 ≤ 𝑥)) ∈ V)
75, 6ax-mp 5 . 2 (𝑥 ∈ ℝ ((𝑥↑2) = 𝐴 ∧ 0 ≤ 𝑥)) ∈ V
83, 4, 7fvmpt 5585 1 (𝐴 ∈ ℝ → (√‘𝐴) = (𝑥 ∈ ℝ ((𝑥↑2) = 𝐴 ∧ 0 ≤ 𝑥)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1353  wcel 2146  Vcvv 2735   class class class wbr 3998  cfv 5208  crio 5820  (class class class)co 5865  cr 7785  0cc0 7786  cle 7967  2c2 8941  cexp 10487  csqrt 10971
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1445  ax-7 1446  ax-gen 1447  ax-ie1 1491  ax-ie2 1492  ax-8 1502  ax-10 1503  ax-11 1504  ax-i12 1505  ax-bndl 1507  ax-4 1508  ax-17 1524  ax-i9 1528  ax-ial 1532  ax-i5r 1533  ax-13 2148  ax-14 2149  ax-ext 2157  ax-sep 4116  ax-pow 4169  ax-pr 4203  ax-un 4427  ax-cnex 7877  ax-resscn 7878
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1459  df-sb 1761  df-eu 2027  df-mo 2028  df-clab 2162  df-cleq 2168  df-clel 2171  df-nfc 2306  df-ral 2458  df-rex 2459  df-v 2737  df-sbc 2961  df-un 3131  df-in 3133  df-ss 3140  df-pw 3574  df-sn 3595  df-pr 3596  df-op 3598  df-uni 3806  df-br 3999  df-opab 4060  df-mpt 4061  df-id 4287  df-xp 4626  df-rel 4627  df-cnv 4628  df-co 4629  df-dm 4630  df-iota 5170  df-fun 5210  df-fv 5216  df-riota 5821  df-rsqrt 10973
This theorem is referenced by:  sqrt0  10979  resqrtcl  11004  rersqrtthlem  11005  sqrtsq  11019
  Copyright terms: Public domain W3C validator