| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > ringgrp | GIF version | ||
| Description: A ring is a group. (Contributed by NM, 15-Sep-2011.) | 
| Ref | Expression | 
|---|---|
| ringgrp | ⊢ (𝑅 ∈ Ring → 𝑅 ∈ Grp) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | eqid 2196 | . . 3 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
| 2 | eqid 2196 | . . 3 ⊢ (mulGrp‘𝑅) = (mulGrp‘𝑅) | |
| 3 | eqid 2196 | . . 3 ⊢ (+g‘𝑅) = (+g‘𝑅) | |
| 4 | eqid 2196 | . . 3 ⊢ (.r‘𝑅) = (.r‘𝑅) | |
| 5 | 1, 2, 3, 4 | isring 13556 | . 2 ⊢ (𝑅 ∈ Ring ↔ (𝑅 ∈ Grp ∧ (mulGrp‘𝑅) ∈ Mnd ∧ ∀𝑥 ∈ (Base‘𝑅)∀𝑦 ∈ (Base‘𝑅)∀𝑧 ∈ (Base‘𝑅)((𝑥(.r‘𝑅)(𝑦(+g‘𝑅)𝑧)) = ((𝑥(.r‘𝑅)𝑦)(+g‘𝑅)(𝑥(.r‘𝑅)𝑧)) ∧ ((𝑥(+g‘𝑅)𝑦)(.r‘𝑅)𝑧) = ((𝑥(.r‘𝑅)𝑧)(+g‘𝑅)(𝑦(.r‘𝑅)𝑧))))) | 
| 6 | 5 | simp1bi 1014 | 1 ⊢ (𝑅 ∈ Ring → 𝑅 ∈ Grp) | 
| Colors of variables: wff set class | 
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1364 ∈ wcel 2167 ∀wral 2475 ‘cfv 5258 (class class class)co 5922 Basecbs 12678 +gcplusg 12755 .rcmulr 12756 Mndcmnd 13057 Grpcgrp 13132 mulGrpcmgp 13476 Ringcrg 13552 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-pow 4207 ax-pr 4242 ax-un 4468 ax-cnex 7970 ax-resscn 7971 ax-1re 7973 ax-addrcl 7976 | 
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-rab 2484 df-v 2765 df-sbc 2990 df-un 3161 df-in 3163 df-ss 3170 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-int 3875 df-br 4034 df-opab 4095 df-mpt 4096 df-id 4328 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-rn 4674 df-res 4675 df-iota 5219 df-fun 5260 df-fn 5261 df-fv 5266 df-ov 5925 df-inn 8991 df-2 9049 df-3 9050 df-ndx 12681 df-slot 12682 df-base 12684 df-plusg 12768 df-mulr 12769 df-ring 13554 | 
| This theorem is referenced by: ringgrpd 13561 ringmnd 13562 ring0cl 13577 ringacl 13586 ringcom 13587 ringabl 13588 ringlz 13599 ringrz 13600 ringnegl 13607 ringnegr 13608 ringmneg1 13609 ringmneg2 13610 ringm2neg 13611 ringsubdi 13612 ringsubdir 13613 mulgass2 13614 ringlghm 13617 ringrghm 13618 ringressid 13619 imasring 13620 opprring 13635 dvdsrneg 13659 unitnegcl 13686 dvrdir 13699 dfrhm2 13710 isrhm 13714 isrhmd 13722 rhmfn 13728 rhmval 13729 subrgsubg 13783 lmodfgrp 13852 lmod0vs 13877 lmodvsneg 13887 lmodsubvs 13899 lmodsubdi 13900 lmodsubdir 13901 rmodislmodlem 13906 rmodislmod 13907 issubrgd 14008 lidlsubg 14042 cnfld0 14127 cnfldneg 14129 cnfldsub 14131 cnsubglem 14135 zringgrp 14151 mulgrhm 14165 zrhmulg 14176 | 
| Copyright terms: Public domain | W3C validator |