| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > elfznn0 | GIF version | ||
| Description: A member of a finite set of sequential nonnegative integers is a nonnegative integer. (Contributed by NM, 5-Aug-2005.) (Revised by Mario Carneiro, 28-Apr-2015.) |
| Ref | Expression |
|---|---|
| elfznn0 | ⊢ (𝐾 ∈ (0...𝑁) → 𝐾 ∈ ℕ0) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elfz2nn0 10269 | . 2 ⊢ (𝐾 ∈ (0...𝑁) ↔ (𝐾 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ∧ 𝐾 ≤ 𝑁)) | |
| 2 | 1 | simp1bi 1015 | 1 ⊢ (𝐾 ∈ (0...𝑁) → 𝐾 ∈ ℕ0) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∈ wcel 2178 class class class wbr 4059 (class class class)co 5967 0cc0 7960 ≤ cle 8143 ℕ0cn0 9330 ...cfz 10165 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2180 ax-14 2181 ax-ext 2189 ax-sep 4178 ax-pow 4234 ax-pr 4269 ax-un 4498 ax-setind 4603 ax-cnex 8051 ax-resscn 8052 ax-1cn 8053 ax-1re 8054 ax-icn 8055 ax-addcl 8056 ax-addrcl 8057 ax-mulcl 8058 ax-addcom 8060 ax-addass 8062 ax-distr 8064 ax-i2m1 8065 ax-0lt1 8066 ax-0id 8068 ax-rnegex 8069 ax-cnre 8071 ax-pre-ltirr 8072 ax-pre-ltwlin 8073 ax-pre-lttrn 8074 ax-pre-ltadd 8076 |
| This theorem depends on definitions: df-bi 117 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ne 2379 df-nel 2474 df-ral 2491 df-rex 2492 df-reu 2493 df-rab 2495 df-v 2778 df-sbc 3006 df-dif 3176 df-un 3178 df-in 3180 df-ss 3187 df-pw 3628 df-sn 3649 df-pr 3650 df-op 3652 df-uni 3865 df-int 3900 df-br 4060 df-opab 4122 df-mpt 4123 df-id 4358 df-xp 4699 df-rel 4700 df-cnv 4701 df-co 4702 df-dm 4703 df-rn 4704 df-res 4705 df-ima 4706 df-iota 5251 df-fun 5292 df-fn 5293 df-f 5294 df-fv 5298 df-riota 5922 df-ov 5970 df-oprab 5971 df-mpo 5972 df-pnf 8144 df-mnf 8145 df-xr 8146 df-ltxr 8147 df-le 8148 df-sub 8280 df-neg 8281 df-inn 9072 df-n0 9331 df-z 9408 df-uz 9684 df-fz 10166 |
| This theorem is referenced by: fz0ssnn0 10273 fz0fzdiffz0 10287 difelfzle 10291 fzo0ssnn0 10381 bcval 10931 bcrpcl 10935 bccmpl 10936 bcp1n 10943 bcp1nk 10944 permnn 10953 pfxmpt 11171 pfxfv 11175 pfxlen 11176 addlenpfx 11182 ccatpfx 11192 pfxswrd 11197 swrdpfx 11198 pfxpfx 11199 pfxpfxid 11200 lenrevpfxcctswrd 11203 swrdccatin1 11216 pfxccat3 11225 pfxccatpfx1 11227 pfxccat3a 11229 swrdccat3b 11231 binomlem 11909 binom1p 11911 binom1dif 11913 bcxmas 11915 arisum 11924 arisum2 11925 pwm1geoserap1 11934 geo2sum 11940 mertenslemub 11960 mertenslemi1 11961 mertenslem2 11962 mertensabs 11963 efcvgfsum 12093 efaddlem 12100 eirraplem 12203 3dvds 12290 bitsfzolem 12380 prmdiveq 12673 hashgcdlem 12675 pcbc 12789 ennnfonelemim 12910 ctinfomlemom 12913 elply2 15322 plyf 15324 elplyd 15328 ply1termlem 15329 plyaddlem1 15334 plymullem1 15335 plyaddlem 15336 plymullem 15337 plycoeid3 15344 plycolemc 15345 plycjlemc 15347 plycj 15348 plycn 15349 plyrecj 15350 dvply1 15352 dvply2g 15353 dvdsppwf1o 15576 sgmppw 15579 1sgmprm 15581 mersenne 15584 lgseisenlem1 15662 |
| Copyright terms: Public domain | W3C validator |