| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > elfznn0 | GIF version | ||
| Description: A member of a finite set of sequential nonnegative integers is a nonnegative integer. (Contributed by NM, 5-Aug-2005.) (Revised by Mario Carneiro, 28-Apr-2015.) |
| Ref | Expression |
|---|---|
| elfznn0 | ⊢ (𝐾 ∈ (0...𝑁) → 𝐾 ∈ ℕ0) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elfz2nn0 10204 | . 2 ⊢ (𝐾 ∈ (0...𝑁) ↔ (𝐾 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ∧ 𝐾 ≤ 𝑁)) | |
| 2 | 1 | simp1bi 1014 | 1 ⊢ (𝐾 ∈ (0...𝑁) → 𝐾 ∈ ℕ0) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∈ wcel 2167 class class class wbr 4034 (class class class)co 5925 0cc0 7896 ≤ cle 8079 ℕ0cn0 9266 ...cfz 10100 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4152 ax-pow 4208 ax-pr 4243 ax-un 4469 ax-setind 4574 ax-cnex 7987 ax-resscn 7988 ax-1cn 7989 ax-1re 7990 ax-icn 7991 ax-addcl 7992 ax-addrcl 7993 ax-mulcl 7994 ax-addcom 7996 ax-addass 7998 ax-distr 8000 ax-i2m1 8001 ax-0lt1 8002 ax-0id 8004 ax-rnegex 8005 ax-cnre 8007 ax-pre-ltirr 8008 ax-pre-ltwlin 8009 ax-pre-lttrn 8010 ax-pre-ltadd 8012 |
| This theorem depends on definitions: df-bi 117 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-reu 2482 df-rab 2484 df-v 2765 df-sbc 2990 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-int 3876 df-br 4035 df-opab 4096 df-mpt 4097 df-id 4329 df-xp 4670 df-rel 4671 df-cnv 4672 df-co 4673 df-dm 4674 df-rn 4675 df-res 4676 df-ima 4677 df-iota 5220 df-fun 5261 df-fn 5262 df-f 5263 df-fv 5267 df-riota 5880 df-ov 5928 df-oprab 5929 df-mpo 5930 df-pnf 8080 df-mnf 8081 df-xr 8082 df-ltxr 8083 df-le 8084 df-sub 8216 df-neg 8217 df-inn 9008 df-n0 9267 df-z 9344 df-uz 9619 df-fz 10101 |
| This theorem is referenced by: fz0ssnn0 10208 fz0fzdiffz0 10222 difelfzle 10226 fzo0ssnn0 10308 bcval 10858 bcrpcl 10862 bccmpl 10863 bcp1n 10870 bcp1nk 10871 permnn 10880 binomlem 11665 binom1p 11667 binom1dif 11669 bcxmas 11671 arisum 11680 arisum2 11681 pwm1geoserap1 11690 geo2sum 11696 mertenslemub 11716 mertenslemi1 11717 mertenslem2 11718 mertensabs 11719 efcvgfsum 11849 efaddlem 11856 eirraplem 11959 3dvds 12046 bitsfzolem 12136 prmdiveq 12429 hashgcdlem 12431 pcbc 12545 ennnfonelemim 12666 ctinfomlemom 12669 elply2 15055 plyf 15057 elplyd 15061 ply1termlem 15062 plyaddlem1 15067 plymullem1 15068 plyaddlem 15069 plymullem 15070 plycoeid3 15077 plycolemc 15078 plycjlemc 15080 plycj 15081 plycn 15082 plyrecj 15083 dvply1 15085 dvply2g 15086 dvdsppwf1o 15309 sgmppw 15312 1sgmprm 15314 mersenne 15317 lgseisenlem1 15395 |
| Copyright terms: Public domain | W3C validator |