| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ringgrp | GIF version | ||
| Description: A ring is a group. (Contributed by NM, 15-Sep-2011.) |
| Ref | Expression |
|---|---|
| ringgrp | ⊢ (𝑅 ∈ Ring → 𝑅 ∈ Grp) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2229 | . . 3 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
| 2 | eqid 2229 | . . 3 ⊢ (mulGrp‘𝑅) = (mulGrp‘𝑅) | |
| 3 | eqid 2229 | . . 3 ⊢ (+g‘𝑅) = (+g‘𝑅) | |
| 4 | eqid 2229 | . . 3 ⊢ (.r‘𝑅) = (.r‘𝑅) | |
| 5 | 1, 2, 3, 4 | isring 13971 | . 2 ⊢ (𝑅 ∈ Ring ↔ (𝑅 ∈ Grp ∧ (mulGrp‘𝑅) ∈ Mnd ∧ ∀𝑥 ∈ (Base‘𝑅)∀𝑦 ∈ (Base‘𝑅)∀𝑧 ∈ (Base‘𝑅)((𝑥(.r‘𝑅)(𝑦(+g‘𝑅)𝑧)) = ((𝑥(.r‘𝑅)𝑦)(+g‘𝑅)(𝑥(.r‘𝑅)𝑧)) ∧ ((𝑥(+g‘𝑅)𝑦)(.r‘𝑅)𝑧) = ((𝑥(.r‘𝑅)𝑧)(+g‘𝑅)(𝑦(.r‘𝑅)𝑧))))) |
| 6 | 5 | simp1bi 1036 | 1 ⊢ (𝑅 ∈ Ring → 𝑅 ∈ Grp) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1395 ∈ wcel 2200 ∀wral 2508 ‘cfv 5318 (class class class)co 6007 Basecbs 13040 +gcplusg 13118 .rcmulr 13119 Mndcmnd 13457 Grpcgrp 13541 mulGrpcmgp 13891 Ringcrg 13967 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4202 ax-pow 4258 ax-pr 4293 ax-un 4524 ax-cnex 8098 ax-resscn 8099 ax-1re 8101 ax-addrcl 8104 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-rab 2517 df-v 2801 df-sbc 3029 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-int 3924 df-br 4084 df-opab 4146 df-mpt 4147 df-id 4384 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-rn 4730 df-res 4731 df-iota 5278 df-fun 5320 df-fn 5321 df-fv 5326 df-ov 6010 df-inn 9119 df-2 9177 df-3 9178 df-ndx 13043 df-slot 13044 df-base 13046 df-plusg 13131 df-mulr 13132 df-ring 13969 |
| This theorem is referenced by: ringgrpd 13976 ringmnd 13977 ring0cl 13992 ringacl 14001 ringcom 14002 ringabl 14003 ringlz 14014 ringrz 14015 ringnegl 14022 ringnegr 14023 ringmneg1 14024 ringmneg2 14025 ringm2neg 14026 ringsubdi 14027 ringsubdir 14028 mulgass2 14029 ringlghm 14032 ringrghm 14033 ringressid 14034 imasring 14035 opprring 14050 dvdsrneg 14075 unitnegcl 14102 dvrdir 14115 dfrhm2 14126 isrhm 14130 isrhmd 14138 rhmfn 14144 rhmval 14145 subrgsubg 14199 lmodfgrp 14268 lmod0vs 14293 lmodvsneg 14303 lmodsubvs 14315 lmodsubdi 14316 lmodsubdir 14317 rmodislmodlem 14322 rmodislmod 14323 issubrgd 14424 lidlsubg 14458 cnfld0 14543 cnfldneg 14545 cnfldsub 14547 cnsubglem 14551 zringgrp 14567 mulgrhm 14581 zrhmulg 14592 |
| Copyright terms: Public domain | W3C validator |