![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > znq | GIF version |
Description: The ratio of an integer and a positive integer is a rational number. (Contributed by NM, 12-Jan-2002.) |
Ref | Expression |
---|---|
znq | ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ) → (𝐴 / 𝐵) ∈ ℚ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2177 | . . 3 ⊢ (𝐴 / 𝐵) = (𝐴 / 𝐵) | |
2 | rspceov 5917 | . . 3 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ ∧ (𝐴 / 𝐵) = (𝐴 / 𝐵)) → ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℕ (𝐴 / 𝐵) = (𝑥 / 𝑦)) | |
3 | 1, 2 | mp3an3 1326 | . 2 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ) → ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℕ (𝐴 / 𝐵) = (𝑥 / 𝑦)) |
4 | elq 9622 | . 2 ⊢ ((𝐴 / 𝐵) ∈ ℚ ↔ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℕ (𝐴 / 𝐵) = (𝑥 / 𝑦)) | |
5 | 3, 4 | sylibr 134 | 1 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ) → (𝐴 / 𝐵) ∈ ℚ) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 = wceq 1353 ∈ wcel 2148 ∃wrex 2456 (class class class)co 5875 / cdiv 8629 ℕcn 8919 ℤcz 9253 ℚcq 9619 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-13 2150 ax-14 2151 ax-ext 2159 ax-sep 4122 ax-pow 4175 ax-pr 4210 ax-un 4434 ax-setind 4537 ax-cnex 7902 ax-resscn 7903 ax-1cn 7904 ax-1re 7905 ax-icn 7906 ax-addcl 7907 ax-addrcl 7908 ax-mulcl 7909 ax-mulrcl 7910 ax-addcom 7911 ax-mulcom 7912 ax-addass 7913 ax-mulass 7914 ax-distr 7915 ax-i2m1 7916 ax-0lt1 7917 ax-1rid 7918 ax-0id 7919 ax-rnegex 7920 ax-precex 7921 ax-cnre 7922 ax-pre-ltirr 7923 ax-pre-ltwlin 7924 ax-pre-lttrn 7925 ax-pre-apti 7926 ax-pre-ltadd 7927 ax-pre-mulgt0 7928 ax-pre-mulext 7929 |
This theorem depends on definitions: df-bi 117 df-3or 979 df-3an 980 df-tru 1356 df-fal 1359 df-nf 1461 df-sb 1763 df-eu 2029 df-mo 2030 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ne 2348 df-nel 2443 df-ral 2460 df-rex 2461 df-reu 2462 df-rmo 2463 df-rab 2464 df-v 2740 df-sbc 2964 df-csb 3059 df-dif 3132 df-un 3134 df-in 3136 df-ss 3143 df-pw 3578 df-sn 3599 df-pr 3600 df-op 3602 df-uni 3811 df-int 3846 df-iun 3889 df-br 4005 df-opab 4066 df-mpt 4067 df-id 4294 df-po 4297 df-iso 4298 df-xp 4633 df-rel 4634 df-cnv 4635 df-co 4636 df-dm 4637 df-rn 4638 df-res 4639 df-ima 4640 df-iota 5179 df-fun 5219 df-fn 5220 df-f 5221 df-fv 5225 df-riota 5831 df-ov 5878 df-oprab 5879 df-mpo 5880 df-1st 6141 df-2nd 6142 df-pnf 7994 df-mnf 7995 df-xr 7996 df-ltxr 7997 df-le 7998 df-sub 8130 df-neg 8131 df-reap 8532 df-ap 8539 df-div 8630 df-inn 8920 df-z 9254 df-q 9620 |
This theorem is referenced by: qnegcl 9636 qreccl 9642 nnrecq 9645 elpqb 9649 qbtwnre 10257 adddivflid 10292 fldivnn0 10295 divfl0 10296 flhalf 10302 fldivnn0le 10303 flltdivnn0lt 10304 fldiv4p1lem1div2 10305 intfracq 10320 flqdiv 10321 zmodcl 10344 iexpcyc 10625 facavg 10726 bcval 10729 eirraplem 11784 dvdsmod 11868 divalglemnn 11923 divalgmod 11932 flodddiv4 11939 flodddiv4t2lthalf 11942 modgcd 11992 qredeu 12097 sqrt2irraplemnn 12179 sqrt2irrap 12180 divnumden 12196 hashdvds 12221 prmdiv 12235 phisum 12240 odzdvds 12245 pcdiv 12302 pcaddlem 12338 pcmptdvds 12343 fldivp1 12346 pcfaclem 12347 pcfac 12348 pcbc 12349 4sqlem5 12380 4sqlem6 12381 4sqlem10 12385 mulgmodid 13022 logbgcd1irraplemap 14390 lgseisenlem2 14454 ex-fl 14480 ex-ceil 14481 |
Copyright terms: Public domain | W3C validator |