ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  znq GIF version

Theorem znq 9637
Description: The ratio of an integer and a positive integer is a rational number. (Contributed by NM, 12-Jan-2002.)
Assertion
Ref Expression
znq ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ) → (𝐴 / 𝐵) ∈ ℚ)

Proof of Theorem znq
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2187 . . 3 (𝐴 / 𝐵) = (𝐴 / 𝐵)
2 rspceov 5930 . . 3 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ ∧ (𝐴 / 𝐵) = (𝐴 / 𝐵)) → ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℕ (𝐴 / 𝐵) = (𝑥 / 𝑦))
31, 2mp3an3 1336 . 2 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ) → ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℕ (𝐴 / 𝐵) = (𝑥 / 𝑦))
4 elq 9635 . 2 ((𝐴 / 𝐵) ∈ ℚ ↔ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℕ (𝐴 / 𝐵) = (𝑥 / 𝑦))
53, 4sylibr 134 1 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ) → (𝐴 / 𝐵) ∈ ℚ)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1363  wcel 2158  wrex 2466  (class class class)co 5888   / cdiv 8642  cn 8932  cz 9266  cq 9632
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1457  ax-7 1458  ax-gen 1459  ax-ie1 1503  ax-ie2 1504  ax-8 1514  ax-10 1515  ax-11 1516  ax-i12 1517  ax-bndl 1519  ax-4 1520  ax-17 1536  ax-i9 1540  ax-ial 1544  ax-i5r 1545  ax-13 2160  ax-14 2161  ax-ext 2169  ax-sep 4133  ax-pow 4186  ax-pr 4221  ax-un 4445  ax-setind 4548  ax-cnex 7915  ax-resscn 7916  ax-1cn 7917  ax-1re 7918  ax-icn 7919  ax-addcl 7920  ax-addrcl 7921  ax-mulcl 7922  ax-mulrcl 7923  ax-addcom 7924  ax-mulcom 7925  ax-addass 7926  ax-mulass 7927  ax-distr 7928  ax-i2m1 7929  ax-0lt1 7930  ax-1rid 7931  ax-0id 7932  ax-rnegex 7933  ax-precex 7934  ax-cnre 7935  ax-pre-ltirr 7936  ax-pre-ltwlin 7937  ax-pre-lttrn 7938  ax-pre-apti 7939  ax-pre-ltadd 7940  ax-pre-mulgt0 7941  ax-pre-mulext 7942
This theorem depends on definitions:  df-bi 117  df-3or 980  df-3an 981  df-tru 1366  df-fal 1369  df-nf 1471  df-sb 1773  df-eu 2039  df-mo 2040  df-clab 2174  df-cleq 2180  df-clel 2183  df-nfc 2318  df-ne 2358  df-nel 2453  df-ral 2470  df-rex 2471  df-reu 2472  df-rmo 2473  df-rab 2474  df-v 2751  df-sbc 2975  df-csb 3070  df-dif 3143  df-un 3145  df-in 3147  df-ss 3154  df-pw 3589  df-sn 3610  df-pr 3611  df-op 3613  df-uni 3822  df-int 3857  df-iun 3900  df-br 4016  df-opab 4077  df-mpt 4078  df-id 4305  df-po 4308  df-iso 4309  df-xp 4644  df-rel 4645  df-cnv 4646  df-co 4647  df-dm 4648  df-rn 4649  df-res 4650  df-ima 4651  df-iota 5190  df-fun 5230  df-fn 5231  df-f 5232  df-fv 5236  df-riota 5844  df-ov 5891  df-oprab 5892  df-mpo 5893  df-1st 6154  df-2nd 6155  df-pnf 8007  df-mnf 8008  df-xr 8009  df-ltxr 8010  df-le 8011  df-sub 8143  df-neg 8144  df-reap 8545  df-ap 8552  df-div 8643  df-inn 8933  df-z 9267  df-q 9633
This theorem is referenced by:  qnegcl  9649  qreccl  9655  nnrecq  9658  elpqb  9662  qbtwnre  10270  adddivflid  10305  fldivnn0  10308  divfl0  10309  flhalf  10315  fldivnn0le  10316  flltdivnn0lt  10317  fldiv4p1lem1div2  10318  intfracq  10333  flqdiv  10334  zmodcl  10357  iexpcyc  10638  facavg  10739  bcval  10742  eirraplem  11797  dvdsmod  11881  divalglemnn  11936  divalgmod  11945  flodddiv4  11952  flodddiv4t2lthalf  11955  modgcd  12005  qredeu  12110  sqrt2irraplemnn  12192  sqrt2irrap  12193  divnumden  12209  hashdvds  12234  prmdiv  12248  phisum  12253  odzdvds  12258  pcdiv  12315  pcaddlem  12351  pcmptdvds  12356  fldivp1  12359  pcfaclem  12360  pcfac  12361  pcbc  12362  4sqlem5  12393  4sqlem6  12394  4sqlem10  12398  mulgmodid  13053  logbgcd1irraplemap  14658  lgseisenlem2  14722  ex-fl  14748  ex-ceil  14749
  Copyright terms: Public domain W3C validator