ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  gzcn GIF version

Theorem gzcn 12728
Description: A gaussian integer is a complex number. (Contributed by Mario Carneiro, 14-Jul-2014.)
Assertion
Ref Expression
gzcn (𝐴 ∈ ℤ[i] → 𝐴 ∈ ℂ)

Proof of Theorem gzcn
StepHypRef Expression
1 elgz 12727 . 2 (𝐴 ∈ ℤ[i] ↔ (𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ ℤ ∧ (ℑ‘𝐴) ∈ ℤ))
21simp1bi 1015 1 (𝐴 ∈ ℤ[i] → 𝐴 ∈ ℂ)
Colors of variables: wff set class
Syntax hints:  wi 4  wcel 2176  cfv 5272  cc 7925  cz 9374  cre 11184  cim 11185  ℤ[i]cgz 12725
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-ext 2187
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1484  df-sb 1786  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-rex 2490  df-rab 2493  df-v 2774  df-un 3170  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-br 4046  df-iota 5233  df-fv 5280  df-gz 12726
This theorem is referenced by:  gznegcl  12731  gzcjcl  12732  gzaddcl  12733  gzmulcl  12734  gzsubcl  12736  gzabssqcl  12737  4sqlem4a  12747  4sqlem4  12748  mul4sqlem  12749  mul4sq  12750  4sqlem12  12758  4sqlem17  12763  gzsubrg  14377  2sqlem1  15624  2sqlem2  15625  mul2sq  15626  2sqlem3  15627
  Copyright terms: Public domain W3C validator