Proof of Theorem elz2
Step | Hyp | Ref
| Expression |
1 | | elznn0 9227 |
. 2
⊢ (𝑁 ∈ ℤ ↔ (𝑁 ∈ ℝ ∧ (𝑁 ∈ ℕ0 ∨
-𝑁 ∈
ℕ0))) |
2 | | nn0p1nn 9174 |
. . . . . 6
⊢ (𝑁 ∈ ℕ0
→ (𝑁 + 1) ∈
ℕ) |
3 | 2 | adantl 275 |
. . . . 5
⊢ ((𝑁 ∈ ℝ ∧ 𝑁 ∈ ℕ0)
→ (𝑁 + 1) ∈
ℕ) |
4 | | 1nn 8889 |
. . . . . 6
⊢ 1 ∈
ℕ |
5 | 4 | a1i 9 |
. . . . 5
⊢ ((𝑁 ∈ ℝ ∧ 𝑁 ∈ ℕ0)
→ 1 ∈ ℕ) |
6 | | recn 7907 |
. . . . . . . 8
⊢ (𝑁 ∈ ℝ → 𝑁 ∈
ℂ) |
7 | 6 | adantr 274 |
. . . . . . 7
⊢ ((𝑁 ∈ ℝ ∧ 𝑁 ∈ ℕ0)
→ 𝑁 ∈
ℂ) |
8 | | ax-1cn 7867 |
. . . . . . 7
⊢ 1 ∈
ℂ |
9 | | pncan 8125 |
. . . . . . 7
⊢ ((𝑁 ∈ ℂ ∧ 1 ∈
ℂ) → ((𝑁 + 1)
− 1) = 𝑁) |
10 | 7, 8, 9 | sylancl 411 |
. . . . . 6
⊢ ((𝑁 ∈ ℝ ∧ 𝑁 ∈ ℕ0)
→ ((𝑁 + 1) − 1)
= 𝑁) |
11 | 10 | eqcomd 2176 |
. . . . 5
⊢ ((𝑁 ∈ ℝ ∧ 𝑁 ∈ ℕ0)
→ 𝑁 = ((𝑁 + 1) −
1)) |
12 | | rspceov 5895 |
. . . . 5
⊢ (((𝑁 + 1) ∈ ℕ ∧ 1
∈ ℕ ∧ 𝑁 =
((𝑁 + 1) − 1)) →
∃𝑥 ∈ ℕ
∃𝑦 ∈ ℕ
𝑁 = (𝑥 − 𝑦)) |
13 | 3, 5, 11, 12 | syl3anc 1233 |
. . . 4
⊢ ((𝑁 ∈ ℝ ∧ 𝑁 ∈ ℕ0)
→ ∃𝑥 ∈
ℕ ∃𝑦 ∈
ℕ 𝑁 = (𝑥 − 𝑦)) |
14 | 4 | a1i 9 |
. . . . 5
⊢ ((𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ0)
→ 1 ∈ ℕ) |
15 | 6 | adantr 274 |
. . . . . . 7
⊢ ((𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ0)
→ 𝑁 ∈
ℂ) |
16 | | negsub 8167 |
. . . . . . 7
⊢ ((1
∈ ℂ ∧ 𝑁
∈ ℂ) → (1 + -𝑁) = (1 − 𝑁)) |
17 | 8, 15, 16 | sylancr 412 |
. . . . . 6
⊢ ((𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ0)
→ (1 + -𝑁) = (1
− 𝑁)) |
18 | | simpr 109 |
. . . . . . 7
⊢ ((𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ0)
→ -𝑁 ∈
ℕ0) |
19 | | nnnn0addcl 9165 |
. . . . . . 7
⊢ ((1
∈ ℕ ∧ -𝑁
∈ ℕ0) → (1 + -𝑁) ∈ ℕ) |
20 | 4, 18, 19 | sylancr 412 |
. . . . . 6
⊢ ((𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ0)
→ (1 + -𝑁) ∈
ℕ) |
21 | 17, 20 | eqeltrrd 2248 |
. . . . 5
⊢ ((𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ0)
→ (1 − 𝑁) ∈
ℕ) |
22 | | nncan 8148 |
. . . . . . 7
⊢ ((1
∈ ℂ ∧ 𝑁
∈ ℂ) → (1 − (1 − 𝑁)) = 𝑁) |
23 | 8, 15, 22 | sylancr 412 |
. . . . . 6
⊢ ((𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ0)
→ (1 − (1 − 𝑁)) = 𝑁) |
24 | 23 | eqcomd 2176 |
. . . . 5
⊢ ((𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ0)
→ 𝑁 = (1 − (1
− 𝑁))) |
25 | | rspceov 5895 |
. . . . 5
⊢ ((1
∈ ℕ ∧ (1 − 𝑁) ∈ ℕ ∧ 𝑁 = (1 − (1 − 𝑁))) → ∃𝑥 ∈ ℕ ∃𝑦 ∈ ℕ 𝑁 = (𝑥 − 𝑦)) |
26 | 14, 21, 24, 25 | syl3anc 1233 |
. . . 4
⊢ ((𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ0)
→ ∃𝑥 ∈
ℕ ∃𝑦 ∈
ℕ 𝑁 = (𝑥 − 𝑦)) |
27 | 13, 26 | jaodan 792 |
. . 3
⊢ ((𝑁 ∈ ℝ ∧ (𝑁 ∈ ℕ0 ∨
-𝑁 ∈
ℕ0)) → ∃𝑥 ∈ ℕ ∃𝑦 ∈ ℕ 𝑁 = (𝑥 − 𝑦)) |
28 | | nnre 8885 |
. . . . . . 7
⊢ (𝑥 ∈ ℕ → 𝑥 ∈
ℝ) |
29 | | nnre 8885 |
. . . . . . 7
⊢ (𝑦 ∈ ℕ → 𝑦 ∈
ℝ) |
30 | | resubcl 8183 |
. . . . . . 7
⊢ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (𝑥 − 𝑦) ∈ ℝ) |
31 | 28, 29, 30 | syl2an 287 |
. . . . . 6
⊢ ((𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ) → (𝑥 − 𝑦) ∈ ℝ) |
32 | | nnz 9231 |
. . . . . . . 8
⊢ (𝑦 ∈ ℕ → 𝑦 ∈
ℤ) |
33 | | nnz 9231 |
. . . . . . . 8
⊢ (𝑥 ∈ ℕ → 𝑥 ∈
ℤ) |
34 | | zletric 9256 |
. . . . . . . 8
⊢ ((𝑦 ∈ ℤ ∧ 𝑥 ∈ ℤ) → (𝑦 ≤ 𝑥 ∨ 𝑥 ≤ 𝑦)) |
35 | 32, 33, 34 | syl2anr 288 |
. . . . . . 7
⊢ ((𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ) → (𝑦 ≤ 𝑥 ∨ 𝑥 ≤ 𝑦)) |
36 | | nnnn0 9142 |
. . . . . . . . 9
⊢ (𝑦 ∈ ℕ → 𝑦 ∈
ℕ0) |
37 | | nnnn0 9142 |
. . . . . . . . 9
⊢ (𝑥 ∈ ℕ → 𝑥 ∈
ℕ0) |
38 | | nn0sub 9278 |
. . . . . . . . 9
⊢ ((𝑦 ∈ ℕ0
∧ 𝑥 ∈
ℕ0) → (𝑦 ≤ 𝑥 ↔ (𝑥 − 𝑦) ∈
ℕ0)) |
39 | 36, 37, 38 | syl2anr 288 |
. . . . . . . 8
⊢ ((𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ) → (𝑦 ≤ 𝑥 ↔ (𝑥 − 𝑦) ∈
ℕ0)) |
40 | | nn0sub 9278 |
. . . . . . . . . 10
⊢ ((𝑥 ∈ ℕ0
∧ 𝑦 ∈
ℕ0) → (𝑥 ≤ 𝑦 ↔ (𝑦 − 𝑥) ∈
ℕ0)) |
41 | 37, 36, 40 | syl2an 287 |
. . . . . . . . 9
⊢ ((𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ) → (𝑥 ≤ 𝑦 ↔ (𝑦 − 𝑥) ∈
ℕ0)) |
42 | | nncn 8886 |
. . . . . . . . . . 11
⊢ (𝑥 ∈ ℕ → 𝑥 ∈
ℂ) |
43 | | nncn 8886 |
. . . . . . . . . . 11
⊢ (𝑦 ∈ ℕ → 𝑦 ∈
ℂ) |
44 | | negsubdi2 8178 |
. . . . . . . . . . 11
⊢ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → -(𝑥 − 𝑦) = (𝑦 − 𝑥)) |
45 | 42, 43, 44 | syl2an 287 |
. . . . . . . . . 10
⊢ ((𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ) → -(𝑥 − 𝑦) = (𝑦 − 𝑥)) |
46 | 45 | eleq1d 2239 |
. . . . . . . . 9
⊢ ((𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ) → (-(𝑥 − 𝑦) ∈ ℕ0 ↔ (𝑦 − 𝑥) ∈
ℕ0)) |
47 | 41, 46 | bitr4d 190 |
. . . . . . . 8
⊢ ((𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ) → (𝑥 ≤ 𝑦 ↔ -(𝑥 − 𝑦) ∈
ℕ0)) |
48 | 39, 47 | orbi12d 788 |
. . . . . . 7
⊢ ((𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ) → ((𝑦 ≤ 𝑥 ∨ 𝑥 ≤ 𝑦) ↔ ((𝑥 − 𝑦) ∈ ℕ0 ∨ -(𝑥 − 𝑦) ∈
ℕ0))) |
49 | 35, 48 | mpbid 146 |
. . . . . 6
⊢ ((𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ) → ((𝑥 − 𝑦) ∈ ℕ0 ∨ -(𝑥 − 𝑦) ∈
ℕ0)) |
50 | 31, 49 | jca 304 |
. . . . 5
⊢ ((𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ) → ((𝑥 − 𝑦) ∈ ℝ ∧ ((𝑥 − 𝑦) ∈ ℕ0 ∨ -(𝑥 − 𝑦) ∈
ℕ0))) |
51 | | eleq1 2233 |
. . . . . 6
⊢ (𝑁 = (𝑥 − 𝑦) → (𝑁 ∈ ℝ ↔ (𝑥 − 𝑦) ∈ ℝ)) |
52 | | eleq1 2233 |
. . . . . . 7
⊢ (𝑁 = (𝑥 − 𝑦) → (𝑁 ∈ ℕ0 ↔ (𝑥 − 𝑦) ∈
ℕ0)) |
53 | | negeq 8112 |
. . . . . . . 8
⊢ (𝑁 = (𝑥 − 𝑦) → -𝑁 = -(𝑥 − 𝑦)) |
54 | 53 | eleq1d 2239 |
. . . . . . 7
⊢ (𝑁 = (𝑥 − 𝑦) → (-𝑁 ∈ ℕ0 ↔ -(𝑥 − 𝑦) ∈
ℕ0)) |
55 | 52, 54 | orbi12d 788 |
. . . . . 6
⊢ (𝑁 = (𝑥 − 𝑦) → ((𝑁 ∈ ℕ0 ∨ -𝑁 ∈ ℕ0)
↔ ((𝑥 − 𝑦) ∈ ℕ0
∨ -(𝑥 − 𝑦) ∈
ℕ0))) |
56 | 51, 55 | anbi12d 470 |
. . . . 5
⊢ (𝑁 = (𝑥 − 𝑦) → ((𝑁 ∈ ℝ ∧ (𝑁 ∈ ℕ0 ∨ -𝑁 ∈ ℕ0))
↔ ((𝑥 − 𝑦) ∈ ℝ ∧ ((𝑥 − 𝑦) ∈ ℕ0 ∨ -(𝑥 − 𝑦) ∈
ℕ0)))) |
57 | 50, 56 | syl5ibrcom 156 |
. . . 4
⊢ ((𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ) → (𝑁 = (𝑥 − 𝑦) → (𝑁 ∈ ℝ ∧ (𝑁 ∈ ℕ0 ∨ -𝑁 ∈
ℕ0)))) |
58 | 57 | rexlimivv 2593 |
. . 3
⊢
(∃𝑥 ∈
ℕ ∃𝑦 ∈
ℕ 𝑁 = (𝑥 − 𝑦) → (𝑁 ∈ ℝ ∧ (𝑁 ∈ ℕ0 ∨ -𝑁 ∈
ℕ0))) |
59 | 27, 58 | impbii 125 |
. 2
⊢ ((𝑁 ∈ ℝ ∧ (𝑁 ∈ ℕ0 ∨
-𝑁 ∈
ℕ0)) ↔ ∃𝑥 ∈ ℕ ∃𝑦 ∈ ℕ 𝑁 = (𝑥 − 𝑦)) |
60 | 1, 59 | bitri 183 |
1
⊢ (𝑁 ∈ ℤ ↔
∃𝑥 ∈ ℕ
∃𝑦 ∈ ℕ
𝑁 = (𝑥 − 𝑦)) |