Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > sqrtrval | GIF version |
Description: Value of square root function. (Contributed by Jim Kingdon, 23-Aug-2020.) |
Ref | Expression |
---|---|
sqrtrval | ⊢ (𝐴 ∈ ℝ → (√‘𝐴) = (℩𝑥 ∈ ℝ ((𝑥↑2) = 𝐴 ∧ 0 ≤ 𝑥))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqeq2 2180 | . . . 4 ⊢ (𝑦 = 𝐴 → ((𝑥↑2) = 𝑦 ↔ (𝑥↑2) = 𝐴)) | |
2 | 1 | anbi1d 462 | . . 3 ⊢ (𝑦 = 𝐴 → (((𝑥↑2) = 𝑦 ∧ 0 ≤ 𝑥) ↔ ((𝑥↑2) = 𝐴 ∧ 0 ≤ 𝑥))) |
3 | 2 | riotabidv 5811 | . 2 ⊢ (𝑦 = 𝐴 → (℩𝑥 ∈ ℝ ((𝑥↑2) = 𝑦 ∧ 0 ≤ 𝑥)) = (℩𝑥 ∈ ℝ ((𝑥↑2) = 𝐴 ∧ 0 ≤ 𝑥))) |
4 | df-rsqrt 10962 | . 2 ⊢ √ = (𝑦 ∈ ℝ ↦ (℩𝑥 ∈ ℝ ((𝑥↑2) = 𝑦 ∧ 0 ≤ 𝑥))) | |
5 | reex 7908 | . . 3 ⊢ ℝ ∈ V | |
6 | riotaexg 5813 | . . 3 ⊢ (ℝ ∈ V → (℩𝑥 ∈ ℝ ((𝑥↑2) = 𝐴 ∧ 0 ≤ 𝑥)) ∈ V) | |
7 | 5, 6 | ax-mp 5 | . 2 ⊢ (℩𝑥 ∈ ℝ ((𝑥↑2) = 𝐴 ∧ 0 ≤ 𝑥)) ∈ V |
8 | 3, 4, 7 | fvmpt 5573 | 1 ⊢ (𝐴 ∈ ℝ → (√‘𝐴) = (℩𝑥 ∈ ℝ ((𝑥↑2) = 𝐴 ∧ 0 ≤ 𝑥))) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 = wceq 1348 ∈ wcel 2141 Vcvv 2730 class class class wbr 3989 ‘cfv 5198 ℩crio 5808 (class class class)co 5853 ℝcr 7773 0cc0 7774 ≤ cle 7955 2c2 8929 ↑cexp 10475 √csqrt 10960 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-pow 4160 ax-pr 4194 ax-un 4418 ax-cnex 7865 ax-resscn 7866 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ral 2453 df-rex 2454 df-v 2732 df-sbc 2956 df-un 3125 df-in 3127 df-ss 3134 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-br 3990 df-opab 4051 df-mpt 4052 df-id 4278 df-xp 4617 df-rel 4618 df-cnv 4619 df-co 4620 df-dm 4621 df-iota 5160 df-fun 5200 df-fv 5206 df-riota 5809 df-rsqrt 10962 |
This theorem is referenced by: sqrt0 10968 resqrtcl 10993 rersqrtthlem 10994 sqrtsq 11008 |
Copyright terms: Public domain | W3C validator |