ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mndpfo GIF version

Theorem mndpfo 12731
Description: The addition operation of a monoid as a function is an onto function. (Contributed by FL, 2-Nov-2009.) (Revised by Mario Carneiro, 11-Oct-2013.) (Revised by AV, 23-Jan-2020.)
Hypotheses
Ref Expression
mndpf.b 𝐵 = (Base‘𝐺)
mndpf.p = (+𝑓𝐺)
Assertion
Ref Expression
mndpfo (𝐺 ∈ Mnd → :(𝐵 × 𝐵)–onto𝐵)

Proof of Theorem mndpfo
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mndpf.b . . 3 𝐵 = (Base‘𝐺)
2 mndpf.p . . 3 = (+𝑓𝐺)
31, 2mndplusf 12726 . 2 (𝐺 ∈ Mnd → :(𝐵 × 𝐵)⟶𝐵)
4 simpr 110 . . . . 5 ((𝐺 ∈ Mnd ∧ 𝑥𝐵) → 𝑥𝐵)
5 eqid 2177 . . . . . . 7 (0g𝐺) = (0g𝐺)
61, 5mndidcl 12723 . . . . . 6 (𝐺 ∈ Mnd → (0g𝐺) ∈ 𝐵)
76adantr 276 . . . . 5 ((𝐺 ∈ Mnd ∧ 𝑥𝐵) → (0g𝐺) ∈ 𝐵)
8 eqid 2177 . . . . . . 7 (+g𝐺) = (+g𝐺)
91, 8, 5mndrid 12729 . . . . . 6 ((𝐺 ∈ Mnd ∧ 𝑥𝐵) → (𝑥(+g𝐺)(0g𝐺)) = 𝑥)
109eqcomd 2183 . . . . 5 ((𝐺 ∈ Mnd ∧ 𝑥𝐵) → 𝑥 = (𝑥(+g𝐺)(0g𝐺)))
11 rspceov 5911 . . . . 5 ((𝑥𝐵 ∧ (0g𝐺) ∈ 𝐵𝑥 = (𝑥(+g𝐺)(0g𝐺))) → ∃𝑦𝐵𝑧𝐵 𝑥 = (𝑦(+g𝐺)𝑧))
124, 7, 10, 11syl3anc 1238 . . . 4 ((𝐺 ∈ Mnd ∧ 𝑥𝐵) → ∃𝑦𝐵𝑧𝐵 𝑥 = (𝑦(+g𝐺)𝑧))
131, 8, 2plusfvalg 12674 . . . . . . . . 9 ((𝐺 ∈ Mnd ∧ 𝑦𝐵𝑧𝐵) → (𝑦 𝑧) = (𝑦(+g𝐺)𝑧))
1413eqeq2d 2189 . . . . . . . 8 ((𝐺 ∈ Mnd ∧ 𝑦𝐵𝑧𝐵) → (𝑥 = (𝑦 𝑧) ↔ 𝑥 = (𝑦(+g𝐺)𝑧)))
15143expa 1203 . . . . . . 7 (((𝐺 ∈ Mnd ∧ 𝑦𝐵) ∧ 𝑧𝐵) → (𝑥 = (𝑦 𝑧) ↔ 𝑥 = (𝑦(+g𝐺)𝑧)))
1615rexbidva 2474 . . . . . 6 ((𝐺 ∈ Mnd ∧ 𝑦𝐵) → (∃𝑧𝐵 𝑥 = (𝑦 𝑧) ↔ ∃𝑧𝐵 𝑥 = (𝑦(+g𝐺)𝑧)))
1716rexbidva 2474 . . . . 5 (𝐺 ∈ Mnd → (∃𝑦𝐵𝑧𝐵 𝑥 = (𝑦 𝑧) ↔ ∃𝑦𝐵𝑧𝐵 𝑥 = (𝑦(+g𝐺)𝑧)))
1817adantr 276 . . . 4 ((𝐺 ∈ Mnd ∧ 𝑥𝐵) → (∃𝑦𝐵𝑧𝐵 𝑥 = (𝑦 𝑧) ↔ ∃𝑦𝐵𝑧𝐵 𝑥 = (𝑦(+g𝐺)𝑧)))
1912, 18mpbird 167 . . 3 ((𝐺 ∈ Mnd ∧ 𝑥𝐵) → ∃𝑦𝐵𝑧𝐵 𝑥 = (𝑦 𝑧))
2019ralrimiva 2550 . 2 (𝐺 ∈ Mnd → ∀𝑥𝐵𝑦𝐵𝑧𝐵 𝑥 = (𝑦 𝑧))
21 foov 6015 . 2 ( :(𝐵 × 𝐵)–onto𝐵 ↔ ( :(𝐵 × 𝐵)⟶𝐵 ∧ ∀𝑥𝐵𝑦𝐵𝑧𝐵 𝑥 = (𝑦 𝑧)))
223, 20, 21sylanbrc 417 1 (𝐺 ∈ Mnd → :(𝐵 × 𝐵)–onto𝐵)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  w3a 978   = wceq 1353  wcel 2148  wral 2455  wrex 2456   × cxp 4621  wf 5208  ontowfo 5210  cfv 5212  (class class class)co 5869  Basecbs 12445  +gcplusg 12518  0gc0g 12653  +𝑓cplusf 12664  Mndcmnd 12709
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4115  ax-sep 4118  ax-pow 4171  ax-pr 4206  ax-un 4430  ax-setind 4533  ax-cnex 7893  ax-resscn 7894  ax-1re 7896  ax-addrcl 7899
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-ral 2460  df-rex 2461  df-reu 2462  df-rmo 2463  df-rab 2464  df-v 2739  df-sbc 2963  df-csb 3058  df-dif 3131  df-un 3133  df-in 3135  df-ss 3142  df-pw 3576  df-sn 3597  df-pr 3598  df-op 3600  df-uni 3808  df-int 3843  df-iun 3886  df-br 4001  df-opab 4062  df-mpt 4063  df-id 4290  df-xp 4629  df-rel 4630  df-cnv 4631  df-co 4632  df-dm 4633  df-rn 4634  df-res 4635  df-ima 4636  df-iota 5174  df-fun 5214  df-fn 5215  df-f 5216  df-f1 5217  df-fo 5218  df-f1o 5219  df-fv 5220  df-riota 5825  df-ov 5872  df-oprab 5873  df-mpo 5874  df-1st 6135  df-2nd 6136  df-inn 8909  df-2 8967  df-ndx 12448  df-slot 12449  df-base 12451  df-plusg 12531  df-0g 12655  df-plusf 12666  df-mgm 12667  df-sgrp 12700  df-mnd 12710
This theorem is referenced by:  mndfo  12732  grpplusfo  12782
  Copyright terms: Public domain W3C validator