Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  tg2 GIF version

Theorem tg2 12302
 Description: Property of a member of a topology generated by a basis. (Contributed by NM, 20-Jul-2006.)
Assertion
Ref Expression
tg2 ((𝐴 ∈ (topGen‘𝐵) ∧ 𝐶𝐴) → ∃𝑥𝐵 (𝐶𝑥𝑥𝐴))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝐶

Proof of Theorem tg2
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 df-topgen 12214 . . . . . 6 topGen = (𝑥 ∈ V ↦ {𝑦𝑦 (𝑥 ∩ 𝒫 𝑦)})
21funmpt2 5173 . . . . 5 Fun topGen
3 funrel 5151 . . . . 5 (Fun topGen → Rel topGen)
42, 3ax-mp 5 . . . 4 Rel topGen
5 relelfvdm 5464 . . . 4 ((Rel topGen ∧ 𝐴 ∈ (topGen‘𝐵)) → 𝐵 ∈ dom topGen)
64, 5mpan 421 . . 3 (𝐴 ∈ (topGen‘𝐵) → 𝐵 ∈ dom topGen)
7 eltg2b 12296 . . . 4 (𝐵 ∈ dom topGen → (𝐴 ∈ (topGen‘𝐵) ↔ ∀𝑦𝐴𝑥𝐵 (𝑦𝑥𝑥𝐴)))
8 eleq1 2203 . . . . . . 7 (𝑦 = 𝐶 → (𝑦𝑥𝐶𝑥))
98anbi1d 461 . . . . . 6 (𝑦 = 𝐶 → ((𝑦𝑥𝑥𝐴) ↔ (𝐶𝑥𝑥𝐴)))
109rexbidv 2440 . . . . 5 (𝑦 = 𝐶 → (∃𝑥𝐵 (𝑦𝑥𝑥𝐴) ↔ ∃𝑥𝐵 (𝐶𝑥𝑥𝐴)))
1110rspccv 2791 . . . 4 (∀𝑦𝐴𝑥𝐵 (𝑦𝑥𝑥𝐴) → (𝐶𝐴 → ∃𝑥𝐵 (𝐶𝑥𝑥𝐴)))
127, 11syl6bi 162 . . 3 (𝐵 ∈ dom topGen → (𝐴 ∈ (topGen‘𝐵) → (𝐶𝐴 → ∃𝑥𝐵 (𝐶𝑥𝑥𝐴))))
136, 12mpcom 36 . 2 (𝐴 ∈ (topGen‘𝐵) → (𝐶𝐴 → ∃𝑥𝐵 (𝐶𝑥𝑥𝐴)))
1413imp 123 1 ((𝐴 ∈ (topGen‘𝐵) ∧ 𝐶𝐴) → ∃𝑥𝐵 (𝐶𝑥𝑥𝐴))
 Colors of variables: wff set class Syntax hints:   → wi 4   ∧ wa 103   = wceq 1332   ∈ wcel 1481  {cab 2126  ∀wral 2417  ∃wrex 2418  Vcvv 2690   ∩ cin 3076   ⊆ wss 3077  𝒫 cpw 3516  ∪ cuni 3745  dom cdm 4550  Rel wrel 4555  Fun wfun 5128  ‘cfv 5134  topGenctg 12208 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-13 1492  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-sep 4055  ax-pow 4107  ax-pr 4141  ax-un 4365 This theorem depends on definitions:  df-bi 116  df-3an 965  df-tru 1335  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ral 2422  df-rex 2423  df-v 2692  df-sbc 2915  df-un 3081  df-in 3083  df-ss 3090  df-pw 3518  df-sn 3539  df-pr 3540  df-op 3542  df-uni 3746  df-br 3939  df-opab 3999  df-mpt 4000  df-id 4225  df-xp 4556  df-rel 4557  df-cnv 4558  df-co 4559  df-dm 4560  df-iota 5099  df-fun 5136  df-fv 5142  df-topgen 12214 This theorem is referenced by:  tgclb  12307  tgcnp  12451  txlm  12521
 Copyright terms: Public domain W3C validator