ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elz2 GIF version

Theorem elz2 8754
Description: Membership in the set of integers. Commonly used in constructions of the integers as equivalence classes under subtraction of the positive integers. (Contributed by Mario Carneiro, 16-May-2014.)
Assertion
Ref Expression
elz2 (𝑁 ∈ ℤ ↔ ∃𝑥 ∈ ℕ ∃𝑦 ∈ ℕ 𝑁 = (𝑥𝑦))
Distinct variable group:   𝑥,𝑦,𝑁

Proof of Theorem elz2
StepHypRef Expression
1 elznn0 8701 . 2 (𝑁 ∈ ℤ ↔ (𝑁 ∈ ℝ ∧ (𝑁 ∈ ℕ0 ∨ -𝑁 ∈ ℕ0)))
2 nn0p1nn 8648 . . . . . 6 (𝑁 ∈ ℕ0 → (𝑁 + 1) ∈ ℕ)
32adantl 271 . . . . 5 ((𝑁 ∈ ℝ ∧ 𝑁 ∈ ℕ0) → (𝑁 + 1) ∈ ℕ)
4 1nn 8371 . . . . . 6 1 ∈ ℕ
54a1i 9 . . . . 5 ((𝑁 ∈ ℝ ∧ 𝑁 ∈ ℕ0) → 1 ∈ ℕ)
6 recn 7422 . . . . . . . 8 (𝑁 ∈ ℝ → 𝑁 ∈ ℂ)
76adantr 270 . . . . . . 7 ((𝑁 ∈ ℝ ∧ 𝑁 ∈ ℕ0) → 𝑁 ∈ ℂ)
8 ax-1cn 7385 . . . . . . 7 1 ∈ ℂ
9 pncan 7635 . . . . . . 7 ((𝑁 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝑁 + 1) − 1) = 𝑁)
107, 8, 9sylancl 404 . . . . . 6 ((𝑁 ∈ ℝ ∧ 𝑁 ∈ ℕ0) → ((𝑁 + 1) − 1) = 𝑁)
1110eqcomd 2090 . . . . 5 ((𝑁 ∈ ℝ ∧ 𝑁 ∈ ℕ0) → 𝑁 = ((𝑁 + 1) − 1))
12 rspceov 5650 . . . . 5 (((𝑁 + 1) ∈ ℕ ∧ 1 ∈ ℕ ∧ 𝑁 = ((𝑁 + 1) − 1)) → ∃𝑥 ∈ ℕ ∃𝑦 ∈ ℕ 𝑁 = (𝑥𝑦))
133, 5, 11, 12syl3anc 1172 . . . 4 ((𝑁 ∈ ℝ ∧ 𝑁 ∈ ℕ0) → ∃𝑥 ∈ ℕ ∃𝑦 ∈ ℕ 𝑁 = (𝑥𝑦))
144a1i 9 . . . . 5 ((𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ0) → 1 ∈ ℕ)
156adantr 270 . . . . . . 7 ((𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ0) → 𝑁 ∈ ℂ)
16 negsub 7677 . . . . . . 7 ((1 ∈ ℂ ∧ 𝑁 ∈ ℂ) → (1 + -𝑁) = (1 − 𝑁))
178, 15, 16sylancr 405 . . . . . 6 ((𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ0) → (1 + -𝑁) = (1 − 𝑁))
18 simpr 108 . . . . . . 7 ((𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ0) → -𝑁 ∈ ℕ0)
19 nnnn0addcl 8639 . . . . . . 7 ((1 ∈ ℕ ∧ -𝑁 ∈ ℕ0) → (1 + -𝑁) ∈ ℕ)
204, 18, 19sylancr 405 . . . . . 6 ((𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ0) → (1 + -𝑁) ∈ ℕ)
2117, 20eqeltrrd 2162 . . . . 5 ((𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ0) → (1 − 𝑁) ∈ ℕ)
22 nncan 7658 . . . . . . 7 ((1 ∈ ℂ ∧ 𝑁 ∈ ℂ) → (1 − (1 − 𝑁)) = 𝑁)
238, 15, 22sylancr 405 . . . . . 6 ((𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ0) → (1 − (1 − 𝑁)) = 𝑁)
2423eqcomd 2090 . . . . 5 ((𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ0) → 𝑁 = (1 − (1 − 𝑁)))
25 rspceov 5650 . . . . 5 ((1 ∈ ℕ ∧ (1 − 𝑁) ∈ ℕ ∧ 𝑁 = (1 − (1 − 𝑁))) → ∃𝑥 ∈ ℕ ∃𝑦 ∈ ℕ 𝑁 = (𝑥𝑦))
2614, 21, 24, 25syl3anc 1172 . . . 4 ((𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ0) → ∃𝑥 ∈ ℕ ∃𝑦 ∈ ℕ 𝑁 = (𝑥𝑦))
2713, 26jaodan 744 . . 3 ((𝑁 ∈ ℝ ∧ (𝑁 ∈ ℕ0 ∨ -𝑁 ∈ ℕ0)) → ∃𝑥 ∈ ℕ ∃𝑦 ∈ ℕ 𝑁 = (𝑥𝑦))
28 nnre 8367 . . . . . . 7 (𝑥 ∈ ℕ → 𝑥 ∈ ℝ)
29 nnre 8367 . . . . . . 7 (𝑦 ∈ ℕ → 𝑦 ∈ ℝ)
30 resubcl 7693 . . . . . . 7 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (𝑥𝑦) ∈ ℝ)
3128, 29, 30syl2an 283 . . . . . 6 ((𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ) → (𝑥𝑦) ∈ ℝ)
32 nnz 8705 . . . . . . . 8 (𝑦 ∈ ℕ → 𝑦 ∈ ℤ)
33 nnz 8705 . . . . . . . 8 (𝑥 ∈ ℕ → 𝑥 ∈ ℤ)
34 zletric 8730 . . . . . . . 8 ((𝑦 ∈ ℤ ∧ 𝑥 ∈ ℤ) → (𝑦𝑥𝑥𝑦))
3532, 33, 34syl2anr 284 . . . . . . 7 ((𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ) → (𝑦𝑥𝑥𝑦))
36 nnnn0 8616 . . . . . . . . 9 (𝑦 ∈ ℕ → 𝑦 ∈ ℕ0)
37 nnnn0 8616 . . . . . . . . 9 (𝑥 ∈ ℕ → 𝑥 ∈ ℕ0)
38 nn0sub 8752 . . . . . . . . 9 ((𝑦 ∈ ℕ0𝑥 ∈ ℕ0) → (𝑦𝑥 ↔ (𝑥𝑦) ∈ ℕ0))
3936, 37, 38syl2anr 284 . . . . . . . 8 ((𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ) → (𝑦𝑥 ↔ (𝑥𝑦) ∈ ℕ0))
40 nn0sub 8752 . . . . . . . . . 10 ((𝑥 ∈ ℕ0𝑦 ∈ ℕ0) → (𝑥𝑦 ↔ (𝑦𝑥) ∈ ℕ0))
4137, 36, 40syl2an 283 . . . . . . . . 9 ((𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ) → (𝑥𝑦 ↔ (𝑦𝑥) ∈ ℕ0))
42 nncn 8368 . . . . . . . . . . 11 (𝑥 ∈ ℕ → 𝑥 ∈ ℂ)
43 nncn 8368 . . . . . . . . . . 11 (𝑦 ∈ ℕ → 𝑦 ∈ ℂ)
44 negsubdi2 7688 . . . . . . . . . . 11 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → -(𝑥𝑦) = (𝑦𝑥))
4542, 43, 44syl2an 283 . . . . . . . . . 10 ((𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ) → -(𝑥𝑦) = (𝑦𝑥))
4645eleq1d 2153 . . . . . . . . 9 ((𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ) → (-(𝑥𝑦) ∈ ℕ0 ↔ (𝑦𝑥) ∈ ℕ0))
4741, 46bitr4d 189 . . . . . . . 8 ((𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ) → (𝑥𝑦 ↔ -(𝑥𝑦) ∈ ℕ0))
4839, 47orbi12d 740 . . . . . . 7 ((𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ) → ((𝑦𝑥𝑥𝑦) ↔ ((𝑥𝑦) ∈ ℕ0 ∨ -(𝑥𝑦) ∈ ℕ0)))
4935, 48mpbid 145 . . . . . 6 ((𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ) → ((𝑥𝑦) ∈ ℕ0 ∨ -(𝑥𝑦) ∈ ℕ0))
5031, 49jca 300 . . . . 5 ((𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ) → ((𝑥𝑦) ∈ ℝ ∧ ((𝑥𝑦) ∈ ℕ0 ∨ -(𝑥𝑦) ∈ ℕ0)))
51 eleq1 2147 . . . . . 6 (𝑁 = (𝑥𝑦) → (𝑁 ∈ ℝ ↔ (𝑥𝑦) ∈ ℝ))
52 eleq1 2147 . . . . . . 7 (𝑁 = (𝑥𝑦) → (𝑁 ∈ ℕ0 ↔ (𝑥𝑦) ∈ ℕ0))
53 negeq 7622 . . . . . . . 8 (𝑁 = (𝑥𝑦) → -𝑁 = -(𝑥𝑦))
5453eleq1d 2153 . . . . . . 7 (𝑁 = (𝑥𝑦) → (-𝑁 ∈ ℕ0 ↔ -(𝑥𝑦) ∈ ℕ0))
5552, 54orbi12d 740 . . . . . 6 (𝑁 = (𝑥𝑦) → ((𝑁 ∈ ℕ0 ∨ -𝑁 ∈ ℕ0) ↔ ((𝑥𝑦) ∈ ℕ0 ∨ -(𝑥𝑦) ∈ ℕ0)))
5651, 55anbi12d 457 . . . . 5 (𝑁 = (𝑥𝑦) → ((𝑁 ∈ ℝ ∧ (𝑁 ∈ ℕ0 ∨ -𝑁 ∈ ℕ0)) ↔ ((𝑥𝑦) ∈ ℝ ∧ ((𝑥𝑦) ∈ ℕ0 ∨ -(𝑥𝑦) ∈ ℕ0))))
5750, 56syl5ibrcom 155 . . . 4 ((𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ) → (𝑁 = (𝑥𝑦) → (𝑁 ∈ ℝ ∧ (𝑁 ∈ ℕ0 ∨ -𝑁 ∈ ℕ0))))
5857rexlimivv 2490 . . 3 (∃𝑥 ∈ ℕ ∃𝑦 ∈ ℕ 𝑁 = (𝑥𝑦) → (𝑁 ∈ ℝ ∧ (𝑁 ∈ ℕ0 ∨ -𝑁 ∈ ℕ0)))
5927, 58impbii 124 . 2 ((𝑁 ∈ ℝ ∧ (𝑁 ∈ ℕ0 ∨ -𝑁 ∈ ℕ0)) ↔ ∃𝑥 ∈ ℕ ∃𝑦 ∈ ℕ 𝑁 = (𝑥𝑦))
601, 59bitri 182 1 (𝑁 ∈ ℤ ↔ ∃𝑥 ∈ ℕ ∃𝑦 ∈ ℕ 𝑁 = (𝑥𝑦))
Colors of variables: wff set class
Syntax hints:  wa 102  wb 103  wo 662   = wceq 1287  wcel 1436  wrex 2356   class class class wbr 3822  (class class class)co 5615  cc 7295  cr 7296  1c1 7298   + caddc 7300  cle 7470  cmin 7600  -cneg 7601  cn 8360  0cn0 8609  cz 8686
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 577  ax-in2 578  ax-io 663  ax-5 1379  ax-7 1380  ax-gen 1381  ax-ie1 1425  ax-ie2 1426  ax-8 1438  ax-10 1439  ax-11 1440  ax-i12 1441  ax-bndl 1442  ax-4 1443  ax-13 1447  ax-14 1448  ax-17 1462  ax-i9 1466  ax-ial 1470  ax-i5r 1471  ax-ext 2067  ax-sep 3934  ax-pow 3986  ax-pr 4012  ax-un 4236  ax-setind 4328  ax-cnex 7383  ax-resscn 7384  ax-1cn 7385  ax-1re 7386  ax-icn 7387  ax-addcl 7388  ax-addrcl 7389  ax-mulcl 7390  ax-addcom 7392  ax-addass 7394  ax-distr 7396  ax-i2m1 7397  ax-0lt1 7398  ax-0id 7400  ax-rnegex 7401  ax-cnre 7403  ax-pre-ltirr 7404  ax-pre-ltwlin 7405  ax-pre-lttrn 7406  ax-pre-ltadd 7408
This theorem depends on definitions:  df-bi 115  df-3or 923  df-3an 924  df-tru 1290  df-fal 1293  df-nf 1393  df-sb 1690  df-eu 1948  df-mo 1949  df-clab 2072  df-cleq 2078  df-clel 2081  df-nfc 2214  df-ne 2252  df-nel 2347  df-ral 2360  df-rex 2361  df-reu 2362  df-rab 2364  df-v 2617  df-sbc 2830  df-dif 2990  df-un 2992  df-in 2994  df-ss 3001  df-pw 3417  df-sn 3437  df-pr 3438  df-op 3440  df-uni 3639  df-int 3674  df-br 3823  df-opab 3877  df-id 4096  df-xp 4419  df-rel 4420  df-cnv 4421  df-co 4422  df-dm 4423  df-iota 4948  df-fun 4985  df-fv 4991  df-riota 5571  df-ov 5618  df-oprab 5619  df-mpt2 5620  df-pnf 7471  df-mnf 7472  df-xr 7473  df-ltxr 7474  df-le 7475  df-sub 7602  df-neg 7603  df-inn 8361  df-n0 8610  df-z 8687
This theorem is referenced by:  dfz2  8755
  Copyright terms: Public domain W3C validator