Proof of Theorem sin01gt0
| Step | Hyp | Ref
 | Expression | 
| 1 |   | 0xr 8073 | 
. . . . . . . 8
⊢ 0 ∈
ℝ* | 
| 2 |   | 1re 8025 | 
. . . . . . . 8
⊢ 1 ∈
ℝ | 
| 3 |   | elioc2 10011 | 
. . . . . . . 8
⊢ ((0
∈ ℝ* ∧ 1 ∈ ℝ) → (𝐴 ∈ (0(,]1) ↔ (𝐴 ∈ ℝ ∧ 0 < 𝐴 ∧ 𝐴 ≤ 1))) | 
| 4 | 1, 2, 3 | mp2an 426 | 
. . . . . . 7
⊢ (𝐴 ∈ (0(,]1) ↔ (𝐴 ∈ ℝ ∧ 0 <
𝐴 ∧ 𝐴 ≤ 1)) | 
| 5 | 4 | simp1bi 1014 | 
. . . . . 6
⊢ (𝐴 ∈ (0(,]1) → 𝐴 ∈
ℝ) | 
| 6 |   | 3nn0 9267 | 
. . . . . 6
⊢ 3 ∈
ℕ0 | 
| 7 |   | reexpcl 10648 | 
. . . . . 6
⊢ ((𝐴 ∈ ℝ ∧ 3 ∈
ℕ0) → (𝐴↑3) ∈ ℝ) | 
| 8 | 5, 6, 7 | sylancl 413 | 
. . . . 5
⊢ (𝐴 ∈ (0(,]1) → (𝐴↑3) ∈
ℝ) | 
| 9 |   | 3re 9064 | 
. . . . . 6
⊢ 3 ∈
ℝ | 
| 10 |   | 3ap0 9086 | 
. . . . . 6
⊢ 3 #
0 | 
| 11 |   | redivclap 8758 | 
. . . . . 6
⊢ (((𝐴↑3) ∈ ℝ ∧ 3
∈ ℝ ∧ 3 # 0) → ((𝐴↑3) / 3) ∈
ℝ) | 
| 12 | 9, 10, 11 | mp3an23 1340 | 
. . . . 5
⊢ ((𝐴↑3) ∈ ℝ →
((𝐴↑3) / 3) ∈
ℝ) | 
| 13 | 8, 12 | syl 14 | 
. . . 4
⊢ (𝐴 ∈ (0(,]1) → ((𝐴↑3) / 3) ∈
ℝ) | 
| 14 |   | 3z 9355 | 
. . . . . . . . 9
⊢ 3 ∈
ℤ | 
| 15 |   | expgt0 10664 | 
. . . . . . . . 9
⊢ ((𝐴 ∈ ℝ ∧ 3 ∈
ℤ ∧ 0 < 𝐴)
→ 0 < (𝐴↑3)) | 
| 16 | 14, 15 | mp3an2 1336 | 
. . . . . . . 8
⊢ ((𝐴 ∈ ℝ ∧ 0 <
𝐴) → 0 < (𝐴↑3)) | 
| 17 | 16 | 3adant3 1019 | 
. . . . . . 7
⊢ ((𝐴 ∈ ℝ ∧ 0 <
𝐴 ∧ 𝐴 ≤ 1) → 0 < (𝐴↑3)) | 
| 18 | 4, 17 | sylbi 121 | 
. . . . . 6
⊢ (𝐴 ∈ (0(,]1) → 0 <
(𝐴↑3)) | 
| 19 |   | 0lt1 8153 | 
. . . . . . . 8
⊢ 0 <
1 | 
| 20 | 2, 19 | pm3.2i 272 | 
. . . . . . 7
⊢ (1 ∈
ℝ ∧ 0 < 1) | 
| 21 |   | 3pos 9084 | 
. . . . . . . 8
⊢ 0 <
3 | 
| 22 | 9, 21 | pm3.2i 272 | 
. . . . . . 7
⊢ (3 ∈
ℝ ∧ 0 < 3) | 
| 23 |   | 1lt3 9162 | 
. . . . . . . 8
⊢ 1 <
3 | 
| 24 |   | ltdiv2 8914 | 
. . . . . . . 8
⊢ (((1
∈ ℝ ∧ 0 < 1) ∧ (3 ∈ ℝ ∧ 0 < 3) ∧
((𝐴↑3) ∈ ℝ
∧ 0 < (𝐴↑3)))
→ (1 < 3 ↔ ((𝐴↑3) / 3) < ((𝐴↑3) / 1))) | 
| 25 | 23, 24 | mpbii 148 | 
. . . . . . 7
⊢ (((1
∈ ℝ ∧ 0 < 1) ∧ (3 ∈ ℝ ∧ 0 < 3) ∧
((𝐴↑3) ∈ ℝ
∧ 0 < (𝐴↑3)))
→ ((𝐴↑3) / 3)
< ((𝐴↑3) /
1)) | 
| 26 | 20, 22, 25 | mp3an12 1338 | 
. . . . . 6
⊢ (((𝐴↑3) ∈ ℝ ∧ 0
< (𝐴↑3)) →
((𝐴↑3) / 3) <
((𝐴↑3) /
1)) | 
| 27 | 8, 18, 26 | syl2anc 411 | 
. . . . 5
⊢ (𝐴 ∈ (0(,]1) → ((𝐴↑3) / 3) < ((𝐴↑3) / 1)) | 
| 28 | 8 | recnd 8055 | 
. . . . . 6
⊢ (𝐴 ∈ (0(,]1) → (𝐴↑3) ∈
ℂ) | 
| 29 | 28 | div1d 8807 | 
. . . . 5
⊢ (𝐴 ∈ (0(,]1) → ((𝐴↑3) / 1) = (𝐴↑3)) | 
| 30 | 27, 29 | breqtrd 4059 | 
. . . 4
⊢ (𝐴 ∈ (0(,]1) → ((𝐴↑3) / 3) < (𝐴↑3)) | 
| 31 |   | 1nn0 9265 | 
. . . . . . 7
⊢ 1 ∈
ℕ0 | 
| 32 | 31 | a1i 9 | 
. . . . . 6
⊢ (𝐴 ∈ (0(,]1) → 1 ∈
ℕ0) | 
| 33 |   | 1le3 9202 | 
. . . . . . . 8
⊢ 1 ≤
3 | 
| 34 |   | 1z 9352 | 
. . . . . . . . 9
⊢ 1 ∈
ℤ | 
| 35 | 34 | eluz1i 9608 | 
. . . . . . . 8
⊢ (3 ∈
(ℤ≥‘1) ↔ (3 ∈ ℤ ∧ 1 ≤
3)) | 
| 36 | 14, 33, 35 | mpbir2an 944 | 
. . . . . . 7
⊢ 3 ∈
(ℤ≥‘1) | 
| 37 | 36 | a1i 9 | 
. . . . . 6
⊢ (𝐴 ∈ (0(,]1) → 3 ∈
(ℤ≥‘1)) | 
| 38 | 4 | simp2bi 1015 | 
. . . . . . 7
⊢ (𝐴 ∈ (0(,]1) → 0 <
𝐴) | 
| 39 |   | 0re 8026 | 
. . . . . . . 8
⊢ 0 ∈
ℝ | 
| 40 |   | ltle 8114 | 
. . . . . . . 8
⊢ ((0
∈ ℝ ∧ 𝐴
∈ ℝ) → (0 < 𝐴 → 0 ≤ 𝐴)) | 
| 41 | 39, 5, 40 | sylancr 414 | 
. . . . . . 7
⊢ (𝐴 ∈ (0(,]1) → (0 <
𝐴 → 0 ≤ 𝐴)) | 
| 42 | 38, 41 | mpd 13 | 
. . . . . 6
⊢ (𝐴 ∈ (0(,]1) → 0 ≤
𝐴) | 
| 43 | 4 | simp3bi 1016 | 
. . . . . 6
⊢ (𝐴 ∈ (0(,]1) → 𝐴 ≤ 1) | 
| 44 | 5, 32, 37, 42, 43 | leexp2rd 10795 | 
. . . . 5
⊢ (𝐴 ∈ (0(,]1) → (𝐴↑3) ≤ (𝐴↑1)) | 
| 45 | 5 | recnd 8055 | 
. . . . . 6
⊢ (𝐴 ∈ (0(,]1) → 𝐴 ∈
ℂ) | 
| 46 | 45 | exp1d 10760 | 
. . . . 5
⊢ (𝐴 ∈ (0(,]1) → (𝐴↑1) = 𝐴) | 
| 47 | 44, 46 | breqtrd 4059 | 
. . . 4
⊢ (𝐴 ∈ (0(,]1) → (𝐴↑3) ≤ 𝐴) | 
| 48 | 13, 8, 5, 30, 47 | ltletrd 8450 | 
. . 3
⊢ (𝐴 ∈ (0(,]1) → ((𝐴↑3) / 3) < 𝐴) | 
| 49 | 13, 5 | posdifd 8559 | 
. . 3
⊢ (𝐴 ∈ (0(,]1) → (((𝐴↑3) / 3) < 𝐴 ↔ 0 < (𝐴 − ((𝐴↑3) / 3)))) | 
| 50 | 48, 49 | mpbid 147 | 
. 2
⊢ (𝐴 ∈ (0(,]1) → 0 <
(𝐴 − ((𝐴↑3) / 3))) | 
| 51 |   | sin01bnd 11922 | 
. . 3
⊢ (𝐴 ∈ (0(,]1) → ((𝐴 − ((𝐴↑3) / 3)) < (sin‘𝐴) ∧ (sin‘𝐴) < 𝐴)) | 
| 52 | 51 | simpld 112 | 
. 2
⊢ (𝐴 ∈ (0(,]1) → (𝐴 − ((𝐴↑3) / 3)) < (sin‘𝐴)) | 
| 53 | 5, 13 | resubcld 8407 | 
. . 3
⊢ (𝐴 ∈ (0(,]1) → (𝐴 − ((𝐴↑3) / 3)) ∈
ℝ) | 
| 54 | 5 | resincld 11888 | 
. . 3
⊢ (𝐴 ∈ (0(,]1) →
(sin‘𝐴) ∈
ℝ) | 
| 55 |   | lttr 8100 | 
. . 3
⊢ ((0
∈ ℝ ∧ (𝐴
− ((𝐴↑3) / 3))
∈ ℝ ∧ (sin‘𝐴) ∈ ℝ) → ((0 < (𝐴 − ((𝐴↑3) / 3)) ∧ (𝐴 − ((𝐴↑3) / 3)) < (sin‘𝐴)) → 0 <
(sin‘𝐴))) | 
| 56 | 39, 53, 54, 55 | mp3an2i 1353 | 
. 2
⊢ (𝐴 ∈ (0(,]1) → ((0 <
(𝐴 − ((𝐴↑3) / 3)) ∧ (𝐴 − ((𝐴↑3) / 3)) < (sin‘𝐴)) → 0 <
(sin‘𝐴))) | 
| 57 | 50, 52, 56 | mp2and 433 | 
1
⊢ (𝐴 ∈ (0(,]1) → 0 <
(sin‘𝐴)) |