ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mopni GIF version

Theorem mopni 13533
Description: An open set of a metric space includes a ball around each of its points. (Contributed by NM, 3-Sep-2006.) (Revised by Mario Carneiro, 12-Nov-2013.)
Hypothesis
Ref Expression
mopni.1 𝐽 = (MetOpen‘𝐷)
Assertion
Ref Expression
mopni ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐴𝐽𝑃𝐴) → ∃𝑥 ∈ ran (ball‘𝐷)(𝑃𝑥𝑥𝐴))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐷   𝑥,𝐽   𝑥,𝑃   𝑥,𝑋

Proof of Theorem mopni
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 mopni.1 . . . . 5 𝐽 = (MetOpen‘𝐷)
21elmopn 13497 . . . 4 (𝐷 ∈ (∞Met‘𝑋) → (𝐴𝐽 ↔ (𝐴𝑋 ∧ ∀𝑦𝐴𝑥 ∈ ran (ball‘𝐷)(𝑦𝑥𝑥𝐴))))
32simplbda 384 . . 3 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐴𝐽) → ∀𝑦𝐴𝑥 ∈ ran (ball‘𝐷)(𝑦𝑥𝑥𝐴))
4 eleq1 2238 . . . . . 6 (𝑦 = 𝑃 → (𝑦𝑥𝑃𝑥))
54anbi1d 465 . . . . 5 (𝑦 = 𝑃 → ((𝑦𝑥𝑥𝐴) ↔ (𝑃𝑥𝑥𝐴)))
65rexbidv 2476 . . . 4 (𝑦 = 𝑃 → (∃𝑥 ∈ ran (ball‘𝐷)(𝑦𝑥𝑥𝐴) ↔ ∃𝑥 ∈ ran (ball‘𝐷)(𝑃𝑥𝑥𝐴)))
76rspccv 2836 . . 3 (∀𝑦𝐴𝑥 ∈ ran (ball‘𝐷)(𝑦𝑥𝑥𝐴) → (𝑃𝐴 → ∃𝑥 ∈ ran (ball‘𝐷)(𝑃𝑥𝑥𝐴)))
83, 7syl 14 . 2 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐴𝐽) → (𝑃𝐴 → ∃𝑥 ∈ ran (ball‘𝐷)(𝑃𝑥𝑥𝐴)))
983impia 1200 1 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐴𝐽𝑃𝐴) → ∃𝑥 ∈ ran (ball‘𝐷)(𝑃𝑥𝑥𝐴))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  w3a 978   = wceq 1353  wcel 2146  wral 2453  wrex 2454  wss 3127  ran crn 4621  cfv 5208  ∞Metcxmet 13031  ballcbl 13033  MetOpencmopn 13036
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1445  ax-7 1446  ax-gen 1447  ax-ie1 1491  ax-ie2 1492  ax-8 1502  ax-10 1503  ax-11 1504  ax-i12 1505  ax-bndl 1507  ax-4 1508  ax-17 1524  ax-i9 1528  ax-ial 1532  ax-i5r 1533  ax-13 2148  ax-14 2149  ax-ext 2157  ax-coll 4113  ax-sep 4116  ax-nul 4124  ax-pow 4169  ax-pr 4203  ax-un 4427  ax-setind 4530  ax-iinf 4581  ax-cnex 7877  ax-resscn 7878  ax-1cn 7879  ax-1re 7880  ax-icn 7881  ax-addcl 7882  ax-addrcl 7883  ax-mulcl 7884  ax-mulrcl 7885  ax-addcom 7886  ax-mulcom 7887  ax-addass 7888  ax-mulass 7889  ax-distr 7890  ax-i2m1 7891  ax-0lt1 7892  ax-1rid 7893  ax-0id 7894  ax-rnegex 7895  ax-precex 7896  ax-cnre 7897  ax-pre-ltirr 7898  ax-pre-ltwlin 7899  ax-pre-lttrn 7900  ax-pre-apti 7901  ax-pre-ltadd 7902  ax-pre-mulgt0 7903  ax-pre-mulext 7904  ax-arch 7905  ax-caucvg 7906
This theorem depends on definitions:  df-bi 117  df-stab 831  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1459  df-sb 1761  df-eu 2027  df-mo 2028  df-clab 2162  df-cleq 2168  df-clel 2171  df-nfc 2306  df-ne 2346  df-nel 2441  df-ral 2458  df-rex 2459  df-reu 2460  df-rmo 2461  df-rab 2462  df-v 2737  df-sbc 2961  df-csb 3056  df-dif 3129  df-un 3131  df-in 3133  df-ss 3140  df-nul 3421  df-if 3533  df-pw 3574  df-sn 3595  df-pr 3596  df-op 3598  df-uni 3806  df-int 3841  df-iun 3884  df-br 3999  df-opab 4060  df-mpt 4061  df-tr 4097  df-id 4287  df-po 4290  df-iso 4291  df-iord 4360  df-on 4362  df-ilim 4363  df-suc 4365  df-iom 4584  df-xp 4626  df-rel 4627  df-cnv 4628  df-co 4629  df-dm 4630  df-rn 4631  df-res 4632  df-ima 4633  df-iota 5170  df-fun 5210  df-fn 5211  df-f 5212  df-f1 5213  df-fo 5214  df-f1o 5215  df-fv 5216  df-isom 5217  df-riota 5821  df-ov 5868  df-oprab 5869  df-mpo 5870  df-1st 6131  df-2nd 6132  df-recs 6296  df-frec 6382  df-map 6640  df-sup 6973  df-inf 6974  df-pnf 7968  df-mnf 7969  df-xr 7970  df-ltxr 7971  df-le 7972  df-sub 8104  df-neg 8105  df-reap 8506  df-ap 8513  df-div 8602  df-inn 8891  df-2 8949  df-3 8950  df-4 8951  df-n0 9148  df-z 9225  df-uz 9500  df-q 9591  df-rp 9623  df-xneg 9741  df-xadd 9742  df-seqfrec 10414  df-exp 10488  df-cj 10817  df-re 10818  df-im 10819  df-rsqrt 10973  df-abs 10974  df-topgen 12629  df-psmet 13038  df-xmet 13039  df-bl 13041  df-mopn 13042  df-top 13047  df-bases 13092
This theorem is referenced by:  mopni2  13534
  Copyright terms: Public domain W3C validator