Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > rnco | GIF version |
Description: The range of the composition of two classes. (Contributed by NM, 12-Dec-2006.) |
Ref | Expression |
---|---|
rnco | ⊢ ran (𝐴 ∘ 𝐵) = ran (𝐴 ↾ ran 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vex 2733 | . . . . . 6 ⊢ 𝑥 ∈ V | |
2 | vex 2733 | . . . . . 6 ⊢ 𝑦 ∈ V | |
3 | 1, 2 | brco 4780 | . . . . 5 ⊢ (𝑥(𝐴 ∘ 𝐵)𝑦 ↔ ∃𝑧(𝑥𝐵𝑧 ∧ 𝑧𝐴𝑦)) |
4 | 3 | exbii 1598 | . . . 4 ⊢ (∃𝑥 𝑥(𝐴 ∘ 𝐵)𝑦 ↔ ∃𝑥∃𝑧(𝑥𝐵𝑧 ∧ 𝑧𝐴𝑦)) |
5 | excom 1657 | . . . 4 ⊢ (∃𝑥∃𝑧(𝑥𝐵𝑧 ∧ 𝑧𝐴𝑦) ↔ ∃𝑧∃𝑥(𝑥𝐵𝑧 ∧ 𝑧𝐴𝑦)) | |
6 | ancom 264 | . . . . . . 7 ⊢ ((∃𝑥 𝑥𝐵𝑧 ∧ 𝑧𝐴𝑦) ↔ (𝑧𝐴𝑦 ∧ ∃𝑥 𝑥𝐵𝑧)) | |
7 | 19.41v 1895 | . . . . . . 7 ⊢ (∃𝑥(𝑥𝐵𝑧 ∧ 𝑧𝐴𝑦) ↔ (∃𝑥 𝑥𝐵𝑧 ∧ 𝑧𝐴𝑦)) | |
8 | vex 2733 | . . . . . . . . 9 ⊢ 𝑧 ∈ V | |
9 | 8 | elrn 4852 | . . . . . . . 8 ⊢ (𝑧 ∈ ran 𝐵 ↔ ∃𝑥 𝑥𝐵𝑧) |
10 | 9 | anbi2i 454 | . . . . . . 7 ⊢ ((𝑧𝐴𝑦 ∧ 𝑧 ∈ ran 𝐵) ↔ (𝑧𝐴𝑦 ∧ ∃𝑥 𝑥𝐵𝑧)) |
11 | 6, 7, 10 | 3bitr4i 211 | . . . . . 6 ⊢ (∃𝑥(𝑥𝐵𝑧 ∧ 𝑧𝐴𝑦) ↔ (𝑧𝐴𝑦 ∧ 𝑧 ∈ ran 𝐵)) |
12 | 2 | brres 4895 | . . . . . 6 ⊢ (𝑧(𝐴 ↾ ran 𝐵)𝑦 ↔ (𝑧𝐴𝑦 ∧ 𝑧 ∈ ran 𝐵)) |
13 | 11, 12 | bitr4i 186 | . . . . 5 ⊢ (∃𝑥(𝑥𝐵𝑧 ∧ 𝑧𝐴𝑦) ↔ 𝑧(𝐴 ↾ ran 𝐵)𝑦) |
14 | 13 | exbii 1598 | . . . 4 ⊢ (∃𝑧∃𝑥(𝑥𝐵𝑧 ∧ 𝑧𝐴𝑦) ↔ ∃𝑧 𝑧(𝐴 ↾ ran 𝐵)𝑦) |
15 | 4, 5, 14 | 3bitri 205 | . . 3 ⊢ (∃𝑥 𝑥(𝐴 ∘ 𝐵)𝑦 ↔ ∃𝑧 𝑧(𝐴 ↾ ran 𝐵)𝑦) |
16 | 2 | elrn 4852 | . . 3 ⊢ (𝑦 ∈ ran (𝐴 ∘ 𝐵) ↔ ∃𝑥 𝑥(𝐴 ∘ 𝐵)𝑦) |
17 | 2 | elrn 4852 | . . 3 ⊢ (𝑦 ∈ ran (𝐴 ↾ ran 𝐵) ↔ ∃𝑧 𝑧(𝐴 ↾ ran 𝐵)𝑦) |
18 | 15, 16, 17 | 3bitr4i 211 | . 2 ⊢ (𝑦 ∈ ran (𝐴 ∘ 𝐵) ↔ 𝑦 ∈ ran (𝐴 ↾ ran 𝐵)) |
19 | 18 | eqriv 2167 | 1 ⊢ ran (𝐴 ∘ 𝐵) = ran (𝐴 ↾ ran 𝐵) |
Colors of variables: wff set class |
Syntax hints: ∧ wa 103 = wceq 1348 ∃wex 1485 ∈ wcel 2141 class class class wbr 3987 ran crn 4610 ↾ cres 4611 ∘ ccom 4613 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-14 2144 ax-ext 2152 ax-sep 4105 ax-pow 4158 ax-pr 4192 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ral 2453 df-rex 2454 df-v 2732 df-un 3125 df-in 3127 df-ss 3134 df-pw 3566 df-sn 3587 df-pr 3588 df-op 3590 df-br 3988 df-opab 4049 df-xp 4615 df-cnv 4617 df-co 4618 df-dm 4619 df-rn 4620 df-res 4621 |
This theorem is referenced by: rnco2 5116 cofunexg 6085 1stcof 6139 2ndcof 6140 djudom 7066 |
Copyright terms: Public domain | W3C validator |