![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > tg2 | GIF version |
Description: Property of a member of a topology generated by a basis. (Contributed by NM, 20-Jul-2006.) |
Ref | Expression |
---|---|
tg2 | ⊢ ((𝐴 ∈ (topGen‘𝐵) ∧ 𝐶 ∈ 𝐴) → ∃𝑥 ∈ 𝐵 (𝐶 ∈ 𝑥 ∧ 𝑥 ⊆ 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-topgen 11841 | . . . . . 6 ⊢ topGen = (𝑥 ∈ V ↦ {𝑦 ∣ 𝑦 ⊆ ∪ (𝑥 ∩ 𝒫 𝑦)}) | |
2 | 1 | funmpt2 5087 | . . . . 5 ⊢ Fun topGen |
3 | funrel 5066 | . . . . 5 ⊢ (Fun topGen → Rel topGen) | |
4 | 2, 3 | ax-mp 7 | . . . 4 ⊢ Rel topGen |
5 | relelfvdm 5371 | . . . 4 ⊢ ((Rel topGen ∧ 𝐴 ∈ (topGen‘𝐵)) → 𝐵 ∈ dom topGen) | |
6 | 4, 5 | mpan 416 | . . 3 ⊢ (𝐴 ∈ (topGen‘𝐵) → 𝐵 ∈ dom topGen) |
7 | eltg2b 11922 | . . . 4 ⊢ (𝐵 ∈ dom topGen → (𝐴 ∈ (topGen‘𝐵) ↔ ∀𝑦 ∈ 𝐴 ∃𝑥 ∈ 𝐵 (𝑦 ∈ 𝑥 ∧ 𝑥 ⊆ 𝐴))) | |
8 | eleq1 2157 | . . . . . . 7 ⊢ (𝑦 = 𝐶 → (𝑦 ∈ 𝑥 ↔ 𝐶 ∈ 𝑥)) | |
9 | 8 | anbi1d 454 | . . . . . 6 ⊢ (𝑦 = 𝐶 → ((𝑦 ∈ 𝑥 ∧ 𝑥 ⊆ 𝐴) ↔ (𝐶 ∈ 𝑥 ∧ 𝑥 ⊆ 𝐴))) |
10 | 9 | rexbidv 2392 | . . . . 5 ⊢ (𝑦 = 𝐶 → (∃𝑥 ∈ 𝐵 (𝑦 ∈ 𝑥 ∧ 𝑥 ⊆ 𝐴) ↔ ∃𝑥 ∈ 𝐵 (𝐶 ∈ 𝑥 ∧ 𝑥 ⊆ 𝐴))) |
11 | 10 | rspccv 2733 | . . . 4 ⊢ (∀𝑦 ∈ 𝐴 ∃𝑥 ∈ 𝐵 (𝑦 ∈ 𝑥 ∧ 𝑥 ⊆ 𝐴) → (𝐶 ∈ 𝐴 → ∃𝑥 ∈ 𝐵 (𝐶 ∈ 𝑥 ∧ 𝑥 ⊆ 𝐴))) |
12 | 7, 11 | syl6bi 162 | . . 3 ⊢ (𝐵 ∈ dom topGen → (𝐴 ∈ (topGen‘𝐵) → (𝐶 ∈ 𝐴 → ∃𝑥 ∈ 𝐵 (𝐶 ∈ 𝑥 ∧ 𝑥 ⊆ 𝐴)))) |
13 | 6, 12 | mpcom 36 | . 2 ⊢ (𝐴 ∈ (topGen‘𝐵) → (𝐶 ∈ 𝐴 → ∃𝑥 ∈ 𝐵 (𝐶 ∈ 𝑥 ∧ 𝑥 ⊆ 𝐴))) |
14 | 13 | imp 123 | 1 ⊢ ((𝐴 ∈ (topGen‘𝐵) ∧ 𝐶 ∈ 𝐴) → ∃𝑥 ∈ 𝐵 (𝐶 ∈ 𝑥 ∧ 𝑥 ⊆ 𝐴)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 = wceq 1296 ∈ wcel 1445 {cab 2081 ∀wral 2370 ∃wrex 2371 Vcvv 2633 ∩ cin 3012 ⊆ wss 3013 𝒫 cpw 3449 ∪ cuni 3675 dom cdm 4467 Rel wrel 4472 Fun wfun 5043 ‘cfv 5049 topGenctg 11835 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 668 ax-5 1388 ax-7 1389 ax-gen 1390 ax-ie1 1434 ax-ie2 1435 ax-8 1447 ax-10 1448 ax-11 1449 ax-i12 1450 ax-bndl 1451 ax-4 1452 ax-13 1456 ax-14 1457 ax-17 1471 ax-i9 1475 ax-ial 1479 ax-i5r 1480 ax-ext 2077 ax-sep 3978 ax-pow 4030 ax-pr 4060 ax-un 4284 |
This theorem depends on definitions: df-bi 116 df-3an 929 df-tru 1299 df-nf 1402 df-sb 1700 df-eu 1958 df-mo 1959 df-clab 2082 df-cleq 2088 df-clel 2091 df-nfc 2224 df-ral 2375 df-rex 2376 df-v 2635 df-sbc 2855 df-un 3017 df-in 3019 df-ss 3026 df-pw 3451 df-sn 3472 df-pr 3473 df-op 3475 df-uni 3676 df-br 3868 df-opab 3922 df-mpt 3923 df-id 4144 df-xp 4473 df-rel 4474 df-cnv 4475 df-co 4476 df-dm 4477 df-iota 5014 df-fun 5051 df-fv 5057 df-topgen 11841 |
This theorem is referenced by: tgclb 11933 tgcnp 12076 |
Copyright terms: Public domain | W3C validator |