ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elz2 GIF version

Theorem elz2 9388
Description: Membership in the set of integers. Commonly used in constructions of the integers as equivalence classes under subtraction of the positive integers. (Contributed by Mario Carneiro, 16-May-2014.)
Assertion
Ref Expression
elz2 (𝑁 ∈ ℤ ↔ ∃𝑥 ∈ ℕ ∃𝑦 ∈ ℕ 𝑁 = (𝑥𝑦))
Distinct variable group:   𝑥,𝑦,𝑁

Proof of Theorem elz2
StepHypRef Expression
1 elznn0 9332 . 2 (𝑁 ∈ ℤ ↔ (𝑁 ∈ ℝ ∧ (𝑁 ∈ ℕ0 ∨ -𝑁 ∈ ℕ0)))
2 nn0p1nn 9279 . . . . . 6 (𝑁 ∈ ℕ0 → (𝑁 + 1) ∈ ℕ)
32adantl 277 . . . . 5 ((𝑁 ∈ ℝ ∧ 𝑁 ∈ ℕ0) → (𝑁 + 1) ∈ ℕ)
4 1nn 8993 . . . . . 6 1 ∈ ℕ
54a1i 9 . . . . 5 ((𝑁 ∈ ℝ ∧ 𝑁 ∈ ℕ0) → 1 ∈ ℕ)
6 recn 8005 . . . . . . . 8 (𝑁 ∈ ℝ → 𝑁 ∈ ℂ)
76adantr 276 . . . . . . 7 ((𝑁 ∈ ℝ ∧ 𝑁 ∈ ℕ0) → 𝑁 ∈ ℂ)
8 ax-1cn 7965 . . . . . . 7 1 ∈ ℂ
9 pncan 8225 . . . . . . 7 ((𝑁 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝑁 + 1) − 1) = 𝑁)
107, 8, 9sylancl 413 . . . . . 6 ((𝑁 ∈ ℝ ∧ 𝑁 ∈ ℕ0) → ((𝑁 + 1) − 1) = 𝑁)
1110eqcomd 2199 . . . . 5 ((𝑁 ∈ ℝ ∧ 𝑁 ∈ ℕ0) → 𝑁 = ((𝑁 + 1) − 1))
12 rspceov 5960 . . . . 5 (((𝑁 + 1) ∈ ℕ ∧ 1 ∈ ℕ ∧ 𝑁 = ((𝑁 + 1) − 1)) → ∃𝑥 ∈ ℕ ∃𝑦 ∈ ℕ 𝑁 = (𝑥𝑦))
133, 5, 11, 12syl3anc 1249 . . . 4 ((𝑁 ∈ ℝ ∧ 𝑁 ∈ ℕ0) → ∃𝑥 ∈ ℕ ∃𝑦 ∈ ℕ 𝑁 = (𝑥𝑦))
144a1i 9 . . . . 5 ((𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ0) → 1 ∈ ℕ)
156adantr 276 . . . . . . 7 ((𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ0) → 𝑁 ∈ ℂ)
16 negsub 8267 . . . . . . 7 ((1 ∈ ℂ ∧ 𝑁 ∈ ℂ) → (1 + -𝑁) = (1 − 𝑁))
178, 15, 16sylancr 414 . . . . . 6 ((𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ0) → (1 + -𝑁) = (1 − 𝑁))
18 simpr 110 . . . . . . 7 ((𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ0) → -𝑁 ∈ ℕ0)
19 nnnn0addcl 9270 . . . . . . 7 ((1 ∈ ℕ ∧ -𝑁 ∈ ℕ0) → (1 + -𝑁) ∈ ℕ)
204, 18, 19sylancr 414 . . . . . 6 ((𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ0) → (1 + -𝑁) ∈ ℕ)
2117, 20eqeltrrd 2271 . . . . 5 ((𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ0) → (1 − 𝑁) ∈ ℕ)
22 nncan 8248 . . . . . . 7 ((1 ∈ ℂ ∧ 𝑁 ∈ ℂ) → (1 − (1 − 𝑁)) = 𝑁)
238, 15, 22sylancr 414 . . . . . 6 ((𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ0) → (1 − (1 − 𝑁)) = 𝑁)
2423eqcomd 2199 . . . . 5 ((𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ0) → 𝑁 = (1 − (1 − 𝑁)))
25 rspceov 5960 . . . . 5 ((1 ∈ ℕ ∧ (1 − 𝑁) ∈ ℕ ∧ 𝑁 = (1 − (1 − 𝑁))) → ∃𝑥 ∈ ℕ ∃𝑦 ∈ ℕ 𝑁 = (𝑥𝑦))
2614, 21, 24, 25syl3anc 1249 . . . 4 ((𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ0) → ∃𝑥 ∈ ℕ ∃𝑦 ∈ ℕ 𝑁 = (𝑥𝑦))
2713, 26jaodan 798 . . 3 ((𝑁 ∈ ℝ ∧ (𝑁 ∈ ℕ0 ∨ -𝑁 ∈ ℕ0)) → ∃𝑥 ∈ ℕ ∃𝑦 ∈ ℕ 𝑁 = (𝑥𝑦))
28 nnre 8989 . . . . . . 7 (𝑥 ∈ ℕ → 𝑥 ∈ ℝ)
29 nnre 8989 . . . . . . 7 (𝑦 ∈ ℕ → 𝑦 ∈ ℝ)
30 resubcl 8283 . . . . . . 7 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (𝑥𝑦) ∈ ℝ)
3128, 29, 30syl2an 289 . . . . . 6 ((𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ) → (𝑥𝑦) ∈ ℝ)
32 nnz 9336 . . . . . . . 8 (𝑦 ∈ ℕ → 𝑦 ∈ ℤ)
33 nnz 9336 . . . . . . . 8 (𝑥 ∈ ℕ → 𝑥 ∈ ℤ)
34 zletric 9361 . . . . . . . 8 ((𝑦 ∈ ℤ ∧ 𝑥 ∈ ℤ) → (𝑦𝑥𝑥𝑦))
3532, 33, 34syl2anr 290 . . . . . . 7 ((𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ) → (𝑦𝑥𝑥𝑦))
36 nnnn0 9247 . . . . . . . . 9 (𝑦 ∈ ℕ → 𝑦 ∈ ℕ0)
37 nnnn0 9247 . . . . . . . . 9 (𝑥 ∈ ℕ → 𝑥 ∈ ℕ0)
38 nn0sub 9383 . . . . . . . . 9 ((𝑦 ∈ ℕ0𝑥 ∈ ℕ0) → (𝑦𝑥 ↔ (𝑥𝑦) ∈ ℕ0))
3936, 37, 38syl2anr 290 . . . . . . . 8 ((𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ) → (𝑦𝑥 ↔ (𝑥𝑦) ∈ ℕ0))
40 nn0sub 9383 . . . . . . . . . 10 ((𝑥 ∈ ℕ0𝑦 ∈ ℕ0) → (𝑥𝑦 ↔ (𝑦𝑥) ∈ ℕ0))
4137, 36, 40syl2an 289 . . . . . . . . 9 ((𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ) → (𝑥𝑦 ↔ (𝑦𝑥) ∈ ℕ0))
42 nncn 8990 . . . . . . . . . . 11 (𝑥 ∈ ℕ → 𝑥 ∈ ℂ)
43 nncn 8990 . . . . . . . . . . 11 (𝑦 ∈ ℕ → 𝑦 ∈ ℂ)
44 negsubdi2 8278 . . . . . . . . . . 11 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → -(𝑥𝑦) = (𝑦𝑥))
4542, 43, 44syl2an 289 . . . . . . . . . 10 ((𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ) → -(𝑥𝑦) = (𝑦𝑥))
4645eleq1d 2262 . . . . . . . . 9 ((𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ) → (-(𝑥𝑦) ∈ ℕ0 ↔ (𝑦𝑥) ∈ ℕ0))
4741, 46bitr4d 191 . . . . . . . 8 ((𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ) → (𝑥𝑦 ↔ -(𝑥𝑦) ∈ ℕ0))
4839, 47orbi12d 794 . . . . . . 7 ((𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ) → ((𝑦𝑥𝑥𝑦) ↔ ((𝑥𝑦) ∈ ℕ0 ∨ -(𝑥𝑦) ∈ ℕ0)))
4935, 48mpbid 147 . . . . . 6 ((𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ) → ((𝑥𝑦) ∈ ℕ0 ∨ -(𝑥𝑦) ∈ ℕ0))
5031, 49jca 306 . . . . 5 ((𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ) → ((𝑥𝑦) ∈ ℝ ∧ ((𝑥𝑦) ∈ ℕ0 ∨ -(𝑥𝑦) ∈ ℕ0)))
51 eleq1 2256 . . . . . 6 (𝑁 = (𝑥𝑦) → (𝑁 ∈ ℝ ↔ (𝑥𝑦) ∈ ℝ))
52 eleq1 2256 . . . . . . 7 (𝑁 = (𝑥𝑦) → (𝑁 ∈ ℕ0 ↔ (𝑥𝑦) ∈ ℕ0))
53 negeq 8212 . . . . . . . 8 (𝑁 = (𝑥𝑦) → -𝑁 = -(𝑥𝑦))
5453eleq1d 2262 . . . . . . 7 (𝑁 = (𝑥𝑦) → (-𝑁 ∈ ℕ0 ↔ -(𝑥𝑦) ∈ ℕ0))
5552, 54orbi12d 794 . . . . . 6 (𝑁 = (𝑥𝑦) → ((𝑁 ∈ ℕ0 ∨ -𝑁 ∈ ℕ0) ↔ ((𝑥𝑦) ∈ ℕ0 ∨ -(𝑥𝑦) ∈ ℕ0)))
5651, 55anbi12d 473 . . . . 5 (𝑁 = (𝑥𝑦) → ((𝑁 ∈ ℝ ∧ (𝑁 ∈ ℕ0 ∨ -𝑁 ∈ ℕ0)) ↔ ((𝑥𝑦) ∈ ℝ ∧ ((𝑥𝑦) ∈ ℕ0 ∨ -(𝑥𝑦) ∈ ℕ0))))
5750, 56syl5ibrcom 157 . . . 4 ((𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ) → (𝑁 = (𝑥𝑦) → (𝑁 ∈ ℝ ∧ (𝑁 ∈ ℕ0 ∨ -𝑁 ∈ ℕ0))))
5857rexlimivv 2617 . . 3 (∃𝑥 ∈ ℕ ∃𝑦 ∈ ℕ 𝑁 = (𝑥𝑦) → (𝑁 ∈ ℝ ∧ (𝑁 ∈ ℕ0 ∨ -𝑁 ∈ ℕ0)))
5927, 58impbii 126 . 2 ((𝑁 ∈ ℝ ∧ (𝑁 ∈ ℕ0 ∨ -𝑁 ∈ ℕ0)) ↔ ∃𝑥 ∈ ℕ ∃𝑦 ∈ ℕ 𝑁 = (𝑥𝑦))
601, 59bitri 184 1 (𝑁 ∈ ℤ ↔ ∃𝑥 ∈ ℕ ∃𝑦 ∈ ℕ 𝑁 = (𝑥𝑦))
Colors of variables: wff set class
Syntax hints:  wa 104  wb 105  wo 709   = wceq 1364  wcel 2164  wrex 2473   class class class wbr 4029  (class class class)co 5918  cc 7870  cr 7871  1c1 7873   + caddc 7875  cle 8055  cmin 8190  -cneg 8191  cn 8982  0cn0 9240  cz 9317
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569  ax-cnex 7963  ax-resscn 7964  ax-1cn 7965  ax-1re 7966  ax-icn 7967  ax-addcl 7968  ax-addrcl 7969  ax-mulcl 7970  ax-addcom 7972  ax-addass 7974  ax-distr 7976  ax-i2m1 7977  ax-0lt1 7978  ax-0id 7980  ax-rnegex 7981  ax-cnre 7983  ax-pre-ltirr 7984  ax-pre-ltwlin 7985  ax-pre-lttrn 7986  ax-pre-ltadd 7988
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rab 2481  df-v 2762  df-sbc 2986  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-int 3871  df-br 4030  df-opab 4091  df-id 4324  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-iota 5215  df-fun 5256  df-fv 5262  df-riota 5873  df-ov 5921  df-oprab 5922  df-mpo 5923  df-pnf 8056  df-mnf 8057  df-xr 8058  df-ltxr 8059  df-le 8060  df-sub 8192  df-neg 8193  df-inn 8983  df-n0 9241  df-z 9318
This theorem is referenced by:  dfz2  9389
  Copyright terms: Public domain W3C validator