ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  genppreclu GIF version

Theorem genppreclu 7710
Description: Pre-closure law for general operation on upper cuts. (Contributed by Jim Kingdon, 7-Nov-2019.)
Hypotheses
Ref Expression
genpelvl.1 𝐹 = (𝑤P, 𝑣P ↦ ⟨{𝑥Q ∣ ∃𝑦Q𝑧Q (𝑦 ∈ (1st𝑤) ∧ 𝑧 ∈ (1st𝑣) ∧ 𝑥 = (𝑦𝐺𝑧))}, {𝑥Q ∣ ∃𝑦Q𝑧Q (𝑦 ∈ (2nd𝑤) ∧ 𝑧 ∈ (2nd𝑣) ∧ 𝑥 = (𝑦𝐺𝑧))}⟩)
genpelvl.2 ((𝑦Q𝑧Q) → (𝑦𝐺𝑧) ∈ Q)
Assertion
Ref Expression
genppreclu ((𝐴P𝐵P) → ((𝐶 ∈ (2nd𝐴) ∧ 𝐷 ∈ (2nd𝐵)) → (𝐶𝐺𝐷) ∈ (2nd ‘(𝐴𝐹𝐵))))
Distinct variable groups:   𝑥,𝑦,𝑧,𝑤,𝑣,𝐴   𝑥,𝐵,𝑦,𝑧,𝑤,𝑣   𝑥,𝐺,𝑦,𝑧,𝑤,𝑣
Allowed substitution hints:   𝐶(𝑥,𝑦,𝑧,𝑤,𝑣)   𝐷(𝑥,𝑦,𝑧,𝑤,𝑣)   𝐹(𝑥,𝑦,𝑧,𝑤,𝑣)

Proof of Theorem genppreclu
Dummy variables 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2229 . . 3 (𝐶𝐺𝐷) = (𝐶𝐺𝐷)
2 rspceov 6050 . . 3 ((𝐶 ∈ (2nd𝐴) ∧ 𝐷 ∈ (2nd𝐵) ∧ (𝐶𝐺𝐷) = (𝐶𝐺𝐷)) → ∃𝑔 ∈ (2nd𝐴)∃ ∈ (2nd𝐵)(𝐶𝐺𝐷) = (𝑔𝐺))
31, 2mp3an3 1360 . 2 ((𝐶 ∈ (2nd𝐴) ∧ 𝐷 ∈ (2nd𝐵)) → ∃𝑔 ∈ (2nd𝐴)∃ ∈ (2nd𝐵)(𝐶𝐺𝐷) = (𝑔𝐺))
4 genpelvl.1 . . 3 𝐹 = (𝑤P, 𝑣P ↦ ⟨{𝑥Q ∣ ∃𝑦Q𝑧Q (𝑦 ∈ (1st𝑤) ∧ 𝑧 ∈ (1st𝑣) ∧ 𝑥 = (𝑦𝐺𝑧))}, {𝑥Q ∣ ∃𝑦Q𝑧Q (𝑦 ∈ (2nd𝑤) ∧ 𝑧 ∈ (2nd𝑣) ∧ 𝑥 = (𝑦𝐺𝑧))}⟩)
5 genpelvl.2 . . 3 ((𝑦Q𝑧Q) → (𝑦𝐺𝑧) ∈ Q)
64, 5genpelvu 7708 . 2 ((𝐴P𝐵P) → ((𝐶𝐺𝐷) ∈ (2nd ‘(𝐴𝐹𝐵)) ↔ ∃𝑔 ∈ (2nd𝐴)∃ ∈ (2nd𝐵)(𝐶𝐺𝐷) = (𝑔𝐺)))
73, 6imbitrrid 156 1 ((𝐴P𝐵P) → ((𝐶 ∈ (2nd𝐴) ∧ 𝐷 ∈ (2nd𝐵)) → (𝐶𝐺𝐷) ∈ (2nd ‘(𝐴𝐹𝐵))))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  w3a 1002   = wceq 1395  wcel 2200  wrex 2509  {crab 2512  cop 3669  cfv 5318  (class class class)co 6007  cmpo 6009  1st c1st 6290  2nd c2nd 6291  Qcnq 7475  Pcnp 7486
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4199  ax-sep 4202  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629  ax-iinf 4680
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-int 3924  df-iun 3967  df-br 4084  df-opab 4146  df-mpt 4147  df-id 4384  df-iom 4683  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-f1 5323  df-fo 5324  df-f1o 5325  df-fv 5326  df-ov 6010  df-oprab 6011  df-mpo 6012  df-1st 6292  df-2nd 6293  df-qs 6694  df-ni 7499  df-nqqs 7543  df-inp 7661
This theorem is referenced by:  genpmu  7713  genprndu  7717  addnqpru  7725  mulnqpru  7764  distrlem1pru  7778  distrlem4pru  7780  ltexprlemru  7807  addcanprleml  7809  addcanprlemu  7810
  Copyright terms: Public domain W3C validator