ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elz2 GIF version

Theorem elz2 9474
Description: Membership in the set of integers. Commonly used in constructions of the integers as equivalence classes under subtraction of the positive integers. (Contributed by Mario Carneiro, 16-May-2014.)
Assertion
Ref Expression
elz2 (𝑁 ∈ ℤ ↔ ∃𝑥 ∈ ℕ ∃𝑦 ∈ ℕ 𝑁 = (𝑥𝑦))
Distinct variable group:   𝑥,𝑦,𝑁

Proof of Theorem elz2
StepHypRef Expression
1 elznn0 9417 . 2 (𝑁 ∈ ℤ ↔ (𝑁 ∈ ℝ ∧ (𝑁 ∈ ℕ0 ∨ -𝑁 ∈ ℕ0)))
2 nn0p1nn 9364 . . . . . 6 (𝑁 ∈ ℕ0 → (𝑁 + 1) ∈ ℕ)
32adantl 277 . . . . 5 ((𝑁 ∈ ℝ ∧ 𝑁 ∈ ℕ0) → (𝑁 + 1) ∈ ℕ)
4 1nn 9077 . . . . . 6 1 ∈ ℕ
54a1i 9 . . . . 5 ((𝑁 ∈ ℝ ∧ 𝑁 ∈ ℕ0) → 1 ∈ ℕ)
6 recn 8088 . . . . . . . 8 (𝑁 ∈ ℝ → 𝑁 ∈ ℂ)
76adantr 276 . . . . . . 7 ((𝑁 ∈ ℝ ∧ 𝑁 ∈ ℕ0) → 𝑁 ∈ ℂ)
8 ax-1cn 8048 . . . . . . 7 1 ∈ ℂ
9 pncan 8308 . . . . . . 7 ((𝑁 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝑁 + 1) − 1) = 𝑁)
107, 8, 9sylancl 413 . . . . . 6 ((𝑁 ∈ ℝ ∧ 𝑁 ∈ ℕ0) → ((𝑁 + 1) − 1) = 𝑁)
1110eqcomd 2212 . . . . 5 ((𝑁 ∈ ℝ ∧ 𝑁 ∈ ℕ0) → 𝑁 = ((𝑁 + 1) − 1))
12 rspceov 6005 . . . . 5 (((𝑁 + 1) ∈ ℕ ∧ 1 ∈ ℕ ∧ 𝑁 = ((𝑁 + 1) − 1)) → ∃𝑥 ∈ ℕ ∃𝑦 ∈ ℕ 𝑁 = (𝑥𝑦))
133, 5, 11, 12syl3anc 1250 . . . 4 ((𝑁 ∈ ℝ ∧ 𝑁 ∈ ℕ0) → ∃𝑥 ∈ ℕ ∃𝑦 ∈ ℕ 𝑁 = (𝑥𝑦))
144a1i 9 . . . . 5 ((𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ0) → 1 ∈ ℕ)
156adantr 276 . . . . . . 7 ((𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ0) → 𝑁 ∈ ℂ)
16 negsub 8350 . . . . . . 7 ((1 ∈ ℂ ∧ 𝑁 ∈ ℂ) → (1 + -𝑁) = (1 − 𝑁))
178, 15, 16sylancr 414 . . . . . 6 ((𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ0) → (1 + -𝑁) = (1 − 𝑁))
18 simpr 110 . . . . . . 7 ((𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ0) → -𝑁 ∈ ℕ0)
19 nnnn0addcl 9355 . . . . . . 7 ((1 ∈ ℕ ∧ -𝑁 ∈ ℕ0) → (1 + -𝑁) ∈ ℕ)
204, 18, 19sylancr 414 . . . . . 6 ((𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ0) → (1 + -𝑁) ∈ ℕ)
2117, 20eqeltrrd 2284 . . . . 5 ((𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ0) → (1 − 𝑁) ∈ ℕ)
22 nncan 8331 . . . . . . 7 ((1 ∈ ℂ ∧ 𝑁 ∈ ℂ) → (1 − (1 − 𝑁)) = 𝑁)
238, 15, 22sylancr 414 . . . . . 6 ((𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ0) → (1 − (1 − 𝑁)) = 𝑁)
2423eqcomd 2212 . . . . 5 ((𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ0) → 𝑁 = (1 − (1 − 𝑁)))
25 rspceov 6005 . . . . 5 ((1 ∈ ℕ ∧ (1 − 𝑁) ∈ ℕ ∧ 𝑁 = (1 − (1 − 𝑁))) → ∃𝑥 ∈ ℕ ∃𝑦 ∈ ℕ 𝑁 = (𝑥𝑦))
2614, 21, 24, 25syl3anc 1250 . . . 4 ((𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ0) → ∃𝑥 ∈ ℕ ∃𝑦 ∈ ℕ 𝑁 = (𝑥𝑦))
2713, 26jaodan 799 . . 3 ((𝑁 ∈ ℝ ∧ (𝑁 ∈ ℕ0 ∨ -𝑁 ∈ ℕ0)) → ∃𝑥 ∈ ℕ ∃𝑦 ∈ ℕ 𝑁 = (𝑥𝑦))
28 nnre 9073 . . . . . . 7 (𝑥 ∈ ℕ → 𝑥 ∈ ℝ)
29 nnre 9073 . . . . . . 7 (𝑦 ∈ ℕ → 𝑦 ∈ ℝ)
30 resubcl 8366 . . . . . . 7 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (𝑥𝑦) ∈ ℝ)
3128, 29, 30syl2an 289 . . . . . 6 ((𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ) → (𝑥𝑦) ∈ ℝ)
32 nnz 9421 . . . . . . . 8 (𝑦 ∈ ℕ → 𝑦 ∈ ℤ)
33 nnz 9421 . . . . . . . 8 (𝑥 ∈ ℕ → 𝑥 ∈ ℤ)
34 zletric 9446 . . . . . . . 8 ((𝑦 ∈ ℤ ∧ 𝑥 ∈ ℤ) → (𝑦𝑥𝑥𝑦))
3532, 33, 34syl2anr 290 . . . . . . 7 ((𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ) → (𝑦𝑥𝑥𝑦))
36 nnnn0 9332 . . . . . . . . 9 (𝑦 ∈ ℕ → 𝑦 ∈ ℕ0)
37 nnnn0 9332 . . . . . . . . 9 (𝑥 ∈ ℕ → 𝑥 ∈ ℕ0)
38 nn0sub 9469 . . . . . . . . 9 ((𝑦 ∈ ℕ0𝑥 ∈ ℕ0) → (𝑦𝑥 ↔ (𝑥𝑦) ∈ ℕ0))
3936, 37, 38syl2anr 290 . . . . . . . 8 ((𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ) → (𝑦𝑥 ↔ (𝑥𝑦) ∈ ℕ0))
40 nn0sub 9469 . . . . . . . . . 10 ((𝑥 ∈ ℕ0𝑦 ∈ ℕ0) → (𝑥𝑦 ↔ (𝑦𝑥) ∈ ℕ0))
4137, 36, 40syl2an 289 . . . . . . . . 9 ((𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ) → (𝑥𝑦 ↔ (𝑦𝑥) ∈ ℕ0))
42 nncn 9074 . . . . . . . . . . 11 (𝑥 ∈ ℕ → 𝑥 ∈ ℂ)
43 nncn 9074 . . . . . . . . . . 11 (𝑦 ∈ ℕ → 𝑦 ∈ ℂ)
44 negsubdi2 8361 . . . . . . . . . . 11 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → -(𝑥𝑦) = (𝑦𝑥))
4542, 43, 44syl2an 289 . . . . . . . . . 10 ((𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ) → -(𝑥𝑦) = (𝑦𝑥))
4645eleq1d 2275 . . . . . . . . 9 ((𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ) → (-(𝑥𝑦) ∈ ℕ0 ↔ (𝑦𝑥) ∈ ℕ0))
4741, 46bitr4d 191 . . . . . . . 8 ((𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ) → (𝑥𝑦 ↔ -(𝑥𝑦) ∈ ℕ0))
4839, 47orbi12d 795 . . . . . . 7 ((𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ) → ((𝑦𝑥𝑥𝑦) ↔ ((𝑥𝑦) ∈ ℕ0 ∨ -(𝑥𝑦) ∈ ℕ0)))
4935, 48mpbid 147 . . . . . 6 ((𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ) → ((𝑥𝑦) ∈ ℕ0 ∨ -(𝑥𝑦) ∈ ℕ0))
5031, 49jca 306 . . . . 5 ((𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ) → ((𝑥𝑦) ∈ ℝ ∧ ((𝑥𝑦) ∈ ℕ0 ∨ -(𝑥𝑦) ∈ ℕ0)))
51 eleq1 2269 . . . . . 6 (𝑁 = (𝑥𝑦) → (𝑁 ∈ ℝ ↔ (𝑥𝑦) ∈ ℝ))
52 eleq1 2269 . . . . . . 7 (𝑁 = (𝑥𝑦) → (𝑁 ∈ ℕ0 ↔ (𝑥𝑦) ∈ ℕ0))
53 negeq 8295 . . . . . . . 8 (𝑁 = (𝑥𝑦) → -𝑁 = -(𝑥𝑦))
5453eleq1d 2275 . . . . . . 7 (𝑁 = (𝑥𝑦) → (-𝑁 ∈ ℕ0 ↔ -(𝑥𝑦) ∈ ℕ0))
5552, 54orbi12d 795 . . . . . 6 (𝑁 = (𝑥𝑦) → ((𝑁 ∈ ℕ0 ∨ -𝑁 ∈ ℕ0) ↔ ((𝑥𝑦) ∈ ℕ0 ∨ -(𝑥𝑦) ∈ ℕ0)))
5651, 55anbi12d 473 . . . . 5 (𝑁 = (𝑥𝑦) → ((𝑁 ∈ ℝ ∧ (𝑁 ∈ ℕ0 ∨ -𝑁 ∈ ℕ0)) ↔ ((𝑥𝑦) ∈ ℝ ∧ ((𝑥𝑦) ∈ ℕ0 ∨ -(𝑥𝑦) ∈ ℕ0))))
5750, 56syl5ibrcom 157 . . . 4 ((𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ) → (𝑁 = (𝑥𝑦) → (𝑁 ∈ ℝ ∧ (𝑁 ∈ ℕ0 ∨ -𝑁 ∈ ℕ0))))
5857rexlimivv 2630 . . 3 (∃𝑥 ∈ ℕ ∃𝑦 ∈ ℕ 𝑁 = (𝑥𝑦) → (𝑁 ∈ ℝ ∧ (𝑁 ∈ ℕ0 ∨ -𝑁 ∈ ℕ0)))
5927, 58impbii 126 . 2 ((𝑁 ∈ ℝ ∧ (𝑁 ∈ ℕ0 ∨ -𝑁 ∈ ℕ0)) ↔ ∃𝑥 ∈ ℕ ∃𝑦 ∈ ℕ 𝑁 = (𝑥𝑦))
601, 59bitri 184 1 (𝑁 ∈ ℤ ↔ ∃𝑥 ∈ ℕ ∃𝑦 ∈ ℕ 𝑁 = (𝑥𝑦))
Colors of variables: wff set class
Syntax hints:  wa 104  wb 105  wo 710   = wceq 1373  wcel 2177  wrex 2486   class class class wbr 4054  (class class class)co 5962  cc 7953  cr 7954  1c1 7956   + caddc 7958  cle 8138  cmin 8273  -cneg 8274  cn 9066  0cn0 9325  cz 9402
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-sep 4173  ax-pow 4229  ax-pr 4264  ax-un 4493  ax-setind 4598  ax-cnex 8046  ax-resscn 8047  ax-1cn 8048  ax-1re 8049  ax-icn 8050  ax-addcl 8051  ax-addrcl 8052  ax-mulcl 8053  ax-addcom 8055  ax-addass 8057  ax-distr 8059  ax-i2m1 8060  ax-0lt1 8061  ax-0id 8063  ax-rnegex 8064  ax-cnre 8066  ax-pre-ltirr 8067  ax-pre-ltwlin 8068  ax-pre-lttrn 8069  ax-pre-ltadd 8071
This theorem depends on definitions:  df-bi 117  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-nel 2473  df-ral 2490  df-rex 2491  df-reu 2492  df-rab 2494  df-v 2775  df-sbc 3003  df-dif 3172  df-un 3174  df-in 3176  df-ss 3183  df-pw 3623  df-sn 3644  df-pr 3645  df-op 3647  df-uni 3860  df-int 3895  df-br 4055  df-opab 4117  df-id 4353  df-xp 4694  df-rel 4695  df-cnv 4696  df-co 4697  df-dm 4698  df-iota 5246  df-fun 5287  df-fv 5293  df-riota 5917  df-ov 5965  df-oprab 5966  df-mpo 5967  df-pnf 8139  df-mnf 8140  df-xr 8141  df-ltxr 8142  df-le 8143  df-sub 8275  df-neg 8276  df-inn 9067  df-n0 9326  df-z 9403
This theorem is referenced by:  dfz2  9475
  Copyright terms: Public domain W3C validator