ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  gzcn GIF version

Theorem gzcn 12513
Description: A gaussian integer is a complex number. (Contributed by Mario Carneiro, 14-Jul-2014.)
Assertion
Ref Expression
gzcn (𝐴 ∈ ℤ[i] → 𝐴 ∈ ℂ)

Proof of Theorem gzcn
StepHypRef Expression
1 elgz 12512 . 2 (𝐴 ∈ ℤ[i] ↔ (𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ ℤ ∧ (ℑ‘𝐴) ∈ ℤ))
21simp1bi 1014 1 (𝐴 ∈ ℤ[i] → 𝐴 ∈ ℂ)
Colors of variables: wff set class
Syntax hints:  wi 4  wcel 2164  cfv 5255  cc 7872  cz 9320  cre 10987  cim 10988  ℤ[i]cgz 12510
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2175
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-rex 2478  df-rab 2481  df-v 2762  df-un 3158  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-br 4031  df-iota 5216  df-fv 5263  df-gz 12511
This theorem is referenced by:  gznegcl  12516  gzcjcl  12517  gzaddcl  12518  gzmulcl  12519  gzsubcl  12521  gzabssqcl  12522  4sqlem4a  12532  4sqlem4  12533  mul4sqlem  12534  mul4sq  12535  4sqlem12  12543  4sqlem17  12548  gzsubrg  14081  2sqlem1  15271  2sqlem2  15272  mul2sq  15273  2sqlem3  15274
  Copyright terms: Public domain W3C validator