| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > tg2 | GIF version | ||
| Description: Property of a member of a topology generated by a basis. (Contributed by NM, 20-Jul-2006.) |
| Ref | Expression |
|---|---|
| tg2 | ⊢ ((𝐴 ∈ (topGen‘𝐵) ∧ 𝐶 ∈ 𝐴) → ∃𝑥 ∈ 𝐵 (𝐶 ∈ 𝑥 ∧ 𝑥 ⊆ 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-topgen 12962 | . . . . . 6 ⊢ topGen = (𝑥 ∈ V ↦ {𝑦 ∣ 𝑦 ⊆ ∪ (𝑥 ∩ 𝒫 𝑦)}) | |
| 2 | 1 | funmpt2 5298 | . . . . 5 ⊢ Fun topGen |
| 3 | funrel 5276 | . . . . 5 ⊢ (Fun topGen → Rel topGen) | |
| 4 | 2, 3 | ax-mp 5 | . . . 4 ⊢ Rel topGen |
| 5 | relelfvdm 5593 | . . . 4 ⊢ ((Rel topGen ∧ 𝐴 ∈ (topGen‘𝐵)) → 𝐵 ∈ dom topGen) | |
| 6 | 4, 5 | mpan 424 | . . 3 ⊢ (𝐴 ∈ (topGen‘𝐵) → 𝐵 ∈ dom topGen) |
| 7 | eltg2b 14374 | . . . 4 ⊢ (𝐵 ∈ dom topGen → (𝐴 ∈ (topGen‘𝐵) ↔ ∀𝑦 ∈ 𝐴 ∃𝑥 ∈ 𝐵 (𝑦 ∈ 𝑥 ∧ 𝑥 ⊆ 𝐴))) | |
| 8 | eleq1 2259 | . . . . . . 7 ⊢ (𝑦 = 𝐶 → (𝑦 ∈ 𝑥 ↔ 𝐶 ∈ 𝑥)) | |
| 9 | 8 | anbi1d 465 | . . . . . 6 ⊢ (𝑦 = 𝐶 → ((𝑦 ∈ 𝑥 ∧ 𝑥 ⊆ 𝐴) ↔ (𝐶 ∈ 𝑥 ∧ 𝑥 ⊆ 𝐴))) |
| 10 | 9 | rexbidv 2498 | . . . . 5 ⊢ (𝑦 = 𝐶 → (∃𝑥 ∈ 𝐵 (𝑦 ∈ 𝑥 ∧ 𝑥 ⊆ 𝐴) ↔ ∃𝑥 ∈ 𝐵 (𝐶 ∈ 𝑥 ∧ 𝑥 ⊆ 𝐴))) |
| 11 | 10 | rspccv 2865 | . . . 4 ⊢ (∀𝑦 ∈ 𝐴 ∃𝑥 ∈ 𝐵 (𝑦 ∈ 𝑥 ∧ 𝑥 ⊆ 𝐴) → (𝐶 ∈ 𝐴 → ∃𝑥 ∈ 𝐵 (𝐶 ∈ 𝑥 ∧ 𝑥 ⊆ 𝐴))) |
| 12 | 7, 11 | biimtrdi 163 | . . 3 ⊢ (𝐵 ∈ dom topGen → (𝐴 ∈ (topGen‘𝐵) → (𝐶 ∈ 𝐴 → ∃𝑥 ∈ 𝐵 (𝐶 ∈ 𝑥 ∧ 𝑥 ⊆ 𝐴)))) |
| 13 | 6, 12 | mpcom 36 | . 2 ⊢ (𝐴 ∈ (topGen‘𝐵) → (𝐶 ∈ 𝐴 → ∃𝑥 ∈ 𝐵 (𝐶 ∈ 𝑥 ∧ 𝑥 ⊆ 𝐴))) |
| 14 | 13 | imp 124 | 1 ⊢ ((𝐴 ∈ (topGen‘𝐵) ∧ 𝐶 ∈ 𝐴) → ∃𝑥 ∈ 𝐵 (𝐶 ∈ 𝑥 ∧ 𝑥 ⊆ 𝐴)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1364 ∈ wcel 2167 {cab 2182 ∀wral 2475 ∃wrex 2476 Vcvv 2763 ∩ cin 3156 ⊆ wss 3157 𝒫 cpw 3606 ∪ cuni 3840 dom cdm 4664 Rel wrel 4669 Fun wfun 5253 ‘cfv 5259 topGenctg 12956 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4152 ax-pow 4208 ax-pr 4243 ax-un 4469 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-v 2765 df-sbc 2990 df-un 3161 df-in 3163 df-ss 3170 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-br 4035 df-opab 4096 df-mpt 4097 df-id 4329 df-xp 4670 df-rel 4671 df-cnv 4672 df-co 4673 df-dm 4674 df-iota 5220 df-fun 5261 df-fv 5267 df-topgen 12962 |
| This theorem is referenced by: tgclb 14385 tgcnp 14529 txlm 14599 |
| Copyright terms: Public domain | W3C validator |