![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > genpprecll | GIF version |
Description: Pre-closure law for general operation on lower cuts. (Contributed by Jim Kingdon, 2-Oct-2019.) |
Ref | Expression |
---|---|
genpelvl.1 | ⊢ 𝐹 = (𝑤 ∈ P, 𝑣 ∈ P ↦ 〈{𝑥 ∈ Q ∣ ∃𝑦 ∈ Q ∃𝑧 ∈ Q (𝑦 ∈ (1st ‘𝑤) ∧ 𝑧 ∈ (1st ‘𝑣) ∧ 𝑥 = (𝑦𝐺𝑧))}, {𝑥 ∈ Q ∣ ∃𝑦 ∈ Q ∃𝑧 ∈ Q (𝑦 ∈ (2nd ‘𝑤) ∧ 𝑧 ∈ (2nd ‘𝑣) ∧ 𝑥 = (𝑦𝐺𝑧))}〉) |
genpelvl.2 | ⊢ ((𝑦 ∈ Q ∧ 𝑧 ∈ Q) → (𝑦𝐺𝑧) ∈ Q) |
Ref | Expression |
---|---|
genpprecll | ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P) → ((𝐶 ∈ (1st ‘𝐴) ∧ 𝐷 ∈ (1st ‘𝐵)) → (𝐶𝐺𝐷) ∈ (1st ‘(𝐴𝐹𝐵)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2100 | . . 3 ⊢ (𝐶𝐺𝐷) = (𝐶𝐺𝐷) | |
2 | rspceov 5745 | . . 3 ⊢ ((𝐶 ∈ (1st ‘𝐴) ∧ 𝐷 ∈ (1st ‘𝐵) ∧ (𝐶𝐺𝐷) = (𝐶𝐺𝐷)) → ∃𝑔 ∈ (1st ‘𝐴)∃ℎ ∈ (1st ‘𝐵)(𝐶𝐺𝐷) = (𝑔𝐺ℎ)) | |
3 | 1, 2 | mp3an3 1272 | . 2 ⊢ ((𝐶 ∈ (1st ‘𝐴) ∧ 𝐷 ∈ (1st ‘𝐵)) → ∃𝑔 ∈ (1st ‘𝐴)∃ℎ ∈ (1st ‘𝐵)(𝐶𝐺𝐷) = (𝑔𝐺ℎ)) |
4 | genpelvl.1 | . . 3 ⊢ 𝐹 = (𝑤 ∈ P, 𝑣 ∈ P ↦ 〈{𝑥 ∈ Q ∣ ∃𝑦 ∈ Q ∃𝑧 ∈ Q (𝑦 ∈ (1st ‘𝑤) ∧ 𝑧 ∈ (1st ‘𝑣) ∧ 𝑥 = (𝑦𝐺𝑧))}, {𝑥 ∈ Q ∣ ∃𝑦 ∈ Q ∃𝑧 ∈ Q (𝑦 ∈ (2nd ‘𝑤) ∧ 𝑧 ∈ (2nd ‘𝑣) ∧ 𝑥 = (𝑦𝐺𝑧))}〉) | |
5 | genpelvl.2 | . . 3 ⊢ ((𝑦 ∈ Q ∧ 𝑧 ∈ Q) → (𝑦𝐺𝑧) ∈ Q) | |
6 | 4, 5 | genpelvl 7221 | . 2 ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P) → ((𝐶𝐺𝐷) ∈ (1st ‘(𝐴𝐹𝐵)) ↔ ∃𝑔 ∈ (1st ‘𝐴)∃ℎ ∈ (1st ‘𝐵)(𝐶𝐺𝐷) = (𝑔𝐺ℎ))) |
7 | 3, 6 | syl5ibr 155 | 1 ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P) → ((𝐶 ∈ (1st ‘𝐴) ∧ 𝐷 ∈ (1st ‘𝐵)) → (𝐶𝐺𝐷) ∈ (1st ‘(𝐴𝐹𝐵)))) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ∧ w3a 930 = wceq 1299 ∈ wcel 1448 ∃wrex 2376 {crab 2379 〈cop 3477 ‘cfv 5059 (class class class)co 5706 ∈ cmpo 5708 1st c1st 5967 2nd c2nd 5968 Qcnq 6989 Pcnp 7000 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 584 ax-in2 585 ax-io 671 ax-5 1391 ax-7 1392 ax-gen 1393 ax-ie1 1437 ax-ie2 1438 ax-8 1450 ax-10 1451 ax-11 1452 ax-i12 1453 ax-bndl 1454 ax-4 1455 ax-13 1459 ax-14 1460 ax-17 1474 ax-i9 1478 ax-ial 1482 ax-i5r 1483 ax-ext 2082 ax-coll 3983 ax-sep 3986 ax-pow 4038 ax-pr 4069 ax-un 4293 ax-setind 4390 ax-iinf 4440 |
This theorem depends on definitions: df-bi 116 df-3an 932 df-tru 1302 df-fal 1305 df-nf 1405 df-sb 1704 df-eu 1963 df-mo 1964 df-clab 2087 df-cleq 2093 df-clel 2096 df-nfc 2229 df-ne 2268 df-ral 2380 df-rex 2381 df-reu 2382 df-rab 2384 df-v 2643 df-sbc 2863 df-csb 2956 df-dif 3023 df-un 3025 df-in 3027 df-ss 3034 df-pw 3459 df-sn 3480 df-pr 3481 df-op 3483 df-uni 3684 df-int 3719 df-iun 3762 df-br 3876 df-opab 3930 df-mpt 3931 df-id 4153 df-iom 4443 df-xp 4483 df-rel 4484 df-cnv 4485 df-co 4486 df-dm 4487 df-rn 4488 df-res 4489 df-ima 4490 df-iota 5024 df-fun 5061 df-fn 5062 df-f 5063 df-f1 5064 df-fo 5065 df-f1o 5066 df-fv 5067 df-ov 5709 df-oprab 5710 df-mpo 5711 df-1st 5969 df-2nd 5970 df-qs 6365 df-ni 7013 df-nqqs 7057 df-inp 7175 |
This theorem is referenced by: genpml 7226 genprndl 7230 addnqprl 7238 mulnqprl 7277 distrlem1prl 7291 distrlem4prl 7293 ltaddpr 7306 ltexprlemrl 7319 addcanprleml 7323 addcanprlemu 7324 |
Copyright terms: Public domain | W3C validator |