ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  tg2 GIF version

Theorem tg2 14012
Description: Property of a member of a topology generated by a basis. (Contributed by NM, 20-Jul-2006.)
Assertion
Ref Expression
tg2 ((𝐴 ∈ (topGen‘𝐵) ∧ 𝐶𝐴) → ∃𝑥𝐵 (𝐶𝑥𝑥𝐴))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝐶

Proof of Theorem tg2
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 df-topgen 12762 . . . . . 6 topGen = (𝑥 ∈ V ↦ {𝑦𝑦 (𝑥 ∩ 𝒫 𝑦)})
21funmpt2 5274 . . . . 5 Fun topGen
3 funrel 5252 . . . . 5 (Fun topGen → Rel topGen)
42, 3ax-mp 5 . . . 4 Rel topGen
5 relelfvdm 5566 . . . 4 ((Rel topGen ∧ 𝐴 ∈ (topGen‘𝐵)) → 𝐵 ∈ dom topGen)
64, 5mpan 424 . . 3 (𝐴 ∈ (topGen‘𝐵) → 𝐵 ∈ dom topGen)
7 eltg2b 14006 . . . 4 (𝐵 ∈ dom topGen → (𝐴 ∈ (topGen‘𝐵) ↔ ∀𝑦𝐴𝑥𝐵 (𝑦𝑥𝑥𝐴)))
8 eleq1 2252 . . . . . . 7 (𝑦 = 𝐶 → (𝑦𝑥𝐶𝑥))
98anbi1d 465 . . . . . 6 (𝑦 = 𝐶 → ((𝑦𝑥𝑥𝐴) ↔ (𝐶𝑥𝑥𝐴)))
109rexbidv 2491 . . . . 5 (𝑦 = 𝐶 → (∃𝑥𝐵 (𝑦𝑥𝑥𝐴) ↔ ∃𝑥𝐵 (𝐶𝑥𝑥𝐴)))
1110rspccv 2853 . . . 4 (∀𝑦𝐴𝑥𝐵 (𝑦𝑥𝑥𝐴) → (𝐶𝐴 → ∃𝑥𝐵 (𝐶𝑥𝑥𝐴)))
127, 11biimtrdi 163 . . 3 (𝐵 ∈ dom topGen → (𝐴 ∈ (topGen‘𝐵) → (𝐶𝐴 → ∃𝑥𝐵 (𝐶𝑥𝑥𝐴))))
136, 12mpcom 36 . 2 (𝐴 ∈ (topGen‘𝐵) → (𝐶𝐴 → ∃𝑥𝐵 (𝐶𝑥𝑥𝐴)))
1413imp 124 1 ((𝐴 ∈ (topGen‘𝐵) ∧ 𝐶𝐴) → ∃𝑥𝐵 (𝐶𝑥𝑥𝐴))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1364  wcel 2160  {cab 2175  wral 2468  wrex 2469  Vcvv 2752  cin 3143  wss 3144  𝒫 cpw 3590   cuni 3824  dom cdm 4644  Rel wrel 4649  Fun wfun 5229  cfv 5235  topGenctg 12756
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2162  ax-14 2163  ax-ext 2171  ax-sep 4136  ax-pow 4192  ax-pr 4227  ax-un 4451
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2041  df-mo 2042  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ral 2473  df-rex 2474  df-v 2754  df-sbc 2978  df-un 3148  df-in 3150  df-ss 3157  df-pw 3592  df-sn 3613  df-pr 3614  df-op 3616  df-uni 3825  df-br 4019  df-opab 4080  df-mpt 4081  df-id 4311  df-xp 4650  df-rel 4651  df-cnv 4652  df-co 4653  df-dm 4654  df-iota 5196  df-fun 5237  df-fv 5243  df-topgen 12762
This theorem is referenced by:  tgclb  14017  tgcnp  14161  txlm  14231
  Copyright terms: Public domain W3C validator