ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rnco2 GIF version

Theorem rnco2 5116
Description: The range of the composition of two classes. (Contributed by NM, 27-Mar-2008.)
Assertion
Ref Expression
rnco2 ran (𝐴𝐵) = (𝐴 “ ran 𝐵)

Proof of Theorem rnco2
StepHypRef Expression
1 rnco 5115 . 2 ran (𝐴𝐵) = ran (𝐴 ↾ ran 𝐵)
2 df-ima 4622 . 2 (𝐴 “ ran 𝐵) = ran (𝐴 ↾ ran 𝐵)
31, 2eqtr4i 2194 1 ran (𝐴𝐵) = (𝐴 “ ran 𝐵)
Colors of variables: wff set class
Syntax hints:   = wceq 1348  ran crn 4610  cres 4611  cima 4612  ccom 4613
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-14 2144  ax-ext 2152  ax-sep 4105  ax-pow 4158  ax-pr 4192
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ral 2453  df-rex 2454  df-v 2732  df-un 3125  df-in 3127  df-ss 3134  df-pw 3566  df-sn 3587  df-pr 3588  df-op 3590  df-br 3988  df-opab 4049  df-xp 4615  df-cnv 4617  df-co 4618  df-dm 4619  df-rn 4620  df-res 4621  df-ima 4622
This theorem is referenced by:  dmco  5117
  Copyright terms: Public domain W3C validator