ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  znq GIF version

Theorem znq 9780
Description: The ratio of an integer and a positive integer is a rational number. (Contributed by NM, 12-Jan-2002.)
Assertion
Ref Expression
znq ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ) → (𝐴 / 𝐵) ∈ ℚ)

Proof of Theorem znq
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2207 . . 3 (𝐴 / 𝐵) = (𝐴 / 𝐵)
2 rspceov 6010 . . 3 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ ∧ (𝐴 / 𝐵) = (𝐴 / 𝐵)) → ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℕ (𝐴 / 𝐵) = (𝑥 / 𝑦))
31, 2mp3an3 1339 . 2 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ) → ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℕ (𝐴 / 𝐵) = (𝑥 / 𝑦))
4 elq 9778 . 2 ((𝐴 / 𝐵) ∈ ℚ ↔ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℕ (𝐴 / 𝐵) = (𝑥 / 𝑦))
53, 4sylibr 134 1 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ) → (𝐴 / 𝐵) ∈ ℚ)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1373  wcel 2178  wrex 2487  (class class class)co 5967   / cdiv 8780  cn 9071  cz 9407  cq 9775
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-sep 4178  ax-pow 4234  ax-pr 4269  ax-un 4498  ax-setind 4603  ax-cnex 8051  ax-resscn 8052  ax-1cn 8053  ax-1re 8054  ax-icn 8055  ax-addcl 8056  ax-addrcl 8057  ax-mulcl 8058  ax-mulrcl 8059  ax-addcom 8060  ax-mulcom 8061  ax-addass 8062  ax-mulass 8063  ax-distr 8064  ax-i2m1 8065  ax-0lt1 8066  ax-1rid 8067  ax-0id 8068  ax-rnegex 8069  ax-precex 8070  ax-cnre 8071  ax-pre-ltirr 8072  ax-pre-ltwlin 8073  ax-pre-lttrn 8074  ax-pre-apti 8075  ax-pre-ltadd 8076  ax-pre-mulgt0 8077  ax-pre-mulext 8078
This theorem depends on definitions:  df-bi 117  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ne 2379  df-nel 2474  df-ral 2491  df-rex 2492  df-reu 2493  df-rmo 2494  df-rab 2495  df-v 2778  df-sbc 3006  df-csb 3102  df-dif 3176  df-un 3178  df-in 3180  df-ss 3187  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-int 3900  df-iun 3943  df-br 4060  df-opab 4122  df-mpt 4123  df-id 4358  df-po 4361  df-iso 4362  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-rn 4704  df-res 4705  df-ima 4706  df-iota 5251  df-fun 5292  df-fn 5293  df-f 5294  df-fv 5298  df-riota 5922  df-ov 5970  df-oprab 5971  df-mpo 5972  df-1st 6249  df-2nd 6250  df-pnf 8144  df-mnf 8145  df-xr 8146  df-ltxr 8147  df-le 8148  df-sub 8280  df-neg 8281  df-reap 8683  df-ap 8690  df-div 8781  df-inn 9072  df-z 9408  df-q 9776
This theorem is referenced by:  qnegcl  9792  qreccl  9798  nnrecq  9801  elpqb  9806  qbtwnre  10436  adddivflid  10472  fldivnn0  10475  divfl0  10476  flhalf  10482  fldivnn0le  10483  flltdivnn0lt  10484  fldiv4p1lem1div2  10485  fldiv4lem1div2uz2  10486  fldiv4lem1div2  10487  intfracq  10502  flqdiv  10503  zmodcl  10526  iexpcyc  10826  facavg  10928  bcval  10931  eirraplem  12203  dvdsmod  12288  divalglemnn  12344  divalgmod  12353  flodddiv4  12362  flodddiv4t2lthalf  12365  bitsdc  12373  bitsp1  12377  bitsp1o  12379  bitsfzolem  12380  bitsfzo  12381  bitsmod  12382  bitscmp  12384  bitsinv1lem  12387  modgcd  12427  qredeu  12534  sqrt2irraplemnn  12616  sqrt2irrap  12617  divnumden  12633  hashdvds  12658  prmdiv  12672  phisum  12678  odzdvds  12683  pcdiv  12740  pcaddlem  12777  pcmptdvds  12783  fldivp1  12786  pcfaclem  12787  pcfac  12788  pcbc  12789  4sqlem5  12820  4sqlem6  12821  4sqlem10  12825  mulgmodid  13612  logbgcd1irraplemap  15556  gausslemma2dlem0d  15644  gausslemma2dlem1a  15650  gausslemma2dlem1cl  15651  gausslemma2dlem1f1o  15652  gausslemma2dlem3  15655  gausslemma2dlem4  15656  gausslemma2dlem5a  15657  gausslemma2dlem5  15658  gausslemma2dlem6  15659  lgseisenlem2  15663  lgseisenlem4  15665  lgseisen  15666  lgsquadlem1  15669  lgsquadlem2  15670  2lgslem1a2  15679  2lgslem1  15683  2lgslem2  15684  ex-fl  15861  ex-ceil  15862
  Copyright terms: Public domain W3C validator