ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  gzcn GIF version

Theorem gzcn 12895
Description: A gaussian integer is a complex number. (Contributed by Mario Carneiro, 14-Jul-2014.)
Assertion
Ref Expression
gzcn (𝐴 ∈ ℤ[i] → 𝐴 ∈ ℂ)

Proof of Theorem gzcn
StepHypRef Expression
1 elgz 12894 . 2 (𝐴 ∈ ℤ[i] ↔ (𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ ℤ ∧ (ℑ‘𝐴) ∈ ℤ))
21simp1bi 1036 1 (𝐴 ∈ ℤ[i] → 𝐴 ∈ ℂ)
Colors of variables: wff set class
Syntax hints:  wi 4  wcel 2200  cfv 5318  cc 7997  cz 9446  cre 11351  cim 11352  ℤ[i]cgz 12892
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-rex 2514  df-rab 2517  df-v 2801  df-un 3201  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-br 4084  df-iota 5278  df-fv 5326  df-gz 12893
This theorem is referenced by:  gznegcl  12898  gzcjcl  12899  gzaddcl  12900  gzmulcl  12901  gzsubcl  12903  gzabssqcl  12904  4sqlem4a  12914  4sqlem4  12915  mul4sqlem  12916  mul4sq  12917  4sqlem12  12925  4sqlem17  12930  gzsubrg  14546  2sqlem1  15793  2sqlem2  15794  mul2sq  15795  2sqlem3  15796
  Copyright terms: Public domain W3C validator