ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  subgbas GIF version

Theorem subgbas 13681
Description: The base of the restricted group in a subgroup. (Contributed by Mario Carneiro, 2-Dec-2014.)
Hypothesis
Ref Expression
subggrp.h 𝐻 = (𝐺s 𝑆)
Assertion
Ref Expression
subgbas (𝑆 ∈ (SubGrp‘𝐺) → 𝑆 = (Base‘𝐻))

Proof of Theorem subgbas
StepHypRef Expression
1 subggrp.h . . 3 𝐻 = (𝐺s 𝑆)
21a1i 9 . 2 (𝑆 ∈ (SubGrp‘𝐺) → 𝐻 = (𝐺s 𝑆))
3 eqid 2209 . . 3 (Base‘𝐺) = (Base‘𝐺)
43a1i 9 . 2 (𝑆 ∈ (SubGrp‘𝐺) → (Base‘𝐺) = (Base‘𝐺))
53issubg 13676 . . 3 (𝑆 ∈ (SubGrp‘𝐺) ↔ (𝐺 ∈ Grp ∧ 𝑆 ⊆ (Base‘𝐺) ∧ (𝐺s 𝑆) ∈ Grp))
65simp1bi 1017 . 2 (𝑆 ∈ (SubGrp‘𝐺) → 𝐺 ∈ Grp)
73subgss 13677 . 2 (𝑆 ∈ (SubGrp‘𝐺) → 𝑆 ⊆ (Base‘𝐺))
82, 4, 6, 7ressbas2d 13067 1 (𝑆 ∈ (SubGrp‘𝐺) → 𝑆 = (Base‘𝐻))
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1375  wcel 2180  wss 3177  cfv 5294  (class class class)co 5974  Basecbs 12998  s cress 12999  Grpcgrp 13499  SubGrpcsubg 13670
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 713  ax-5 1473  ax-7 1474  ax-gen 1475  ax-ie1 1519  ax-ie2 1520  ax-8 1530  ax-10 1531  ax-11 1532  ax-i12 1533  ax-bndl 1535  ax-4 1536  ax-17 1552  ax-i9 1556  ax-ial 1560  ax-i5r 1561  ax-13 2182  ax-14 2183  ax-ext 2191  ax-sep 4181  ax-pow 4237  ax-pr 4272  ax-un 4501  ax-setind 4606  ax-cnex 8058  ax-resscn 8059  ax-1re 8061  ax-addrcl 8064
This theorem depends on definitions:  df-bi 117  df-3an 985  df-tru 1378  df-fal 1381  df-nf 1487  df-sb 1789  df-eu 2060  df-mo 2061  df-clab 2196  df-cleq 2202  df-clel 2205  df-nfc 2341  df-ne 2381  df-ral 2493  df-rex 2494  df-rab 2497  df-v 2781  df-sbc 3009  df-csb 3105  df-dif 3179  df-un 3181  df-in 3183  df-ss 3190  df-nul 3472  df-pw 3631  df-sn 3652  df-pr 3653  df-op 3655  df-uni 3868  df-int 3903  df-br 4063  df-opab 4125  df-mpt 4126  df-id 4361  df-xp 4702  df-rel 4703  df-cnv 4704  df-co 4705  df-dm 4706  df-rn 4707  df-res 4708  df-ima 4709  df-iota 5254  df-fun 5296  df-fn 5297  df-fv 5302  df-ov 5977  df-oprab 5978  df-mpo 5979  df-inn 9079  df-ndx 13001  df-slot 13002  df-base 13004  df-sets 13005  df-iress 13006  df-subg 13673
This theorem is referenced by:  subg0  13683  subginv  13684  subg0cl  13685  subginvcl  13686  subgcl  13687  subgsub  13689  subgmulg  13691  issubg2m  13692  subsubg  13700  nmznsg  13716  subgabl  13835  subrngbas  14135  issubrng2  14139  subrgbas  14159  issubrg2  14170
  Copyright terms: Public domain W3C validator