ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elfznn0 GIF version

Theorem elfznn0 10183
Description: A member of a finite set of sequential nonnegative integers is a nonnegative integer. (Contributed by NM, 5-Aug-2005.) (Revised by Mario Carneiro, 28-Apr-2015.)
Assertion
Ref Expression
elfznn0 (𝐾 ∈ (0...𝑁) → 𝐾 ∈ ℕ0)

Proof of Theorem elfznn0
StepHypRef Expression
1 elfz2nn0 10181 . 2 (𝐾 ∈ (0...𝑁) ↔ (𝐾 ∈ ℕ0𝑁 ∈ ℕ0𝐾𝑁))
21simp1bi 1014 1 (𝐾 ∈ (0...𝑁) → 𝐾 ∈ ℕ0)
Colors of variables: wff set class
Syntax hints:  wi 4  wcel 2164   class class class wbr 4030  (class class class)co 5919  0cc0 7874  cle 8057  0cn0 9243  ...cfz 10077
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4148  ax-pow 4204  ax-pr 4239  ax-un 4465  ax-setind 4570  ax-cnex 7965  ax-resscn 7966  ax-1cn 7967  ax-1re 7968  ax-icn 7969  ax-addcl 7970  ax-addrcl 7971  ax-mulcl 7972  ax-addcom 7974  ax-addass 7976  ax-distr 7978  ax-i2m1 7979  ax-0lt1 7980  ax-0id 7982  ax-rnegex 7983  ax-cnre 7985  ax-pre-ltirr 7986  ax-pre-ltwlin 7987  ax-pre-lttrn 7988  ax-pre-ltadd 7990
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rab 2481  df-v 2762  df-sbc 2987  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-int 3872  df-br 4031  df-opab 4092  df-mpt 4093  df-id 4325  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-rn 4671  df-res 4672  df-ima 4673  df-iota 5216  df-fun 5257  df-fn 5258  df-f 5259  df-fv 5263  df-riota 5874  df-ov 5922  df-oprab 5923  df-mpo 5924  df-pnf 8058  df-mnf 8059  df-xr 8060  df-ltxr 8061  df-le 8062  df-sub 8194  df-neg 8195  df-inn 8985  df-n0 9244  df-z 9321  df-uz 9596  df-fz 10078
This theorem is referenced by:  fz0ssnn0  10185  fz0fzdiffz0  10199  difelfzle  10203  fzo0ssnn0  10285  bcval  10823  bcrpcl  10827  bccmpl  10828  bcp1n  10835  bcp1nk  10836  permnn  10845  binomlem  11629  binom1p  11631  binom1dif  11633  bcxmas  11635  arisum  11644  arisum2  11645  pwm1geoserap1  11654  geo2sum  11660  mertenslemub  11680  mertenslemi1  11681  mertenslem2  11682  mertensabs  11683  efcvgfsum  11813  efaddlem  11820  eirraplem  11923  prmdiveq  12377  hashgcdlem  12379  pcbc  12492  ennnfonelemim  12584  ctinfomlemom  12587  elply2  14914  plyf  14916  elplyd  14920  ply1termlem  14921  plyaddlem1  14926  plymullem1  14927  plyaddlem  14928  plymullem  14929  plycolemc  14936  plycjlemc  14938  plycj  14939  plycn  14940  plyrecj  14941  dvply1  14943  lgseisenlem1  15227
  Copyright terms: Public domain W3C validator