![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > mndpfo | GIF version |
Description: The addition operation of a monoid as a function is an onto function. (Contributed by FL, 2-Nov-2009.) (Revised by Mario Carneiro, 11-Oct-2013.) (Revised by AV, 23-Jan-2020.) |
Ref | Expression |
---|---|
mndpf.b | ⊢ 𝐵 = (Base‘𝐺) |
mndpf.p | ⊢ ⨣ = (+𝑓‘𝐺) |
Ref | Expression |
---|---|
mndpfo | ⊢ (𝐺 ∈ Mnd → ⨣ :(𝐵 × 𝐵)–onto→𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mndpf.b | . . 3 ⊢ 𝐵 = (Base‘𝐺) | |
2 | mndpf.p | . . 3 ⊢ ⨣ = (+𝑓‘𝐺) | |
3 | 1, 2 | mndplusf 12833 | . 2 ⊢ (𝐺 ∈ Mnd → ⨣ :(𝐵 × 𝐵)⟶𝐵) |
4 | simpr 110 | . . . . 5 ⊢ ((𝐺 ∈ Mnd ∧ 𝑥 ∈ 𝐵) → 𝑥 ∈ 𝐵) | |
5 | eqid 2177 | . . . . . . 7 ⊢ (0g‘𝐺) = (0g‘𝐺) | |
6 | 1, 5 | mndidcl 12830 | . . . . . 6 ⊢ (𝐺 ∈ Mnd → (0g‘𝐺) ∈ 𝐵) |
7 | 6 | adantr 276 | . . . . 5 ⊢ ((𝐺 ∈ Mnd ∧ 𝑥 ∈ 𝐵) → (0g‘𝐺) ∈ 𝐵) |
8 | eqid 2177 | . . . . . . 7 ⊢ (+g‘𝐺) = (+g‘𝐺) | |
9 | 1, 8, 5 | mndrid 12836 | . . . . . 6 ⊢ ((𝐺 ∈ Mnd ∧ 𝑥 ∈ 𝐵) → (𝑥(+g‘𝐺)(0g‘𝐺)) = 𝑥) |
10 | 9 | eqcomd 2183 | . . . . 5 ⊢ ((𝐺 ∈ Mnd ∧ 𝑥 ∈ 𝐵) → 𝑥 = (𝑥(+g‘𝐺)(0g‘𝐺))) |
11 | rspceov 5916 | . . . . 5 ⊢ ((𝑥 ∈ 𝐵 ∧ (0g‘𝐺) ∈ 𝐵 ∧ 𝑥 = (𝑥(+g‘𝐺)(0g‘𝐺))) → ∃𝑦 ∈ 𝐵 ∃𝑧 ∈ 𝐵 𝑥 = (𝑦(+g‘𝐺)𝑧)) | |
12 | 4, 7, 10, 11 | syl3anc 1238 | . . . 4 ⊢ ((𝐺 ∈ Mnd ∧ 𝑥 ∈ 𝐵) → ∃𝑦 ∈ 𝐵 ∃𝑧 ∈ 𝐵 𝑥 = (𝑦(+g‘𝐺)𝑧)) |
13 | 1, 8, 2 | plusfvalg 12781 | . . . . . . . . 9 ⊢ ((𝐺 ∈ Mnd ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵) → (𝑦 ⨣ 𝑧) = (𝑦(+g‘𝐺)𝑧)) |
14 | 13 | eqeq2d 2189 | . . . . . . . 8 ⊢ ((𝐺 ∈ Mnd ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵) → (𝑥 = (𝑦 ⨣ 𝑧) ↔ 𝑥 = (𝑦(+g‘𝐺)𝑧))) |
15 | 14 | 3expa 1203 | . . . . . . 7 ⊢ (((𝐺 ∈ Mnd ∧ 𝑦 ∈ 𝐵) ∧ 𝑧 ∈ 𝐵) → (𝑥 = (𝑦 ⨣ 𝑧) ↔ 𝑥 = (𝑦(+g‘𝐺)𝑧))) |
16 | 15 | rexbidva 2474 | . . . . . 6 ⊢ ((𝐺 ∈ Mnd ∧ 𝑦 ∈ 𝐵) → (∃𝑧 ∈ 𝐵 𝑥 = (𝑦 ⨣ 𝑧) ↔ ∃𝑧 ∈ 𝐵 𝑥 = (𝑦(+g‘𝐺)𝑧))) |
17 | 16 | rexbidva 2474 | . . . . 5 ⊢ (𝐺 ∈ Mnd → (∃𝑦 ∈ 𝐵 ∃𝑧 ∈ 𝐵 𝑥 = (𝑦 ⨣ 𝑧) ↔ ∃𝑦 ∈ 𝐵 ∃𝑧 ∈ 𝐵 𝑥 = (𝑦(+g‘𝐺)𝑧))) |
18 | 17 | adantr 276 | . . . 4 ⊢ ((𝐺 ∈ Mnd ∧ 𝑥 ∈ 𝐵) → (∃𝑦 ∈ 𝐵 ∃𝑧 ∈ 𝐵 𝑥 = (𝑦 ⨣ 𝑧) ↔ ∃𝑦 ∈ 𝐵 ∃𝑧 ∈ 𝐵 𝑥 = (𝑦(+g‘𝐺)𝑧))) |
19 | 12, 18 | mpbird 167 | . . 3 ⊢ ((𝐺 ∈ Mnd ∧ 𝑥 ∈ 𝐵) → ∃𝑦 ∈ 𝐵 ∃𝑧 ∈ 𝐵 𝑥 = (𝑦 ⨣ 𝑧)) |
20 | 19 | ralrimiva 2550 | . 2 ⊢ (𝐺 ∈ Mnd → ∀𝑥 ∈ 𝐵 ∃𝑦 ∈ 𝐵 ∃𝑧 ∈ 𝐵 𝑥 = (𝑦 ⨣ 𝑧)) |
21 | foov 6020 | . 2 ⊢ ( ⨣ :(𝐵 × 𝐵)–onto→𝐵 ↔ ( ⨣ :(𝐵 × 𝐵)⟶𝐵 ∧ ∀𝑥 ∈ 𝐵 ∃𝑦 ∈ 𝐵 ∃𝑧 ∈ 𝐵 𝑥 = (𝑦 ⨣ 𝑧))) | |
22 | 3, 20, 21 | sylanbrc 417 | 1 ⊢ (𝐺 ∈ Mnd → ⨣ :(𝐵 × 𝐵)–onto→𝐵) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 ∧ w3a 978 = wceq 1353 ∈ wcel 2148 ∀wral 2455 ∃wrex 2456 × cxp 4624 ⟶wf 5212 –onto→wfo 5214 ‘cfv 5216 (class class class)co 5874 Basecbs 12461 +gcplusg 12535 0gc0g 12704 +𝑓cplusf 12771 Mndcmnd 12816 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-13 2150 ax-14 2151 ax-ext 2159 ax-coll 4118 ax-sep 4121 ax-pow 4174 ax-pr 4209 ax-un 4433 ax-setind 4536 ax-cnex 7901 ax-resscn 7902 ax-1re 7904 ax-addrcl 7907 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-fal 1359 df-nf 1461 df-sb 1763 df-eu 2029 df-mo 2030 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ne 2348 df-ral 2460 df-rex 2461 df-reu 2462 df-rmo 2463 df-rab 2464 df-v 2739 df-sbc 2963 df-csb 3058 df-dif 3131 df-un 3133 df-in 3135 df-ss 3142 df-pw 3577 df-sn 3598 df-pr 3599 df-op 3601 df-uni 3810 df-int 3845 df-iun 3888 df-br 4004 df-opab 4065 df-mpt 4066 df-id 4293 df-xp 4632 df-rel 4633 df-cnv 4634 df-co 4635 df-dm 4636 df-rn 4637 df-res 4638 df-ima 4639 df-iota 5178 df-fun 5218 df-fn 5219 df-f 5220 df-f1 5221 df-fo 5222 df-f1o 5223 df-fv 5224 df-riota 5830 df-ov 5877 df-oprab 5878 df-mpo 5879 df-1st 6140 df-2nd 6141 df-inn 8919 df-2 8977 df-ndx 12464 df-slot 12465 df-base 12467 df-plusg 12548 df-0g 12706 df-plusf 12773 df-mgm 12774 df-sgrp 12807 df-mnd 12817 |
This theorem is referenced by: mndfo 12839 grpplusfo 12891 |
Copyright terms: Public domain | W3C validator |