![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > sqrtrval | GIF version |
Description: Value of square root function. (Contributed by Jim Kingdon, 23-Aug-2020.) |
Ref | Expression |
---|---|
sqrtrval | ⊢ (𝐴 ∈ ℝ → (√‘𝐴) = (℩𝑥 ∈ ℝ ((𝑥↑2) = 𝐴 ∧ 0 ≤ 𝑥))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqeq2 2203 | . . . 4 ⊢ (𝑦 = 𝐴 → ((𝑥↑2) = 𝑦 ↔ (𝑥↑2) = 𝐴)) | |
2 | 1 | anbi1d 465 | . . 3 ⊢ (𝑦 = 𝐴 → (((𝑥↑2) = 𝑦 ∧ 0 ≤ 𝑥) ↔ ((𝑥↑2) = 𝐴 ∧ 0 ≤ 𝑥))) |
3 | 2 | riotabidv 5876 | . 2 ⊢ (𝑦 = 𝐴 → (℩𝑥 ∈ ℝ ((𝑥↑2) = 𝑦 ∧ 0 ≤ 𝑥)) = (℩𝑥 ∈ ℝ ((𝑥↑2) = 𝐴 ∧ 0 ≤ 𝑥))) |
4 | df-rsqrt 11145 | . 2 ⊢ √ = (𝑦 ∈ ℝ ↦ (℩𝑥 ∈ ℝ ((𝑥↑2) = 𝑦 ∧ 0 ≤ 𝑥))) | |
5 | reex 8008 | . . 3 ⊢ ℝ ∈ V | |
6 | riotaexg 5878 | . . 3 ⊢ (ℝ ∈ V → (℩𝑥 ∈ ℝ ((𝑥↑2) = 𝐴 ∧ 0 ≤ 𝑥)) ∈ V) | |
7 | 5, 6 | ax-mp 5 | . 2 ⊢ (℩𝑥 ∈ ℝ ((𝑥↑2) = 𝐴 ∧ 0 ≤ 𝑥)) ∈ V |
8 | 3, 4, 7 | fvmpt 5635 | 1 ⊢ (𝐴 ∈ ℝ → (√‘𝐴) = (℩𝑥 ∈ ℝ ((𝑥↑2) = 𝐴 ∧ 0 ≤ 𝑥))) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 = wceq 1364 ∈ wcel 2164 Vcvv 2760 class class class wbr 4030 ‘cfv 5255 ℩crio 5873 (class class class)co 5919 ℝcr 7873 0cc0 7874 ≤ cle 8057 2c2 9035 ↑cexp 10612 √csqrt 11143 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-sep 4148 ax-pow 4204 ax-pr 4239 ax-un 4465 ax-cnex 7965 ax-resscn 7966 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ral 2477 df-rex 2478 df-v 2762 df-sbc 2987 df-un 3158 df-in 3160 df-ss 3167 df-pw 3604 df-sn 3625 df-pr 3626 df-op 3628 df-uni 3837 df-br 4031 df-opab 4092 df-mpt 4093 df-id 4325 df-xp 4666 df-rel 4667 df-cnv 4668 df-co 4669 df-dm 4670 df-iota 5216 df-fun 5257 df-fv 5263 df-riota 5874 df-rsqrt 11145 |
This theorem is referenced by: sqrt0 11151 resqrtcl 11176 rersqrtthlem 11177 sqrtsq 11191 |
Copyright terms: Public domain | W3C validator |