| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > gzcn | GIF version | ||
| Description: A gaussian integer is a complex number. (Contributed by Mario Carneiro, 14-Jul-2014.) |
| Ref | Expression |
|---|---|
| gzcn | ⊢ (𝐴 ∈ ℤ[i] → 𝐴 ∈ ℂ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elgz 12694 | . 2 ⊢ (𝐴 ∈ ℤ[i] ↔ (𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ ℤ ∧ (ℑ‘𝐴) ∈ ℤ)) | |
| 2 | 1 | simp1bi 1015 | 1 ⊢ (𝐴 ∈ ℤ[i] → 𝐴 ∈ ℂ) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∈ wcel 2176 ‘cfv 5271 ℂcc 7923 ℤcz 9372 ℜcre 11151 ℑcim 11152 ℤ[i]cgz 12692 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-ext 2187 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-rex 2490 df-rab 2493 df-v 2774 df-un 3170 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-br 4045 df-iota 5232 df-fv 5279 df-gz 12693 |
| This theorem is referenced by: gznegcl 12698 gzcjcl 12699 gzaddcl 12700 gzmulcl 12701 gzsubcl 12703 gzabssqcl 12704 4sqlem4a 12714 4sqlem4 12715 mul4sqlem 12716 mul4sq 12717 4sqlem12 12725 4sqlem17 12730 gzsubrg 14344 2sqlem1 15591 2sqlem2 15592 mul2sq 15593 2sqlem3 15594 |
| Copyright terms: Public domain | W3C validator |