ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sqrtrval GIF version

Theorem sqrtrval 11022
Description: Value of square root function. (Contributed by Jim Kingdon, 23-Aug-2020.)
Assertion
Ref Expression
sqrtrval (𝐴 ∈ ℝ → (√‘𝐴) = (𝑥 ∈ ℝ ((𝑥↑2) = 𝐴 ∧ 0 ≤ 𝑥)))
Distinct variable group:   𝑥,𝐴

Proof of Theorem sqrtrval
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 eqeq2 2197 . . . 4 (𝑦 = 𝐴 → ((𝑥↑2) = 𝑦 ↔ (𝑥↑2) = 𝐴))
21anbi1d 465 . . 3 (𝑦 = 𝐴 → (((𝑥↑2) = 𝑦 ∧ 0 ≤ 𝑥) ↔ ((𝑥↑2) = 𝐴 ∧ 0 ≤ 𝑥)))
32riotabidv 5846 . 2 (𝑦 = 𝐴 → (𝑥 ∈ ℝ ((𝑥↑2) = 𝑦 ∧ 0 ≤ 𝑥)) = (𝑥 ∈ ℝ ((𝑥↑2) = 𝐴 ∧ 0 ≤ 𝑥)))
4 df-rsqrt 11020 . 2 √ = (𝑦 ∈ ℝ ↦ (𝑥 ∈ ℝ ((𝑥↑2) = 𝑦 ∧ 0 ≤ 𝑥)))
5 reex 7958 . . 3 ℝ ∈ V
6 riotaexg 5848 . . 3 (ℝ ∈ V → (𝑥 ∈ ℝ ((𝑥↑2) = 𝐴 ∧ 0 ≤ 𝑥)) ∈ V)
75, 6ax-mp 5 . 2 (𝑥 ∈ ℝ ((𝑥↑2) = 𝐴 ∧ 0 ≤ 𝑥)) ∈ V
83, 4, 7fvmpt 5606 1 (𝐴 ∈ ℝ → (√‘𝐴) = (𝑥 ∈ ℝ ((𝑥↑2) = 𝐴 ∧ 0 ≤ 𝑥)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1363  wcel 2158  Vcvv 2749   class class class wbr 4015  cfv 5228  crio 5843  (class class class)co 5888  cr 7823  0cc0 7824  cle 8006  2c2 8983  cexp 10532  csqrt 11018
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1457  ax-7 1458  ax-gen 1459  ax-ie1 1503  ax-ie2 1504  ax-8 1514  ax-10 1515  ax-11 1516  ax-i12 1517  ax-bndl 1519  ax-4 1520  ax-17 1536  ax-i9 1540  ax-ial 1544  ax-i5r 1545  ax-13 2160  ax-14 2161  ax-ext 2169  ax-sep 4133  ax-pow 4186  ax-pr 4221  ax-un 4445  ax-cnex 7915  ax-resscn 7916
This theorem depends on definitions:  df-bi 117  df-3an 981  df-tru 1366  df-nf 1471  df-sb 1773  df-eu 2039  df-mo 2040  df-clab 2174  df-cleq 2180  df-clel 2183  df-nfc 2318  df-ral 2470  df-rex 2471  df-v 2751  df-sbc 2975  df-un 3145  df-in 3147  df-ss 3154  df-pw 3589  df-sn 3610  df-pr 3611  df-op 3613  df-uni 3822  df-br 4016  df-opab 4077  df-mpt 4078  df-id 4305  df-xp 4644  df-rel 4645  df-cnv 4646  df-co 4647  df-dm 4648  df-iota 5190  df-fun 5230  df-fv 5236  df-riota 5844  df-rsqrt 11020
This theorem is referenced by:  sqrt0  11026  resqrtcl  11051  rersqrtthlem  11052  sqrtsq  11066
  Copyright terms: Public domain W3C validator