ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  znq GIF version

Theorem znq 9689
Description: The ratio of an integer and a positive integer is a rational number. (Contributed by NM, 12-Jan-2002.)
Assertion
Ref Expression
znq ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ) → (𝐴 / 𝐵) ∈ ℚ)

Proof of Theorem znq
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2193 . . 3 (𝐴 / 𝐵) = (𝐴 / 𝐵)
2 rspceov 5960 . . 3 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ ∧ (𝐴 / 𝐵) = (𝐴 / 𝐵)) → ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℕ (𝐴 / 𝐵) = (𝑥 / 𝑦))
31, 2mp3an3 1337 . 2 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ) → ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℕ (𝐴 / 𝐵) = (𝑥 / 𝑦))
4 elq 9687 . 2 ((𝐴 / 𝐵) ∈ ℚ ↔ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℕ (𝐴 / 𝐵) = (𝑥 / 𝑦))
53, 4sylibr 134 1 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ) → (𝐴 / 𝐵) ∈ ℚ)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1364  wcel 2164  wrex 2473  (class class class)co 5918   / cdiv 8691  cn 8982  cz 9317  cq 9684
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569  ax-cnex 7963  ax-resscn 7964  ax-1cn 7965  ax-1re 7966  ax-icn 7967  ax-addcl 7968  ax-addrcl 7969  ax-mulcl 7970  ax-mulrcl 7971  ax-addcom 7972  ax-mulcom 7973  ax-addass 7974  ax-mulass 7975  ax-distr 7976  ax-i2m1 7977  ax-0lt1 7978  ax-1rid 7979  ax-0id 7980  ax-rnegex 7981  ax-precex 7982  ax-cnre 7983  ax-pre-ltirr 7984  ax-pre-ltwlin 7985  ax-pre-lttrn 7986  ax-pre-apti 7987  ax-pre-ltadd 7988  ax-pre-mulgt0 7989  ax-pre-mulext 7990
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rmo 2480  df-rab 2481  df-v 2762  df-sbc 2986  df-csb 3081  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-int 3871  df-iun 3914  df-br 4030  df-opab 4091  df-mpt 4092  df-id 4324  df-po 4327  df-iso 4328  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-fv 5262  df-riota 5873  df-ov 5921  df-oprab 5922  df-mpo 5923  df-1st 6193  df-2nd 6194  df-pnf 8056  df-mnf 8057  df-xr 8058  df-ltxr 8059  df-le 8060  df-sub 8192  df-neg 8193  df-reap 8594  df-ap 8601  df-div 8692  df-inn 8983  df-z 9318  df-q 9685
This theorem is referenced by:  qnegcl  9701  qreccl  9707  nnrecq  9710  elpqb  9715  qbtwnre  10325  adddivflid  10361  fldivnn0  10364  divfl0  10365  flhalf  10371  fldivnn0le  10372  flltdivnn0lt  10373  fldiv4p1lem1div2  10374  fldiv4lem1div2uz2  10375  fldiv4lem1div2  10376  intfracq  10391  flqdiv  10392  zmodcl  10415  iexpcyc  10715  facavg  10817  bcval  10820  eirraplem  11920  dvdsmod  12004  divalglemnn  12059  divalgmod  12068  flodddiv4  12075  flodddiv4t2lthalf  12078  modgcd  12128  qredeu  12235  sqrt2irraplemnn  12317  sqrt2irrap  12318  divnumden  12334  hashdvds  12359  prmdiv  12373  phisum  12378  odzdvds  12383  pcdiv  12440  pcaddlem  12477  pcmptdvds  12483  fldivp1  12486  pcfaclem  12487  pcfac  12488  pcbc  12489  4sqlem5  12520  4sqlem6  12521  4sqlem10  12525  mulgmodid  13231  logbgcd1irraplemap  15101  gausslemma2dlem0d  15168  gausslemma2dlem1a  15174  gausslemma2dlem1cl  15175  gausslemma2dlem1f1o  15176  gausslemma2dlem3  15179  gausslemma2dlem4  15180  gausslemma2dlem5a  15181  gausslemma2dlem5  15182  gausslemma2dlem6  15183  lgseisenlem2  15187  lgseisenlem4  15189  lgseisen  15190  lgsquadlem1  15191  ex-fl  15217  ex-ceil  15218
  Copyright terms: Public domain W3C validator