ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  genpprecll GIF version

Theorem genpprecll 7223
Description: Pre-closure law for general operation on lower cuts. (Contributed by Jim Kingdon, 2-Oct-2019.)
Hypotheses
Ref Expression
genpelvl.1 𝐹 = (𝑤P, 𝑣P ↦ ⟨{𝑥Q ∣ ∃𝑦Q𝑧Q (𝑦 ∈ (1st𝑤) ∧ 𝑧 ∈ (1st𝑣) ∧ 𝑥 = (𝑦𝐺𝑧))}, {𝑥Q ∣ ∃𝑦Q𝑧Q (𝑦 ∈ (2nd𝑤) ∧ 𝑧 ∈ (2nd𝑣) ∧ 𝑥 = (𝑦𝐺𝑧))}⟩)
genpelvl.2 ((𝑦Q𝑧Q) → (𝑦𝐺𝑧) ∈ Q)
Assertion
Ref Expression
genpprecll ((𝐴P𝐵P) → ((𝐶 ∈ (1st𝐴) ∧ 𝐷 ∈ (1st𝐵)) → (𝐶𝐺𝐷) ∈ (1st ‘(𝐴𝐹𝐵))))
Distinct variable groups:   𝑥,𝑦,𝑧,𝑤,𝑣,𝐴   𝑥,𝐵,𝑦,𝑧,𝑤,𝑣   𝑥,𝐺,𝑦,𝑧,𝑤,𝑣
Allowed substitution hints:   𝐶(𝑥,𝑦,𝑧,𝑤,𝑣)   𝐷(𝑥,𝑦,𝑧,𝑤,𝑣)   𝐹(𝑥,𝑦,𝑧,𝑤,𝑣)

Proof of Theorem genpprecll
Dummy variables 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2100 . . 3 (𝐶𝐺𝐷) = (𝐶𝐺𝐷)
2 rspceov 5745 . . 3 ((𝐶 ∈ (1st𝐴) ∧ 𝐷 ∈ (1st𝐵) ∧ (𝐶𝐺𝐷) = (𝐶𝐺𝐷)) → ∃𝑔 ∈ (1st𝐴)∃ ∈ (1st𝐵)(𝐶𝐺𝐷) = (𝑔𝐺))
31, 2mp3an3 1272 . 2 ((𝐶 ∈ (1st𝐴) ∧ 𝐷 ∈ (1st𝐵)) → ∃𝑔 ∈ (1st𝐴)∃ ∈ (1st𝐵)(𝐶𝐺𝐷) = (𝑔𝐺))
4 genpelvl.1 . . 3 𝐹 = (𝑤P, 𝑣P ↦ ⟨{𝑥Q ∣ ∃𝑦Q𝑧Q (𝑦 ∈ (1st𝑤) ∧ 𝑧 ∈ (1st𝑣) ∧ 𝑥 = (𝑦𝐺𝑧))}, {𝑥Q ∣ ∃𝑦Q𝑧Q (𝑦 ∈ (2nd𝑤) ∧ 𝑧 ∈ (2nd𝑣) ∧ 𝑥 = (𝑦𝐺𝑧))}⟩)
5 genpelvl.2 . . 3 ((𝑦Q𝑧Q) → (𝑦𝐺𝑧) ∈ Q)
64, 5genpelvl 7221 . 2 ((𝐴P𝐵P) → ((𝐶𝐺𝐷) ∈ (1st ‘(𝐴𝐹𝐵)) ↔ ∃𝑔 ∈ (1st𝐴)∃ ∈ (1st𝐵)(𝐶𝐺𝐷) = (𝑔𝐺)))
73, 6syl5ibr 155 1 ((𝐴P𝐵P) → ((𝐶 ∈ (1st𝐴) ∧ 𝐷 ∈ (1st𝐵)) → (𝐶𝐺𝐷) ∈ (1st ‘(𝐴𝐹𝐵))))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  w3a 930   = wceq 1299  wcel 1448  wrex 2376  {crab 2379  cop 3477  cfv 5059  (class class class)co 5706  cmpo 5708  1st c1st 5967  2nd c2nd 5968  Qcnq 6989  Pcnp 7000
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 584  ax-in2 585  ax-io 671  ax-5 1391  ax-7 1392  ax-gen 1393  ax-ie1 1437  ax-ie2 1438  ax-8 1450  ax-10 1451  ax-11 1452  ax-i12 1453  ax-bndl 1454  ax-4 1455  ax-13 1459  ax-14 1460  ax-17 1474  ax-i9 1478  ax-ial 1482  ax-i5r 1483  ax-ext 2082  ax-coll 3983  ax-sep 3986  ax-pow 4038  ax-pr 4069  ax-un 4293  ax-setind 4390  ax-iinf 4440
This theorem depends on definitions:  df-bi 116  df-3an 932  df-tru 1302  df-fal 1305  df-nf 1405  df-sb 1704  df-eu 1963  df-mo 1964  df-clab 2087  df-cleq 2093  df-clel 2096  df-nfc 2229  df-ne 2268  df-ral 2380  df-rex 2381  df-reu 2382  df-rab 2384  df-v 2643  df-sbc 2863  df-csb 2956  df-dif 3023  df-un 3025  df-in 3027  df-ss 3034  df-pw 3459  df-sn 3480  df-pr 3481  df-op 3483  df-uni 3684  df-int 3719  df-iun 3762  df-br 3876  df-opab 3930  df-mpt 3931  df-id 4153  df-iom 4443  df-xp 4483  df-rel 4484  df-cnv 4485  df-co 4486  df-dm 4487  df-rn 4488  df-res 4489  df-ima 4490  df-iota 5024  df-fun 5061  df-fn 5062  df-f 5063  df-f1 5064  df-fo 5065  df-f1o 5066  df-fv 5067  df-ov 5709  df-oprab 5710  df-mpo 5711  df-1st 5969  df-2nd 5970  df-qs 6365  df-ni 7013  df-nqqs 7057  df-inp 7175
This theorem is referenced by:  genpml  7226  genprndl  7230  addnqprl  7238  mulnqprl  7277  distrlem1prl  7291  distrlem4prl  7293  ltaddpr  7306  ltexprlemrl  7319  addcanprleml  7323  addcanprlemu  7324
  Copyright terms: Public domain W3C validator