Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > elfznn0 | GIF version |
Description: A member of a finite set of sequential nonnegative integers is a nonnegative integer. (Contributed by NM, 5-Aug-2005.) (Revised by Mario Carneiro, 28-Apr-2015.) |
Ref | Expression |
---|---|
elfznn0 | ⊢ (𝐾 ∈ (0...𝑁) → 𝐾 ∈ ℕ0) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elfz2nn0 10047 | . 2 ⊢ (𝐾 ∈ (0...𝑁) ↔ (𝐾 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ∧ 𝐾 ≤ 𝑁)) | |
2 | 1 | simp1bi 1002 | 1 ⊢ (𝐾 ∈ (0...𝑁) → 𝐾 ∈ ℕ0) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∈ wcel 2136 class class class wbr 3982 (class class class)co 5842 0cc0 7753 ≤ cle 7934 ℕ0cn0 9114 ...cfz 9944 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pow 4153 ax-pr 4187 ax-un 4411 ax-setind 4514 ax-cnex 7844 ax-resscn 7845 ax-1cn 7846 ax-1re 7847 ax-icn 7848 ax-addcl 7849 ax-addrcl 7850 ax-mulcl 7851 ax-addcom 7853 ax-addass 7855 ax-distr 7857 ax-i2m1 7858 ax-0lt1 7859 ax-0id 7861 ax-rnegex 7862 ax-cnre 7864 ax-pre-ltirr 7865 ax-pre-ltwlin 7866 ax-pre-lttrn 7867 ax-pre-ltadd 7869 |
This theorem depends on definitions: df-bi 116 df-3or 969 df-3an 970 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ne 2337 df-nel 2432 df-ral 2449 df-rex 2450 df-reu 2451 df-rab 2453 df-v 2728 df-sbc 2952 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-int 3825 df-br 3983 df-opab 4044 df-mpt 4045 df-id 4271 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-rn 4615 df-res 4616 df-ima 4617 df-iota 5153 df-fun 5190 df-fn 5191 df-f 5192 df-fv 5196 df-riota 5798 df-ov 5845 df-oprab 5846 df-mpo 5847 df-pnf 7935 df-mnf 7936 df-xr 7937 df-ltxr 7938 df-le 7939 df-sub 8071 df-neg 8072 df-inn 8858 df-n0 9115 df-z 9192 df-uz 9467 df-fz 9945 |
This theorem is referenced by: fz0ssnn0 10051 fz0fzdiffz0 10065 difelfzle 10069 fzo0ssnn0 10150 bcval 10662 bcrpcl 10666 bccmpl 10667 bcp1n 10674 bcp1nk 10675 permnn 10684 binomlem 11424 binom1p 11426 binom1dif 11428 bcxmas 11430 arisum 11439 arisum2 11440 pwm1geoserap1 11449 geo2sum 11455 mertenslemub 11475 mertenslemi1 11476 mertenslem2 11477 mertensabs 11478 efcvgfsum 11608 efaddlem 11615 eirraplem 11717 prmdiveq 12168 hashgcdlem 12170 pcbc 12281 ennnfonelemim 12357 ctinfomlemom 12360 |
Copyright terms: Public domain | W3C validator |