ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sin01gt0 GIF version

Theorem sin01gt0 11946
Description: The sine of a positive real number less than or equal to 1 is positive. (Contributed by Paul Chapman, 19-Jan-2008.) (Revised by Wolf Lammen, 25-Sep-2020.)
Assertion
Ref Expression
sin01gt0 (𝐴 ∈ (0(,]1) → 0 < (sin‘𝐴))

Proof of Theorem sin01gt0
StepHypRef Expression
1 0xr 8092 . . . . . . . 8 0 ∈ ℝ*
2 1re 8044 . . . . . . . 8 1 ∈ ℝ
3 elioc2 10030 . . . . . . . 8 ((0 ∈ ℝ* ∧ 1 ∈ ℝ) → (𝐴 ∈ (0(,]1) ↔ (𝐴 ∈ ℝ ∧ 0 < 𝐴𝐴 ≤ 1)))
41, 2, 3mp2an 426 . . . . . . 7 (𝐴 ∈ (0(,]1) ↔ (𝐴 ∈ ℝ ∧ 0 < 𝐴𝐴 ≤ 1))
54simp1bi 1014 . . . . . 6 (𝐴 ∈ (0(,]1) → 𝐴 ∈ ℝ)
6 3nn0 9286 . . . . . 6 3 ∈ ℕ0
7 reexpcl 10667 . . . . . 6 ((𝐴 ∈ ℝ ∧ 3 ∈ ℕ0) → (𝐴↑3) ∈ ℝ)
85, 6, 7sylancl 413 . . . . 5 (𝐴 ∈ (0(,]1) → (𝐴↑3) ∈ ℝ)
9 3re 9083 . . . . . 6 3 ∈ ℝ
10 3ap0 9105 . . . . . 6 3 # 0
11 redivclap 8777 . . . . . 6 (((𝐴↑3) ∈ ℝ ∧ 3 ∈ ℝ ∧ 3 # 0) → ((𝐴↑3) / 3) ∈ ℝ)
129, 10, 11mp3an23 1340 . . . . 5 ((𝐴↑3) ∈ ℝ → ((𝐴↑3) / 3) ∈ ℝ)
138, 12syl 14 . . . 4 (𝐴 ∈ (0(,]1) → ((𝐴↑3) / 3) ∈ ℝ)
14 3z 9374 . . . . . . . . 9 3 ∈ ℤ
15 expgt0 10683 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 3 ∈ ℤ ∧ 0 < 𝐴) → 0 < (𝐴↑3))
1614, 15mp3an2 1336 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 0 < 𝐴) → 0 < (𝐴↑3))
17163adant3 1019 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 0 < 𝐴𝐴 ≤ 1) → 0 < (𝐴↑3))
184, 17sylbi 121 . . . . . 6 (𝐴 ∈ (0(,]1) → 0 < (𝐴↑3))
19 0lt1 8172 . . . . . . . 8 0 < 1
202, 19pm3.2i 272 . . . . . . 7 (1 ∈ ℝ ∧ 0 < 1)
21 3pos 9103 . . . . . . . 8 0 < 3
229, 21pm3.2i 272 . . . . . . 7 (3 ∈ ℝ ∧ 0 < 3)
23 1lt3 9181 . . . . . . . 8 1 < 3
24 ltdiv2 8933 . . . . . . . 8 (((1 ∈ ℝ ∧ 0 < 1) ∧ (3 ∈ ℝ ∧ 0 < 3) ∧ ((𝐴↑3) ∈ ℝ ∧ 0 < (𝐴↑3))) → (1 < 3 ↔ ((𝐴↑3) / 3) < ((𝐴↑3) / 1)))
2523, 24mpbii 148 . . . . . . 7 (((1 ∈ ℝ ∧ 0 < 1) ∧ (3 ∈ ℝ ∧ 0 < 3) ∧ ((𝐴↑3) ∈ ℝ ∧ 0 < (𝐴↑3))) → ((𝐴↑3) / 3) < ((𝐴↑3) / 1))
2620, 22, 25mp3an12 1338 . . . . . 6 (((𝐴↑3) ∈ ℝ ∧ 0 < (𝐴↑3)) → ((𝐴↑3) / 3) < ((𝐴↑3) / 1))
278, 18, 26syl2anc 411 . . . . 5 (𝐴 ∈ (0(,]1) → ((𝐴↑3) / 3) < ((𝐴↑3) / 1))
288recnd 8074 . . . . . 6 (𝐴 ∈ (0(,]1) → (𝐴↑3) ∈ ℂ)
2928div1d 8826 . . . . 5 (𝐴 ∈ (0(,]1) → ((𝐴↑3) / 1) = (𝐴↑3))
3027, 29breqtrd 4060 . . . 4 (𝐴 ∈ (0(,]1) → ((𝐴↑3) / 3) < (𝐴↑3))
31 1nn0 9284 . . . . . . 7 1 ∈ ℕ0
3231a1i 9 . . . . . 6 (𝐴 ∈ (0(,]1) → 1 ∈ ℕ0)
33 1le3 9221 . . . . . . . 8 1 ≤ 3
34 1z 9371 . . . . . . . . 9 1 ∈ ℤ
3534eluz1i 9627 . . . . . . . 8 (3 ∈ (ℤ‘1) ↔ (3 ∈ ℤ ∧ 1 ≤ 3))
3614, 33, 35mpbir2an 944 . . . . . . 7 3 ∈ (ℤ‘1)
3736a1i 9 . . . . . 6 (𝐴 ∈ (0(,]1) → 3 ∈ (ℤ‘1))
384simp2bi 1015 . . . . . . 7 (𝐴 ∈ (0(,]1) → 0 < 𝐴)
39 0re 8045 . . . . . . . 8 0 ∈ ℝ
40 ltle 8133 . . . . . . . 8 ((0 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (0 < 𝐴 → 0 ≤ 𝐴))
4139, 5, 40sylancr 414 . . . . . . 7 (𝐴 ∈ (0(,]1) → (0 < 𝐴 → 0 ≤ 𝐴))
4238, 41mpd 13 . . . . . 6 (𝐴 ∈ (0(,]1) → 0 ≤ 𝐴)
434simp3bi 1016 . . . . . 6 (𝐴 ∈ (0(,]1) → 𝐴 ≤ 1)
445, 32, 37, 42, 43leexp2rd 10814 . . . . 5 (𝐴 ∈ (0(,]1) → (𝐴↑3) ≤ (𝐴↑1))
455recnd 8074 . . . . . 6 (𝐴 ∈ (0(,]1) → 𝐴 ∈ ℂ)
4645exp1d 10779 . . . . 5 (𝐴 ∈ (0(,]1) → (𝐴↑1) = 𝐴)
4744, 46breqtrd 4060 . . . 4 (𝐴 ∈ (0(,]1) → (𝐴↑3) ≤ 𝐴)
4813, 8, 5, 30, 47ltletrd 8469 . . 3 (𝐴 ∈ (0(,]1) → ((𝐴↑3) / 3) < 𝐴)
4913, 5posdifd 8578 . . 3 (𝐴 ∈ (0(,]1) → (((𝐴↑3) / 3) < 𝐴 ↔ 0 < (𝐴 − ((𝐴↑3) / 3))))
5048, 49mpbid 147 . 2 (𝐴 ∈ (0(,]1) → 0 < (𝐴 − ((𝐴↑3) / 3)))
51 sin01bnd 11941 . . 3 (𝐴 ∈ (0(,]1) → ((𝐴 − ((𝐴↑3) / 3)) < (sin‘𝐴) ∧ (sin‘𝐴) < 𝐴))
5251simpld 112 . 2 (𝐴 ∈ (0(,]1) → (𝐴 − ((𝐴↑3) / 3)) < (sin‘𝐴))
535, 13resubcld 8426 . . 3 (𝐴 ∈ (0(,]1) → (𝐴 − ((𝐴↑3) / 3)) ∈ ℝ)
545resincld 11907 . . 3 (𝐴 ∈ (0(,]1) → (sin‘𝐴) ∈ ℝ)
55 lttr 8119 . . 3 ((0 ∈ ℝ ∧ (𝐴 − ((𝐴↑3) / 3)) ∈ ℝ ∧ (sin‘𝐴) ∈ ℝ) → ((0 < (𝐴 − ((𝐴↑3) / 3)) ∧ (𝐴 − ((𝐴↑3) / 3)) < (sin‘𝐴)) → 0 < (sin‘𝐴)))
5639, 53, 54, 55mp3an2i 1353 . 2 (𝐴 ∈ (0(,]1) → ((0 < (𝐴 − ((𝐴↑3) / 3)) ∧ (𝐴 − ((𝐴↑3) / 3)) < (sin‘𝐴)) → 0 < (sin‘𝐴)))
5750, 52, 56mp2and 433 1 (𝐴 ∈ (0(,]1) → 0 < (sin‘𝐴))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  w3a 980  wcel 2167   class class class wbr 4034  cfv 5259  (class class class)co 5925  cr 7897  0cc0 7898  1c1 7899  *cxr 8079   < clt 8080  cle 8081  cmin 8216   # cap 8627   / cdiv 8718  3c3 9061  0cn0 9268  cz 9345  cuz 9620  (,]cioc 9983  cexp 10649  sincsin 11828
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4149  ax-sep 4152  ax-nul 4160  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-iinf 4625  ax-cnex 7989  ax-resscn 7990  ax-1cn 7991  ax-1re 7992  ax-icn 7993  ax-addcl 7994  ax-addrcl 7995  ax-mulcl 7996  ax-mulrcl 7997  ax-addcom 7998  ax-mulcom 7999  ax-addass 8000  ax-mulass 8001  ax-distr 8002  ax-i2m1 8003  ax-0lt1 8004  ax-1rid 8005  ax-0id 8006  ax-rnegex 8007  ax-precex 8008  ax-cnre 8009  ax-pre-ltirr 8010  ax-pre-ltwlin 8011  ax-pre-lttrn 8012  ax-pre-apti 8013  ax-pre-ltadd 8014  ax-pre-mulgt0 8015  ax-pre-mulext 8016  ax-arch 8017  ax-caucvg 8018
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3452  df-if 3563  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-iun 3919  df-br 4035  df-opab 4096  df-mpt 4097  df-tr 4133  df-id 4329  df-po 4332  df-iso 4333  df-iord 4402  df-on 4404  df-ilim 4405  df-suc 4407  df-iom 4628  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-f1 5264  df-fo 5265  df-f1o 5266  df-fv 5267  df-isom 5268  df-riota 5880  df-ov 5928  df-oprab 5929  df-mpo 5930  df-1st 6207  df-2nd 6208  df-recs 6372  df-irdg 6437  df-frec 6458  df-1o 6483  df-oadd 6487  df-er 6601  df-en 6809  df-dom 6810  df-fin 6811  df-pnf 8082  df-mnf 8083  df-xr 8084  df-ltxr 8085  df-le 8086  df-sub 8218  df-neg 8219  df-reap 8621  df-ap 8628  df-div 8719  df-inn 9010  df-2 9068  df-3 9069  df-4 9070  df-5 9071  df-6 9072  df-7 9073  df-8 9074  df-n0 9269  df-z 9346  df-uz 9621  df-q 9713  df-rp 9748  df-ioc 9987  df-ico 9988  df-fz 10103  df-fzo 10237  df-seqfrec 10559  df-exp 10650  df-fac 10837  df-ihash 10887  df-shft 10999  df-cj 11026  df-re 11027  df-im 11028  df-rsqrt 11182  df-abs 11183  df-clim 11463  df-sumdc 11538  df-ef 11832  df-sin 11834
This theorem is referenced by:  sin02gt0  11948  sincos1sgn  11949  sincos4thpi  15184
  Copyright terms: Public domain W3C validator