ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rnco GIF version

Theorem rnco 5176
Description: The range of the composition of two classes. (Contributed by NM, 12-Dec-2006.)
Assertion
Ref Expression
rnco ran (𝐴𝐵) = ran (𝐴 ↾ ran 𝐵)

Proof of Theorem rnco
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 vex 2766 . . . . . 6 𝑥 ∈ V
2 vex 2766 . . . . . 6 𝑦 ∈ V
31, 2brco 4837 . . . . 5 (𝑥(𝐴𝐵)𝑦 ↔ ∃𝑧(𝑥𝐵𝑧𝑧𝐴𝑦))
43exbii 1619 . . . 4 (∃𝑥 𝑥(𝐴𝐵)𝑦 ↔ ∃𝑥𝑧(𝑥𝐵𝑧𝑧𝐴𝑦))
5 excom 1678 . . . 4 (∃𝑥𝑧(𝑥𝐵𝑧𝑧𝐴𝑦) ↔ ∃𝑧𝑥(𝑥𝐵𝑧𝑧𝐴𝑦))
6 ancom 266 . . . . . . 7 ((∃𝑥 𝑥𝐵𝑧𝑧𝐴𝑦) ↔ (𝑧𝐴𝑦 ∧ ∃𝑥 𝑥𝐵𝑧))
7 19.41v 1917 . . . . . . 7 (∃𝑥(𝑥𝐵𝑧𝑧𝐴𝑦) ↔ (∃𝑥 𝑥𝐵𝑧𝑧𝐴𝑦))
8 vex 2766 . . . . . . . . 9 𝑧 ∈ V
98elrn 4909 . . . . . . . 8 (𝑧 ∈ ran 𝐵 ↔ ∃𝑥 𝑥𝐵𝑧)
109anbi2i 457 . . . . . . 7 ((𝑧𝐴𝑦𝑧 ∈ ran 𝐵) ↔ (𝑧𝐴𝑦 ∧ ∃𝑥 𝑥𝐵𝑧))
116, 7, 103bitr4i 212 . . . . . 6 (∃𝑥(𝑥𝐵𝑧𝑧𝐴𝑦) ↔ (𝑧𝐴𝑦𝑧 ∈ ran 𝐵))
122brres 4952 . . . . . 6 (𝑧(𝐴 ↾ ran 𝐵)𝑦 ↔ (𝑧𝐴𝑦𝑧 ∈ ran 𝐵))
1311, 12bitr4i 187 . . . . 5 (∃𝑥(𝑥𝐵𝑧𝑧𝐴𝑦) ↔ 𝑧(𝐴 ↾ ran 𝐵)𝑦)
1413exbii 1619 . . . 4 (∃𝑧𝑥(𝑥𝐵𝑧𝑧𝐴𝑦) ↔ ∃𝑧 𝑧(𝐴 ↾ ran 𝐵)𝑦)
154, 5, 143bitri 206 . . 3 (∃𝑥 𝑥(𝐴𝐵)𝑦 ↔ ∃𝑧 𝑧(𝐴 ↾ ran 𝐵)𝑦)
162elrn 4909 . . 3 (𝑦 ∈ ran (𝐴𝐵) ↔ ∃𝑥 𝑥(𝐴𝐵)𝑦)
172elrn 4909 . . 3 (𝑦 ∈ ran (𝐴 ↾ ran 𝐵) ↔ ∃𝑧 𝑧(𝐴 ↾ ran 𝐵)𝑦)
1815, 16, 173bitr4i 212 . 2 (𝑦 ∈ ran (𝐴𝐵) ↔ 𝑦 ∈ ran (𝐴 ↾ ran 𝐵))
1918eqriv 2193 1 ran (𝐴𝐵) = ran (𝐴 ↾ ran 𝐵)
Colors of variables: wff set class
Syntax hints:  wa 104   = wceq 1364  wex 1506  wcel 2167   class class class wbr 4033  ran crn 4664  cres 4665  ccom 4667
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-pow 4207  ax-pr 4242
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-v 2765  df-un 3161  df-in 3163  df-ss 3170  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-br 4034  df-opab 4095  df-xp 4669  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675
This theorem is referenced by:  rnco2  5177  cofunexg  6166  1stcof  6221  2ndcof  6222  djudom  7159
  Copyright terms: Public domain W3C validator