| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > elfznn0 | GIF version | ||
| Description: A member of a finite set of sequential nonnegative integers is a nonnegative integer. (Contributed by NM, 5-Aug-2005.) (Revised by Mario Carneiro, 28-Apr-2015.) |
| Ref | Expression |
|---|---|
| elfznn0 | ⊢ (𝐾 ∈ (0...𝑁) → 𝐾 ∈ ℕ0) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elfz2nn0 10304 | . 2 ⊢ (𝐾 ∈ (0...𝑁) ↔ (𝐾 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ∧ 𝐾 ≤ 𝑁)) | |
| 2 | 1 | simp1bi 1036 | 1 ⊢ (𝐾 ∈ (0...𝑁) → 𝐾 ∈ ℕ0) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∈ wcel 2200 class class class wbr 4082 (class class class)co 6000 0cc0 7995 ≤ cle 8178 ℕ0cn0 9365 ...cfz 10200 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4201 ax-pow 4257 ax-pr 4292 ax-un 4523 ax-setind 4628 ax-cnex 8086 ax-resscn 8087 ax-1cn 8088 ax-1re 8089 ax-icn 8090 ax-addcl 8091 ax-addrcl 8092 ax-mulcl 8093 ax-addcom 8095 ax-addass 8097 ax-distr 8099 ax-i2m1 8100 ax-0lt1 8101 ax-0id 8103 ax-rnegex 8104 ax-cnre 8106 ax-pre-ltirr 8107 ax-pre-ltwlin 8108 ax-pre-lttrn 8109 ax-pre-ltadd 8111 |
| This theorem depends on definitions: df-bi 117 df-3or 1003 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-nel 2496 df-ral 2513 df-rex 2514 df-reu 2515 df-rab 2517 df-v 2801 df-sbc 3029 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-int 3923 df-br 4083 df-opab 4145 df-mpt 4146 df-id 4383 df-xp 4724 df-rel 4725 df-cnv 4726 df-co 4727 df-dm 4728 df-rn 4729 df-res 4730 df-ima 4731 df-iota 5277 df-fun 5319 df-fn 5320 df-f 5321 df-fv 5325 df-riota 5953 df-ov 6003 df-oprab 6004 df-mpo 6005 df-pnf 8179 df-mnf 8180 df-xr 8181 df-ltxr 8182 df-le 8183 df-sub 8315 df-neg 8316 df-inn 9107 df-n0 9366 df-z 9443 df-uz 9719 df-fz 10201 |
| This theorem is referenced by: fz0ssnn0 10308 fz0fzdiffz0 10322 difelfzle 10326 fzo0ssnn0 10416 bcval 10966 bcrpcl 10970 bccmpl 10971 bcp1n 10978 bcp1nk 10979 permnn 10988 pfxmpt 11207 pfxfv 11211 pfxlen 11212 addlenpfx 11218 ccatpfx 11228 pfxswrd 11233 swrdpfx 11234 pfxpfx 11235 pfxpfxid 11236 lenrevpfxcctswrd 11239 swrdccatin1 11252 pfxccat3 11261 pfxccatpfx1 11263 pfxccat3a 11265 swrdccat3b 11267 binomlem 11989 binom1p 11991 binom1dif 11993 bcxmas 11995 arisum 12004 arisum2 12005 pwm1geoserap1 12014 geo2sum 12020 mertenslemub 12040 mertenslemi1 12041 mertenslem2 12042 mertensabs 12043 efcvgfsum 12173 efaddlem 12180 eirraplem 12283 3dvds 12370 bitsfzolem 12460 prmdiveq 12753 hashgcdlem 12755 pcbc 12869 ennnfonelemim 12990 ctinfomlemom 12993 elply2 15403 plyf 15405 elplyd 15409 ply1termlem 15410 plyaddlem1 15415 plymullem1 15416 plyaddlem 15417 plymullem 15418 plycoeid3 15425 plycolemc 15426 plycjlemc 15428 plycj 15429 plycn 15430 plyrecj 15431 dvply1 15433 dvply2g 15434 dvdsppwf1o 15657 sgmppw 15660 1sgmprm 15662 mersenne 15665 lgseisenlem1 15743 |
| Copyright terms: Public domain | W3C validator |