Proof of Theorem elz2
| Step | Hyp | Ref
| Expression |
| 1 | | elznn0 9341 |
. 2
⊢ (𝑁 ∈ ℤ ↔ (𝑁 ∈ ℝ ∧ (𝑁 ∈ ℕ0 ∨
-𝑁 ∈
ℕ0))) |
| 2 | | nn0p1nn 9288 |
. . . . . 6
⊢ (𝑁 ∈ ℕ0
→ (𝑁 + 1) ∈
ℕ) |
| 3 | 2 | adantl 277 |
. . . . 5
⊢ ((𝑁 ∈ ℝ ∧ 𝑁 ∈ ℕ0)
→ (𝑁 + 1) ∈
ℕ) |
| 4 | | 1nn 9001 |
. . . . . 6
⊢ 1 ∈
ℕ |
| 5 | 4 | a1i 9 |
. . . . 5
⊢ ((𝑁 ∈ ℝ ∧ 𝑁 ∈ ℕ0)
→ 1 ∈ ℕ) |
| 6 | | recn 8012 |
. . . . . . . 8
⊢ (𝑁 ∈ ℝ → 𝑁 ∈
ℂ) |
| 7 | 6 | adantr 276 |
. . . . . . 7
⊢ ((𝑁 ∈ ℝ ∧ 𝑁 ∈ ℕ0)
→ 𝑁 ∈
ℂ) |
| 8 | | ax-1cn 7972 |
. . . . . . 7
⊢ 1 ∈
ℂ |
| 9 | | pncan 8232 |
. . . . . . 7
⊢ ((𝑁 ∈ ℂ ∧ 1 ∈
ℂ) → ((𝑁 + 1)
− 1) = 𝑁) |
| 10 | 7, 8, 9 | sylancl 413 |
. . . . . 6
⊢ ((𝑁 ∈ ℝ ∧ 𝑁 ∈ ℕ0)
→ ((𝑁 + 1) − 1)
= 𝑁) |
| 11 | 10 | eqcomd 2202 |
. . . . 5
⊢ ((𝑁 ∈ ℝ ∧ 𝑁 ∈ ℕ0)
→ 𝑁 = ((𝑁 + 1) −
1)) |
| 12 | | rspceov 5964 |
. . . . 5
⊢ (((𝑁 + 1) ∈ ℕ ∧ 1
∈ ℕ ∧ 𝑁 =
((𝑁 + 1) − 1)) →
∃𝑥 ∈ ℕ
∃𝑦 ∈ ℕ
𝑁 = (𝑥 − 𝑦)) |
| 13 | 3, 5, 11, 12 | syl3anc 1249 |
. . . 4
⊢ ((𝑁 ∈ ℝ ∧ 𝑁 ∈ ℕ0)
→ ∃𝑥 ∈
ℕ ∃𝑦 ∈
ℕ 𝑁 = (𝑥 − 𝑦)) |
| 14 | 4 | a1i 9 |
. . . . 5
⊢ ((𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ0)
→ 1 ∈ ℕ) |
| 15 | 6 | adantr 276 |
. . . . . . 7
⊢ ((𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ0)
→ 𝑁 ∈
ℂ) |
| 16 | | negsub 8274 |
. . . . . . 7
⊢ ((1
∈ ℂ ∧ 𝑁
∈ ℂ) → (1 + -𝑁) = (1 − 𝑁)) |
| 17 | 8, 15, 16 | sylancr 414 |
. . . . . 6
⊢ ((𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ0)
→ (1 + -𝑁) = (1
− 𝑁)) |
| 18 | | simpr 110 |
. . . . . . 7
⊢ ((𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ0)
→ -𝑁 ∈
ℕ0) |
| 19 | | nnnn0addcl 9279 |
. . . . . . 7
⊢ ((1
∈ ℕ ∧ -𝑁
∈ ℕ0) → (1 + -𝑁) ∈ ℕ) |
| 20 | 4, 18, 19 | sylancr 414 |
. . . . . 6
⊢ ((𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ0)
→ (1 + -𝑁) ∈
ℕ) |
| 21 | 17, 20 | eqeltrrd 2274 |
. . . . 5
⊢ ((𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ0)
→ (1 − 𝑁) ∈
ℕ) |
| 22 | | nncan 8255 |
. . . . . . 7
⊢ ((1
∈ ℂ ∧ 𝑁
∈ ℂ) → (1 − (1 − 𝑁)) = 𝑁) |
| 23 | 8, 15, 22 | sylancr 414 |
. . . . . 6
⊢ ((𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ0)
→ (1 − (1 − 𝑁)) = 𝑁) |
| 24 | 23 | eqcomd 2202 |
. . . . 5
⊢ ((𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ0)
→ 𝑁 = (1 − (1
− 𝑁))) |
| 25 | | rspceov 5964 |
. . . . 5
⊢ ((1
∈ ℕ ∧ (1 − 𝑁) ∈ ℕ ∧ 𝑁 = (1 − (1 − 𝑁))) → ∃𝑥 ∈ ℕ ∃𝑦 ∈ ℕ 𝑁 = (𝑥 − 𝑦)) |
| 26 | 14, 21, 24, 25 | syl3anc 1249 |
. . . 4
⊢ ((𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ0)
→ ∃𝑥 ∈
ℕ ∃𝑦 ∈
ℕ 𝑁 = (𝑥 − 𝑦)) |
| 27 | 13, 26 | jaodan 798 |
. . 3
⊢ ((𝑁 ∈ ℝ ∧ (𝑁 ∈ ℕ0 ∨
-𝑁 ∈
ℕ0)) → ∃𝑥 ∈ ℕ ∃𝑦 ∈ ℕ 𝑁 = (𝑥 − 𝑦)) |
| 28 | | nnre 8997 |
. . . . . . 7
⊢ (𝑥 ∈ ℕ → 𝑥 ∈
ℝ) |
| 29 | | nnre 8997 |
. . . . . . 7
⊢ (𝑦 ∈ ℕ → 𝑦 ∈
ℝ) |
| 30 | | resubcl 8290 |
. . . . . . 7
⊢ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (𝑥 − 𝑦) ∈ ℝ) |
| 31 | 28, 29, 30 | syl2an 289 |
. . . . . 6
⊢ ((𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ) → (𝑥 − 𝑦) ∈ ℝ) |
| 32 | | nnz 9345 |
. . . . . . . 8
⊢ (𝑦 ∈ ℕ → 𝑦 ∈
ℤ) |
| 33 | | nnz 9345 |
. . . . . . . 8
⊢ (𝑥 ∈ ℕ → 𝑥 ∈
ℤ) |
| 34 | | zletric 9370 |
. . . . . . . 8
⊢ ((𝑦 ∈ ℤ ∧ 𝑥 ∈ ℤ) → (𝑦 ≤ 𝑥 ∨ 𝑥 ≤ 𝑦)) |
| 35 | 32, 33, 34 | syl2anr 290 |
. . . . . . 7
⊢ ((𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ) → (𝑦 ≤ 𝑥 ∨ 𝑥 ≤ 𝑦)) |
| 36 | | nnnn0 9256 |
. . . . . . . . 9
⊢ (𝑦 ∈ ℕ → 𝑦 ∈
ℕ0) |
| 37 | | nnnn0 9256 |
. . . . . . . . 9
⊢ (𝑥 ∈ ℕ → 𝑥 ∈
ℕ0) |
| 38 | | nn0sub 9392 |
. . . . . . . . 9
⊢ ((𝑦 ∈ ℕ0
∧ 𝑥 ∈
ℕ0) → (𝑦 ≤ 𝑥 ↔ (𝑥 − 𝑦) ∈
ℕ0)) |
| 39 | 36, 37, 38 | syl2anr 290 |
. . . . . . . 8
⊢ ((𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ) → (𝑦 ≤ 𝑥 ↔ (𝑥 − 𝑦) ∈
ℕ0)) |
| 40 | | nn0sub 9392 |
. . . . . . . . . 10
⊢ ((𝑥 ∈ ℕ0
∧ 𝑦 ∈
ℕ0) → (𝑥 ≤ 𝑦 ↔ (𝑦 − 𝑥) ∈
ℕ0)) |
| 41 | 37, 36, 40 | syl2an 289 |
. . . . . . . . 9
⊢ ((𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ) → (𝑥 ≤ 𝑦 ↔ (𝑦 − 𝑥) ∈
ℕ0)) |
| 42 | | nncn 8998 |
. . . . . . . . . . 11
⊢ (𝑥 ∈ ℕ → 𝑥 ∈
ℂ) |
| 43 | | nncn 8998 |
. . . . . . . . . . 11
⊢ (𝑦 ∈ ℕ → 𝑦 ∈
ℂ) |
| 44 | | negsubdi2 8285 |
. . . . . . . . . . 11
⊢ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → -(𝑥 − 𝑦) = (𝑦 − 𝑥)) |
| 45 | 42, 43, 44 | syl2an 289 |
. . . . . . . . . 10
⊢ ((𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ) → -(𝑥 − 𝑦) = (𝑦 − 𝑥)) |
| 46 | 45 | eleq1d 2265 |
. . . . . . . . 9
⊢ ((𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ) → (-(𝑥 − 𝑦) ∈ ℕ0 ↔ (𝑦 − 𝑥) ∈
ℕ0)) |
| 47 | 41, 46 | bitr4d 191 |
. . . . . . . 8
⊢ ((𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ) → (𝑥 ≤ 𝑦 ↔ -(𝑥 − 𝑦) ∈
ℕ0)) |
| 48 | 39, 47 | orbi12d 794 |
. . . . . . 7
⊢ ((𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ) → ((𝑦 ≤ 𝑥 ∨ 𝑥 ≤ 𝑦) ↔ ((𝑥 − 𝑦) ∈ ℕ0 ∨ -(𝑥 − 𝑦) ∈
ℕ0))) |
| 49 | 35, 48 | mpbid 147 |
. . . . . 6
⊢ ((𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ) → ((𝑥 − 𝑦) ∈ ℕ0 ∨ -(𝑥 − 𝑦) ∈
ℕ0)) |
| 50 | 31, 49 | jca 306 |
. . . . 5
⊢ ((𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ) → ((𝑥 − 𝑦) ∈ ℝ ∧ ((𝑥 − 𝑦) ∈ ℕ0 ∨ -(𝑥 − 𝑦) ∈
ℕ0))) |
| 51 | | eleq1 2259 |
. . . . . 6
⊢ (𝑁 = (𝑥 − 𝑦) → (𝑁 ∈ ℝ ↔ (𝑥 − 𝑦) ∈ ℝ)) |
| 52 | | eleq1 2259 |
. . . . . . 7
⊢ (𝑁 = (𝑥 − 𝑦) → (𝑁 ∈ ℕ0 ↔ (𝑥 − 𝑦) ∈
ℕ0)) |
| 53 | | negeq 8219 |
. . . . . . . 8
⊢ (𝑁 = (𝑥 − 𝑦) → -𝑁 = -(𝑥 − 𝑦)) |
| 54 | 53 | eleq1d 2265 |
. . . . . . 7
⊢ (𝑁 = (𝑥 − 𝑦) → (-𝑁 ∈ ℕ0 ↔ -(𝑥 − 𝑦) ∈
ℕ0)) |
| 55 | 52, 54 | orbi12d 794 |
. . . . . 6
⊢ (𝑁 = (𝑥 − 𝑦) → ((𝑁 ∈ ℕ0 ∨ -𝑁 ∈ ℕ0)
↔ ((𝑥 − 𝑦) ∈ ℕ0
∨ -(𝑥 − 𝑦) ∈
ℕ0))) |
| 56 | 51, 55 | anbi12d 473 |
. . . . 5
⊢ (𝑁 = (𝑥 − 𝑦) → ((𝑁 ∈ ℝ ∧ (𝑁 ∈ ℕ0 ∨ -𝑁 ∈ ℕ0))
↔ ((𝑥 − 𝑦) ∈ ℝ ∧ ((𝑥 − 𝑦) ∈ ℕ0 ∨ -(𝑥 − 𝑦) ∈
ℕ0)))) |
| 57 | 50, 56 | syl5ibrcom 157 |
. . . 4
⊢ ((𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ) → (𝑁 = (𝑥 − 𝑦) → (𝑁 ∈ ℝ ∧ (𝑁 ∈ ℕ0 ∨ -𝑁 ∈
ℕ0)))) |
| 58 | 57 | rexlimivv 2620 |
. . 3
⊢
(∃𝑥 ∈
ℕ ∃𝑦 ∈
ℕ 𝑁 = (𝑥 − 𝑦) → (𝑁 ∈ ℝ ∧ (𝑁 ∈ ℕ0 ∨ -𝑁 ∈
ℕ0))) |
| 59 | 27, 58 | impbii 126 |
. 2
⊢ ((𝑁 ∈ ℝ ∧ (𝑁 ∈ ℕ0 ∨
-𝑁 ∈
ℕ0)) ↔ ∃𝑥 ∈ ℕ ∃𝑦 ∈ ℕ 𝑁 = (𝑥 − 𝑦)) |
| 60 | 1, 59 | bitri 184 |
1
⊢ (𝑁 ∈ ℤ ↔
∃𝑥 ∈ ℕ
∃𝑦 ∈ ℕ
𝑁 = (𝑥 − 𝑦)) |