![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > gzcn | GIF version |
Description: A gaussian integer is a complex number. (Contributed by Mario Carneiro, 14-Jul-2014.) |
Ref | Expression |
---|---|
gzcn | ⊢ (𝐴 ∈ ℤ[i] → 𝐴 ∈ ℂ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elgz 12509 | . 2 ⊢ (𝐴 ∈ ℤ[i] ↔ (𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ ℤ ∧ (ℑ‘𝐴) ∈ ℤ)) | |
2 | 1 | simp1bi 1014 | 1 ⊢ (𝐴 ∈ ℤ[i] → 𝐴 ∈ ℂ) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∈ wcel 2164 ‘cfv 5254 ℂcc 7870 ℤcz 9317 ℜcre 10984 ℑcim 10985 ℤ[i]cgz 12507 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2175 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-rex 2478 df-rab 2481 df-v 2762 df-un 3157 df-sn 3624 df-pr 3625 df-op 3627 df-uni 3836 df-br 4030 df-iota 5215 df-fv 5262 df-gz 12508 |
This theorem is referenced by: gznegcl 12513 gzcjcl 12514 gzaddcl 12515 gzmulcl 12516 gzsubcl 12518 gzabssqcl 12519 4sqlem4a 12529 4sqlem4 12530 mul4sqlem 12531 mul4sq 12532 4sqlem12 12540 4sqlem17 12545 gzsubrg 14070 2sqlem1 15201 2sqlem2 15202 mul2sq 15203 2sqlem3 15204 |
Copyright terms: Public domain | W3C validator |