ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  znq GIF version

Theorem znq 9558
Description: The ratio of an integer and a positive integer is a rational number. (Contributed by NM, 12-Jan-2002.)
Assertion
Ref Expression
znq ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ) → (𝐴 / 𝐵) ∈ ℚ)

Proof of Theorem znq
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2165 . . 3 (𝐴 / 𝐵) = (𝐴 / 𝐵)
2 rspceov 5880 . . 3 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ ∧ (𝐴 / 𝐵) = (𝐴 / 𝐵)) → ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℕ (𝐴 / 𝐵) = (𝑥 / 𝑦))
31, 2mp3an3 1316 . 2 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ) → ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℕ (𝐴 / 𝐵) = (𝑥 / 𝑦))
4 elq 9556 . 2 ((𝐴 / 𝐵) ∈ ℚ ↔ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℕ (𝐴 / 𝐵) = (𝑥 / 𝑦))
53, 4sylibr 133 1 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ) → (𝐴 / 𝐵) ∈ ℚ)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103   = wceq 1343  wcel 2136  wrex 2444  (class class class)co 5841   / cdiv 8564  cn 8853  cz 9187  cq 9553
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-sep 4099  ax-pow 4152  ax-pr 4186  ax-un 4410  ax-setind 4513  ax-cnex 7840  ax-resscn 7841  ax-1cn 7842  ax-1re 7843  ax-icn 7844  ax-addcl 7845  ax-addrcl 7846  ax-mulcl 7847  ax-mulrcl 7848  ax-addcom 7849  ax-mulcom 7850  ax-addass 7851  ax-mulass 7852  ax-distr 7853  ax-i2m1 7854  ax-0lt1 7855  ax-1rid 7856  ax-0id 7857  ax-rnegex 7858  ax-precex 7859  ax-cnre 7860  ax-pre-ltirr 7861  ax-pre-ltwlin 7862  ax-pre-lttrn 7863  ax-pre-apti 7864  ax-pre-ltadd 7865  ax-pre-mulgt0 7866  ax-pre-mulext 7867
This theorem depends on definitions:  df-bi 116  df-3or 969  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2296  df-ne 2336  df-nel 2431  df-ral 2448  df-rex 2449  df-reu 2450  df-rmo 2451  df-rab 2452  df-v 2727  df-sbc 2951  df-csb 3045  df-dif 3117  df-un 3119  df-in 3121  df-ss 3128  df-pw 3560  df-sn 3581  df-pr 3582  df-op 3584  df-uni 3789  df-int 3824  df-iun 3867  df-br 3982  df-opab 4043  df-mpt 4044  df-id 4270  df-po 4273  df-iso 4274  df-xp 4609  df-rel 4610  df-cnv 4611  df-co 4612  df-dm 4613  df-rn 4614  df-res 4615  df-ima 4616  df-iota 5152  df-fun 5189  df-fn 5190  df-f 5191  df-fv 5195  df-riota 5797  df-ov 5844  df-oprab 5845  df-mpo 5846  df-1st 6105  df-2nd 6106  df-pnf 7931  df-mnf 7932  df-xr 7933  df-ltxr 7934  df-le 7935  df-sub 8067  df-neg 8068  df-reap 8469  df-ap 8476  df-div 8565  df-inn 8854  df-z 9188  df-q 9554
This theorem is referenced by:  qnegcl  9570  qreccl  9576  nnrecq  9579  elpqb  9583  qbtwnre  10188  adddivflid  10223  fldivnn0  10226  divfl0  10227  flhalf  10233  fldivnn0le  10234  flltdivnn0lt  10235  fldiv4p1lem1div2  10236  intfracq  10251  flqdiv  10252  zmodcl  10275  iexpcyc  10555  facavg  10655  bcval  10658  eirraplem  11713  dvdsmod  11796  divalglemnn  11851  divalgmod  11860  flodddiv4  11867  flodddiv4t2lthalf  11870  modgcd  11920  qredeu  12025  sqrt2irraplemnn  12107  sqrt2irrap  12108  divnumden  12124  hashdvds  12149  prmdiv  12163  phisum  12168  odzdvds  12173  pcdiv  12230  pcaddlem  12266  pcmptdvds  12271  fldivp1  12274  pcfaclem  12275  pcfac  12276  pcbc  12277  4sqlem5  12308  4sqlem6  12309  4sqlem10  12313  logbgcd1irraplemap  13487  ex-fl  13566  ex-ceil  13567
  Copyright terms: Public domain W3C validator