![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > tg2 | GIF version |
Description: Property of a member of a topology generated by a basis. (Contributed by NM, 20-Jul-2006.) |
Ref | Expression |
---|---|
tg2 | β’ ((π΄ β (topGenβπ΅) β§ πΆ β π΄) β βπ₯ β π΅ (πΆ β π₯ β§ π₯ β π΄)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-topgen 12714 | . . . . . 6 β’ topGen = (π₯ β V β¦ {π¦ β£ π¦ β βͺ (π₯ β© π« π¦)}) | |
2 | 1 | funmpt2 5257 | . . . . 5 β’ Fun topGen |
3 | funrel 5235 | . . . . 5 β’ (Fun topGen β Rel topGen) | |
4 | 2, 3 | ax-mp 5 | . . . 4 β’ Rel topGen |
5 | relelfvdm 5549 | . . . 4 β’ ((Rel topGen β§ π΄ β (topGenβπ΅)) β π΅ β dom topGen) | |
6 | 4, 5 | mpan 424 | . . 3 β’ (π΄ β (topGenβπ΅) β π΅ β dom topGen) |
7 | eltg2b 13639 | . . . 4 β’ (π΅ β dom topGen β (π΄ β (topGenβπ΅) β βπ¦ β π΄ βπ₯ β π΅ (π¦ β π₯ β§ π₯ β π΄))) | |
8 | eleq1 2240 | . . . . . . 7 β’ (π¦ = πΆ β (π¦ β π₯ β πΆ β π₯)) | |
9 | 8 | anbi1d 465 | . . . . . 6 β’ (π¦ = πΆ β ((π¦ β π₯ β§ π₯ β π΄) β (πΆ β π₯ β§ π₯ β π΄))) |
10 | 9 | rexbidv 2478 | . . . . 5 β’ (π¦ = πΆ β (βπ₯ β π΅ (π¦ β π₯ β§ π₯ β π΄) β βπ₯ β π΅ (πΆ β π₯ β§ π₯ β π΄))) |
11 | 10 | rspccv 2840 | . . . 4 β’ (βπ¦ β π΄ βπ₯ β π΅ (π¦ β π₯ β§ π₯ β π΄) β (πΆ β π΄ β βπ₯ β π΅ (πΆ β π₯ β§ π₯ β π΄))) |
12 | 7, 11 | biimtrdi 163 | . . 3 β’ (π΅ β dom topGen β (π΄ β (topGenβπ΅) β (πΆ β π΄ β βπ₯ β π΅ (πΆ β π₯ β§ π₯ β π΄)))) |
13 | 6, 12 | mpcom 36 | . 2 β’ (π΄ β (topGenβπ΅) β (πΆ β π΄ β βπ₯ β π΅ (πΆ β π₯ β§ π₯ β π΄))) |
14 | 13 | imp 124 | 1 β’ ((π΄ β (topGenβπ΅) β§ πΆ β π΄) β βπ₯ β π΅ (πΆ β π₯ β§ π₯ β π΄)) |
Colors of variables: wff set class |
Syntax hints: β wi 4 β§ wa 104 = wceq 1353 β wcel 2148 {cab 2163 βwral 2455 βwrex 2456 Vcvv 2739 β© cin 3130 β wss 3131 π« cpw 3577 βͺ cuni 3811 dom cdm 4628 Rel wrel 4633 Fun wfun 5212 βcfv 5218 topGenctg 12708 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-13 2150 ax-14 2151 ax-ext 2159 ax-sep 4123 ax-pow 4176 ax-pr 4211 ax-un 4435 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-nf 1461 df-sb 1763 df-eu 2029 df-mo 2030 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ral 2460 df-rex 2461 df-v 2741 df-sbc 2965 df-un 3135 df-in 3137 df-ss 3144 df-pw 3579 df-sn 3600 df-pr 3601 df-op 3603 df-uni 3812 df-br 4006 df-opab 4067 df-mpt 4068 df-id 4295 df-xp 4634 df-rel 4635 df-cnv 4636 df-co 4637 df-dm 4638 df-iota 5180 df-fun 5220 df-fv 5226 df-topgen 12714 |
This theorem is referenced by: tgclb 13650 tgcnp 13794 txlm 13864 |
Copyright terms: Public domain | W3C validator |