![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > ringgrp | GIF version |
Description: A ring is a group. (Contributed by NM, 15-Sep-2011.) |
Ref | Expression |
---|---|
ringgrp | ⊢ (𝑅 ∈ Ring → 𝑅 ∈ Grp) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2193 | . . 3 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
2 | eqid 2193 | . . 3 ⊢ (mulGrp‘𝑅) = (mulGrp‘𝑅) | |
3 | eqid 2193 | . . 3 ⊢ (+g‘𝑅) = (+g‘𝑅) | |
4 | eqid 2193 | . . 3 ⊢ (.r‘𝑅) = (.r‘𝑅) | |
5 | 1, 2, 3, 4 | isring 13496 | . 2 ⊢ (𝑅 ∈ Ring ↔ (𝑅 ∈ Grp ∧ (mulGrp‘𝑅) ∈ Mnd ∧ ∀𝑥 ∈ (Base‘𝑅)∀𝑦 ∈ (Base‘𝑅)∀𝑧 ∈ (Base‘𝑅)((𝑥(.r‘𝑅)(𝑦(+g‘𝑅)𝑧)) = ((𝑥(.r‘𝑅)𝑦)(+g‘𝑅)(𝑥(.r‘𝑅)𝑧)) ∧ ((𝑥(+g‘𝑅)𝑦)(.r‘𝑅)𝑧) = ((𝑥(.r‘𝑅)𝑧)(+g‘𝑅)(𝑦(.r‘𝑅)𝑧))))) |
6 | 5 | simp1bi 1014 | 1 ⊢ (𝑅 ∈ Ring → 𝑅 ∈ Grp) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 = wceq 1364 ∈ wcel 2164 ∀wral 2472 ‘cfv 5254 (class class class)co 5918 Basecbs 12618 +gcplusg 12695 .rcmulr 12696 Mndcmnd 12997 Grpcgrp 13072 mulGrpcmgp 13416 Ringcrg 13492 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-sep 4147 ax-pow 4203 ax-pr 4238 ax-un 4464 ax-cnex 7963 ax-resscn 7964 ax-1re 7966 ax-addrcl 7969 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ral 2477 df-rex 2478 df-rab 2481 df-v 2762 df-sbc 2986 df-un 3157 df-in 3159 df-ss 3166 df-pw 3603 df-sn 3624 df-pr 3625 df-op 3627 df-uni 3836 df-int 3871 df-br 4030 df-opab 4091 df-mpt 4092 df-id 4324 df-xp 4665 df-rel 4666 df-cnv 4667 df-co 4668 df-dm 4669 df-rn 4670 df-res 4671 df-iota 5215 df-fun 5256 df-fn 5257 df-fv 5262 df-ov 5921 df-inn 8983 df-2 9041 df-3 9042 df-ndx 12621 df-slot 12622 df-base 12624 df-plusg 12708 df-mulr 12709 df-ring 13494 |
This theorem is referenced by: ringgrpd 13501 ringmnd 13502 ring0cl 13517 ringacl 13526 ringcom 13527 ringabl 13528 ringlz 13539 ringrz 13540 ringnegl 13547 ringnegr 13548 ringmneg1 13549 ringmneg2 13550 ringm2neg 13551 ringsubdi 13552 ringsubdir 13553 mulgass2 13554 ringlghm 13557 ringrghm 13558 ringressid 13559 imasring 13560 opprring 13575 dvdsrneg 13599 unitnegcl 13626 dvrdir 13639 dfrhm2 13650 isrhm 13654 isrhmd 13662 rhmfn 13668 rhmval 13669 subrgsubg 13723 lmodfgrp 13792 lmod0vs 13817 lmodvsneg 13827 lmodsubvs 13839 lmodsubdi 13840 lmodsubdir 13841 rmodislmodlem 13846 rmodislmod 13847 issubrgd 13948 lidlsubg 13982 cnfld0 14059 cnfldneg 14061 cnfldsub 14063 cnsubglem 14067 zringgrp 14083 mulgrhm 14097 zrhmulg 14108 |
Copyright terms: Public domain | W3C validator |