ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  tg2 GIF version

Theorem tg2 14647
Description: Property of a member of a topology generated by a basis. (Contributed by NM, 20-Jul-2006.)
Assertion
Ref Expression
tg2 ((𝐴 ∈ (topGen‘𝐵) ∧ 𝐶𝐴) → ∃𝑥𝐵 (𝐶𝑥𝑥𝐴))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝐶

Proof of Theorem tg2
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 df-topgen 13207 . . . . . 6 topGen = (𝑥 ∈ V ↦ {𝑦𝑦 (𝑥 ∩ 𝒫 𝑦)})
21funmpt2 5329 . . . . 5 Fun topGen
3 funrel 5307 . . . . 5 (Fun topGen → Rel topGen)
42, 3ax-mp 5 . . . 4 Rel topGen
5 relelfvdm 5631 . . . 4 ((Rel topGen ∧ 𝐴 ∈ (topGen‘𝐵)) → 𝐵 ∈ dom topGen)
64, 5mpan 424 . . 3 (𝐴 ∈ (topGen‘𝐵) → 𝐵 ∈ dom topGen)
7 eltg2b 14641 . . . 4 (𝐵 ∈ dom topGen → (𝐴 ∈ (topGen‘𝐵) ↔ ∀𝑦𝐴𝑥𝐵 (𝑦𝑥𝑥𝐴)))
8 eleq1 2270 . . . . . . 7 (𝑦 = 𝐶 → (𝑦𝑥𝐶𝑥))
98anbi1d 465 . . . . . 6 (𝑦 = 𝐶 → ((𝑦𝑥𝑥𝐴) ↔ (𝐶𝑥𝑥𝐴)))
109rexbidv 2509 . . . . 5 (𝑦 = 𝐶 → (∃𝑥𝐵 (𝑦𝑥𝑥𝐴) ↔ ∃𝑥𝐵 (𝐶𝑥𝑥𝐴)))
1110rspccv 2881 . . . 4 (∀𝑦𝐴𝑥𝐵 (𝑦𝑥𝑥𝐴) → (𝐶𝐴 → ∃𝑥𝐵 (𝐶𝑥𝑥𝐴)))
127, 11biimtrdi 163 . . 3 (𝐵 ∈ dom topGen → (𝐴 ∈ (topGen‘𝐵) → (𝐶𝐴 → ∃𝑥𝐵 (𝐶𝑥𝑥𝐴))))
136, 12mpcom 36 . 2 (𝐴 ∈ (topGen‘𝐵) → (𝐶𝐴 → ∃𝑥𝐵 (𝐶𝑥𝑥𝐴)))
1413imp 124 1 ((𝐴 ∈ (topGen‘𝐵) ∧ 𝐶𝐴) → ∃𝑥𝐵 (𝐶𝑥𝑥𝐴))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1373  wcel 2178  {cab 2193  wral 2486  wrex 2487  Vcvv 2776  cin 3173  wss 3174  𝒫 cpw 3626   cuni 3864  dom cdm 4693  Rel wrel 4698  Fun wfun 5284  cfv 5290  topGenctg 13201
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-sep 4178  ax-pow 4234  ax-pr 4269  ax-un 4498
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ral 2491  df-rex 2492  df-v 2778  df-sbc 3006  df-un 3178  df-in 3180  df-ss 3187  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-br 4060  df-opab 4122  df-mpt 4123  df-id 4358  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-iota 5251  df-fun 5292  df-fv 5298  df-topgen 13207
This theorem is referenced by:  tgclb  14652  tgcnp  14796  txlm  14866
  Copyright terms: Public domain W3C validator