| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ringgrp | GIF version | ||
| Description: A ring is a group. (Contributed by NM, 15-Sep-2011.) |
| Ref | Expression |
|---|---|
| ringgrp | ⊢ (𝑅 ∈ Ring → 𝑅 ∈ Grp) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2196 | . . 3 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
| 2 | eqid 2196 | . . 3 ⊢ (mulGrp‘𝑅) = (mulGrp‘𝑅) | |
| 3 | eqid 2196 | . . 3 ⊢ (+g‘𝑅) = (+g‘𝑅) | |
| 4 | eqid 2196 | . . 3 ⊢ (.r‘𝑅) = (.r‘𝑅) | |
| 5 | 1, 2, 3, 4 | isring 13634 | . 2 ⊢ (𝑅 ∈ Ring ↔ (𝑅 ∈ Grp ∧ (mulGrp‘𝑅) ∈ Mnd ∧ ∀𝑥 ∈ (Base‘𝑅)∀𝑦 ∈ (Base‘𝑅)∀𝑧 ∈ (Base‘𝑅)((𝑥(.r‘𝑅)(𝑦(+g‘𝑅)𝑧)) = ((𝑥(.r‘𝑅)𝑦)(+g‘𝑅)(𝑥(.r‘𝑅)𝑧)) ∧ ((𝑥(+g‘𝑅)𝑦)(.r‘𝑅)𝑧) = ((𝑥(.r‘𝑅)𝑧)(+g‘𝑅)(𝑦(.r‘𝑅)𝑧))))) |
| 6 | 5 | simp1bi 1014 | 1 ⊢ (𝑅 ∈ Ring → 𝑅 ∈ Grp) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1364 ∈ wcel 2167 ∀wral 2475 ‘cfv 5259 (class class class)co 5925 Basecbs 12705 +gcplusg 12782 .rcmulr 12783 Mndcmnd 13120 Grpcgrp 13204 mulGrpcmgp 13554 Ringcrg 13630 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4152 ax-pow 4208 ax-pr 4243 ax-un 4469 ax-cnex 7989 ax-resscn 7990 ax-1re 7992 ax-addrcl 7995 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-rab 2484 df-v 2765 df-sbc 2990 df-un 3161 df-in 3163 df-ss 3170 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-int 3876 df-br 4035 df-opab 4096 df-mpt 4097 df-id 4329 df-xp 4670 df-rel 4671 df-cnv 4672 df-co 4673 df-dm 4674 df-rn 4675 df-res 4676 df-iota 5220 df-fun 5261 df-fn 5262 df-fv 5267 df-ov 5928 df-inn 9010 df-2 9068 df-3 9069 df-ndx 12708 df-slot 12709 df-base 12711 df-plusg 12795 df-mulr 12796 df-ring 13632 |
| This theorem is referenced by: ringgrpd 13639 ringmnd 13640 ring0cl 13655 ringacl 13664 ringcom 13665 ringabl 13666 ringlz 13677 ringrz 13678 ringnegl 13685 ringnegr 13686 ringmneg1 13687 ringmneg2 13688 ringm2neg 13689 ringsubdi 13690 ringsubdir 13691 mulgass2 13692 ringlghm 13695 ringrghm 13696 ringressid 13697 imasring 13698 opprring 13713 dvdsrneg 13737 unitnegcl 13764 dvrdir 13777 dfrhm2 13788 isrhm 13792 isrhmd 13800 rhmfn 13806 rhmval 13807 subrgsubg 13861 lmodfgrp 13930 lmod0vs 13955 lmodvsneg 13965 lmodsubvs 13977 lmodsubdi 13978 lmodsubdir 13979 rmodislmodlem 13984 rmodislmod 13985 issubrgd 14086 lidlsubg 14120 cnfld0 14205 cnfldneg 14207 cnfldsub 14209 cnsubglem 14213 zringgrp 14229 mulgrhm 14243 zrhmulg 14254 |
| Copyright terms: Public domain | W3C validator |