ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elfznn0 GIF version

Theorem elfznn0 10306
Description: A member of a finite set of sequential nonnegative integers is a nonnegative integer. (Contributed by NM, 5-Aug-2005.) (Revised by Mario Carneiro, 28-Apr-2015.)
Assertion
Ref Expression
elfznn0 (𝐾 ∈ (0...𝑁) → 𝐾 ∈ ℕ0)

Proof of Theorem elfznn0
StepHypRef Expression
1 elfz2nn0 10304 . 2 (𝐾 ∈ (0...𝑁) ↔ (𝐾 ∈ ℕ0𝑁 ∈ ℕ0𝐾𝑁))
21simp1bi 1036 1 (𝐾 ∈ (0...𝑁) → 𝐾 ∈ ℕ0)
Colors of variables: wff set class
Syntax hints:  wi 4  wcel 2200   class class class wbr 4082  (class class class)co 6000  0cc0 7995  cle 8178  0cn0 9365  ...cfz 10200
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4201  ax-pow 4257  ax-pr 4292  ax-un 4523  ax-setind 4628  ax-cnex 8086  ax-resscn 8087  ax-1cn 8088  ax-1re 8089  ax-icn 8090  ax-addcl 8091  ax-addrcl 8092  ax-mulcl 8093  ax-addcom 8095  ax-addass 8097  ax-distr 8099  ax-i2m1 8100  ax-0lt1 8101  ax-0id 8103  ax-rnegex 8104  ax-cnre 8106  ax-pre-ltirr 8107  ax-pre-ltwlin 8108  ax-pre-lttrn 8109  ax-pre-ltadd 8111
This theorem depends on definitions:  df-bi 117  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2517  df-v 2801  df-sbc 3029  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-int 3923  df-br 4083  df-opab 4145  df-mpt 4146  df-id 4383  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-rn 4729  df-res 4730  df-ima 4731  df-iota 5277  df-fun 5319  df-fn 5320  df-f 5321  df-fv 5325  df-riota 5953  df-ov 6003  df-oprab 6004  df-mpo 6005  df-pnf 8179  df-mnf 8180  df-xr 8181  df-ltxr 8182  df-le 8183  df-sub 8315  df-neg 8316  df-inn 9107  df-n0 9366  df-z 9443  df-uz 9719  df-fz 10201
This theorem is referenced by:  fz0ssnn0  10308  fz0fzdiffz0  10322  difelfzle  10326  fzo0ssnn0  10416  bcval  10966  bcrpcl  10970  bccmpl  10971  bcp1n  10978  bcp1nk  10979  permnn  10988  pfxmpt  11207  pfxfv  11211  pfxlen  11212  addlenpfx  11218  ccatpfx  11228  pfxswrd  11233  swrdpfx  11234  pfxpfx  11235  pfxpfxid  11236  lenrevpfxcctswrd  11239  swrdccatin1  11252  pfxccat3  11261  pfxccatpfx1  11263  pfxccat3a  11265  swrdccat3b  11267  binomlem  11989  binom1p  11991  binom1dif  11993  bcxmas  11995  arisum  12004  arisum2  12005  pwm1geoserap1  12014  geo2sum  12020  mertenslemub  12040  mertenslemi1  12041  mertenslem2  12042  mertensabs  12043  efcvgfsum  12173  efaddlem  12180  eirraplem  12283  3dvds  12370  bitsfzolem  12460  prmdiveq  12753  hashgcdlem  12755  pcbc  12869  ennnfonelemim  12990  ctinfomlemom  12993  elply2  15403  plyf  15405  elplyd  15409  ply1termlem  15410  plyaddlem1  15415  plymullem1  15416  plyaddlem  15417  plymullem  15418  plycoeid3  15425  plycolemc  15426  plycjlemc  15428  plycj  15429  plycn  15430  plyrecj  15431  dvply1  15433  dvply2g  15434  dvdsppwf1o  15657  sgmppw  15660  1sgmprm  15662  mersenne  15665  lgseisenlem1  15743
  Copyright terms: Public domain W3C validator