| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > tg2 | GIF version | ||
| Description: Property of a member of a topology generated by a basis. (Contributed by NM, 20-Jul-2006.) |
| Ref | Expression |
|---|---|
| tg2 | ⊢ ((𝐴 ∈ (topGen‘𝐵) ∧ 𝐶 ∈ 𝐴) → ∃𝑥 ∈ 𝐵 (𝐶 ∈ 𝑥 ∧ 𝑥 ⊆ 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-topgen 13207 | . . . . . 6 ⊢ topGen = (𝑥 ∈ V ↦ {𝑦 ∣ 𝑦 ⊆ ∪ (𝑥 ∩ 𝒫 𝑦)}) | |
| 2 | 1 | funmpt2 5329 | . . . . 5 ⊢ Fun topGen |
| 3 | funrel 5307 | . . . . 5 ⊢ (Fun topGen → Rel topGen) | |
| 4 | 2, 3 | ax-mp 5 | . . . 4 ⊢ Rel topGen |
| 5 | relelfvdm 5631 | . . . 4 ⊢ ((Rel topGen ∧ 𝐴 ∈ (topGen‘𝐵)) → 𝐵 ∈ dom topGen) | |
| 6 | 4, 5 | mpan 424 | . . 3 ⊢ (𝐴 ∈ (topGen‘𝐵) → 𝐵 ∈ dom topGen) |
| 7 | eltg2b 14641 | . . . 4 ⊢ (𝐵 ∈ dom topGen → (𝐴 ∈ (topGen‘𝐵) ↔ ∀𝑦 ∈ 𝐴 ∃𝑥 ∈ 𝐵 (𝑦 ∈ 𝑥 ∧ 𝑥 ⊆ 𝐴))) | |
| 8 | eleq1 2270 | . . . . . . 7 ⊢ (𝑦 = 𝐶 → (𝑦 ∈ 𝑥 ↔ 𝐶 ∈ 𝑥)) | |
| 9 | 8 | anbi1d 465 | . . . . . 6 ⊢ (𝑦 = 𝐶 → ((𝑦 ∈ 𝑥 ∧ 𝑥 ⊆ 𝐴) ↔ (𝐶 ∈ 𝑥 ∧ 𝑥 ⊆ 𝐴))) |
| 10 | 9 | rexbidv 2509 | . . . . 5 ⊢ (𝑦 = 𝐶 → (∃𝑥 ∈ 𝐵 (𝑦 ∈ 𝑥 ∧ 𝑥 ⊆ 𝐴) ↔ ∃𝑥 ∈ 𝐵 (𝐶 ∈ 𝑥 ∧ 𝑥 ⊆ 𝐴))) |
| 11 | 10 | rspccv 2881 | . . . 4 ⊢ (∀𝑦 ∈ 𝐴 ∃𝑥 ∈ 𝐵 (𝑦 ∈ 𝑥 ∧ 𝑥 ⊆ 𝐴) → (𝐶 ∈ 𝐴 → ∃𝑥 ∈ 𝐵 (𝐶 ∈ 𝑥 ∧ 𝑥 ⊆ 𝐴))) |
| 12 | 7, 11 | biimtrdi 163 | . . 3 ⊢ (𝐵 ∈ dom topGen → (𝐴 ∈ (topGen‘𝐵) → (𝐶 ∈ 𝐴 → ∃𝑥 ∈ 𝐵 (𝐶 ∈ 𝑥 ∧ 𝑥 ⊆ 𝐴)))) |
| 13 | 6, 12 | mpcom 36 | . 2 ⊢ (𝐴 ∈ (topGen‘𝐵) → (𝐶 ∈ 𝐴 → ∃𝑥 ∈ 𝐵 (𝐶 ∈ 𝑥 ∧ 𝑥 ⊆ 𝐴))) |
| 14 | 13 | imp 124 | 1 ⊢ ((𝐴 ∈ (topGen‘𝐵) ∧ 𝐶 ∈ 𝐴) → ∃𝑥 ∈ 𝐵 (𝐶 ∈ 𝑥 ∧ 𝑥 ⊆ 𝐴)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1373 ∈ wcel 2178 {cab 2193 ∀wral 2486 ∃wrex 2487 Vcvv 2776 ∩ cin 3173 ⊆ wss 3174 𝒫 cpw 3626 ∪ cuni 3864 dom cdm 4693 Rel wrel 4698 Fun wfun 5284 ‘cfv 5290 topGenctg 13201 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2180 ax-14 2181 ax-ext 2189 ax-sep 4178 ax-pow 4234 ax-pr 4269 ax-un 4498 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ral 2491 df-rex 2492 df-v 2778 df-sbc 3006 df-un 3178 df-in 3180 df-ss 3187 df-pw 3628 df-sn 3649 df-pr 3650 df-op 3652 df-uni 3865 df-br 4060 df-opab 4122 df-mpt 4123 df-id 4358 df-xp 4699 df-rel 4700 df-cnv 4701 df-co 4702 df-dm 4703 df-iota 5251 df-fun 5292 df-fv 5298 df-topgen 13207 |
| This theorem is referenced by: tgclb 14652 tgcnp 14796 txlm 14866 |
| Copyright terms: Public domain | W3C validator |