![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > rnco | GIF version |
Description: The range of the composition of two classes. (Contributed by NM, 12-Dec-2006.) |
Ref | Expression |
---|---|
rnco | ⊢ ran (𝐴 ∘ 𝐵) = ran (𝐴 ↾ ran 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vex 2742 | . . . . . 6 ⊢ 𝑥 ∈ V | |
2 | vex 2742 | . . . . . 6 ⊢ 𝑦 ∈ V | |
3 | 1, 2 | brco 4800 | . . . . 5 ⊢ (𝑥(𝐴 ∘ 𝐵)𝑦 ↔ ∃𝑧(𝑥𝐵𝑧 ∧ 𝑧𝐴𝑦)) |
4 | 3 | exbii 1605 | . . . 4 ⊢ (∃𝑥 𝑥(𝐴 ∘ 𝐵)𝑦 ↔ ∃𝑥∃𝑧(𝑥𝐵𝑧 ∧ 𝑧𝐴𝑦)) |
5 | excom 1664 | . . . 4 ⊢ (∃𝑥∃𝑧(𝑥𝐵𝑧 ∧ 𝑧𝐴𝑦) ↔ ∃𝑧∃𝑥(𝑥𝐵𝑧 ∧ 𝑧𝐴𝑦)) | |
6 | ancom 266 | . . . . . . 7 ⊢ ((∃𝑥 𝑥𝐵𝑧 ∧ 𝑧𝐴𝑦) ↔ (𝑧𝐴𝑦 ∧ ∃𝑥 𝑥𝐵𝑧)) | |
7 | 19.41v 1902 | . . . . . . 7 ⊢ (∃𝑥(𝑥𝐵𝑧 ∧ 𝑧𝐴𝑦) ↔ (∃𝑥 𝑥𝐵𝑧 ∧ 𝑧𝐴𝑦)) | |
8 | vex 2742 | . . . . . . . . 9 ⊢ 𝑧 ∈ V | |
9 | 8 | elrn 4872 | . . . . . . . 8 ⊢ (𝑧 ∈ ran 𝐵 ↔ ∃𝑥 𝑥𝐵𝑧) |
10 | 9 | anbi2i 457 | . . . . . . 7 ⊢ ((𝑧𝐴𝑦 ∧ 𝑧 ∈ ran 𝐵) ↔ (𝑧𝐴𝑦 ∧ ∃𝑥 𝑥𝐵𝑧)) |
11 | 6, 7, 10 | 3bitr4i 212 | . . . . . 6 ⊢ (∃𝑥(𝑥𝐵𝑧 ∧ 𝑧𝐴𝑦) ↔ (𝑧𝐴𝑦 ∧ 𝑧 ∈ ran 𝐵)) |
12 | 2 | brres 4915 | . . . . . 6 ⊢ (𝑧(𝐴 ↾ ran 𝐵)𝑦 ↔ (𝑧𝐴𝑦 ∧ 𝑧 ∈ ran 𝐵)) |
13 | 11, 12 | bitr4i 187 | . . . . 5 ⊢ (∃𝑥(𝑥𝐵𝑧 ∧ 𝑧𝐴𝑦) ↔ 𝑧(𝐴 ↾ ran 𝐵)𝑦) |
14 | 13 | exbii 1605 | . . . 4 ⊢ (∃𝑧∃𝑥(𝑥𝐵𝑧 ∧ 𝑧𝐴𝑦) ↔ ∃𝑧 𝑧(𝐴 ↾ ran 𝐵)𝑦) |
15 | 4, 5, 14 | 3bitri 206 | . . 3 ⊢ (∃𝑥 𝑥(𝐴 ∘ 𝐵)𝑦 ↔ ∃𝑧 𝑧(𝐴 ↾ ran 𝐵)𝑦) |
16 | 2 | elrn 4872 | . . 3 ⊢ (𝑦 ∈ ran (𝐴 ∘ 𝐵) ↔ ∃𝑥 𝑥(𝐴 ∘ 𝐵)𝑦) |
17 | 2 | elrn 4872 | . . 3 ⊢ (𝑦 ∈ ran (𝐴 ↾ ran 𝐵) ↔ ∃𝑧 𝑧(𝐴 ↾ ran 𝐵)𝑦) |
18 | 15, 16, 17 | 3bitr4i 212 | . 2 ⊢ (𝑦 ∈ ran (𝐴 ∘ 𝐵) ↔ 𝑦 ∈ ran (𝐴 ↾ ran 𝐵)) |
19 | 18 | eqriv 2174 | 1 ⊢ ran (𝐴 ∘ 𝐵) = ran (𝐴 ↾ ran 𝐵) |
Colors of variables: wff set class |
Syntax hints: ∧ wa 104 = wceq 1353 ∃wex 1492 ∈ wcel 2148 class class class wbr 4005 ran crn 4629 ↾ cres 4630 ∘ ccom 4632 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-14 2151 ax-ext 2159 ax-sep 4123 ax-pow 4176 ax-pr 4211 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-nf 1461 df-sb 1763 df-eu 2029 df-mo 2030 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ral 2460 df-rex 2461 df-v 2741 df-un 3135 df-in 3137 df-ss 3144 df-pw 3579 df-sn 3600 df-pr 3601 df-op 3603 df-br 4006 df-opab 4067 df-xp 4634 df-cnv 4636 df-co 4637 df-dm 4638 df-rn 4639 df-res 4640 |
This theorem is referenced by: rnco2 5138 cofunexg 6112 1stcof 6166 2ndcof 6167 djudom 7094 |
Copyright terms: Public domain | W3C validator |