![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > subgbas | GIF version |
Description: The base of the restricted group in a subgroup. (Contributed by Mario Carneiro, 2-Dec-2014.) |
Ref | Expression |
---|---|
subggrp.h | ⊢ 𝐻 = (𝐺 ↾s 𝑆) |
Ref | Expression |
---|---|
subgbas | ⊢ (𝑆 ∈ (SubGrp‘𝐺) → 𝑆 = (Base‘𝐻)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | subggrp.h | . . 3 ⊢ 𝐻 = (𝐺 ↾s 𝑆) | |
2 | 1 | a1i 9 | . 2 ⊢ (𝑆 ∈ (SubGrp‘𝐺) → 𝐻 = (𝐺 ↾s 𝑆)) |
3 | eqid 2177 | . . 3 ⊢ (Base‘𝐺) = (Base‘𝐺) | |
4 | 3 | a1i 9 | . 2 ⊢ (𝑆 ∈ (SubGrp‘𝐺) → (Base‘𝐺) = (Base‘𝐺)) |
5 | 3 | issubg 13038 | . . 3 ⊢ (𝑆 ∈ (SubGrp‘𝐺) ↔ (𝐺 ∈ Grp ∧ 𝑆 ⊆ (Base‘𝐺) ∧ (𝐺 ↾s 𝑆) ∈ Grp)) |
6 | 5 | simp1bi 1012 | . 2 ⊢ (𝑆 ∈ (SubGrp‘𝐺) → 𝐺 ∈ Grp) |
7 | 3 | subgss 13039 | . 2 ⊢ (𝑆 ∈ (SubGrp‘𝐺) → 𝑆 ⊆ (Base‘𝐺)) |
8 | 2, 4, 6, 7 | ressbas2d 12530 | 1 ⊢ (𝑆 ∈ (SubGrp‘𝐺) → 𝑆 = (Base‘𝐻)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1353 ∈ wcel 2148 ⊆ wss 3131 ‘cfv 5218 (class class class)co 5877 Basecbs 12464 ↾s cress 12465 Grpcgrp 12882 SubGrpcsubg 13032 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-13 2150 ax-14 2151 ax-ext 2159 ax-sep 4123 ax-pow 4176 ax-pr 4211 ax-un 4435 ax-setind 4538 ax-cnex 7904 ax-resscn 7905 ax-1re 7907 ax-addrcl 7910 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-fal 1359 df-nf 1461 df-sb 1763 df-eu 2029 df-mo 2030 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ne 2348 df-ral 2460 df-rex 2461 df-rab 2464 df-v 2741 df-sbc 2965 df-csb 3060 df-dif 3133 df-un 3135 df-in 3137 df-ss 3144 df-nul 3425 df-pw 3579 df-sn 3600 df-pr 3601 df-op 3603 df-uni 3812 df-int 3847 df-br 4006 df-opab 4067 df-mpt 4068 df-id 4295 df-xp 4634 df-rel 4635 df-cnv 4636 df-co 4637 df-dm 4638 df-rn 4639 df-res 4640 df-ima 4641 df-iota 5180 df-fun 5220 df-fn 5221 df-fv 5226 df-ov 5880 df-oprab 5881 df-mpo 5882 df-inn 8922 df-ndx 12467 df-slot 12468 df-base 12470 df-sets 12471 df-iress 12472 df-subg 13035 |
This theorem is referenced by: subg0 13045 subginv 13046 subg0cl 13047 subginvcl 13048 subgcl 13049 subgsub 13051 subgmulg 13053 issubg2m 13054 subsubg 13062 nmznsg 13078 subrgbas 13356 issubrg2 13367 |
Copyright terms: Public domain | W3C validator |