ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ringgrp GIF version

Theorem ringgrp 13950
Description: A ring is a group. (Contributed by NM, 15-Sep-2011.)
Assertion
Ref Expression
ringgrp (𝑅 ∈ Ring → 𝑅 ∈ Grp)

Proof of Theorem ringgrp
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2229 . . 3 (Base‘𝑅) = (Base‘𝑅)
2 eqid 2229 . . 3 (mulGrp‘𝑅) = (mulGrp‘𝑅)
3 eqid 2229 . . 3 (+g𝑅) = (+g𝑅)
4 eqid 2229 . . 3 (.r𝑅) = (.r𝑅)
51, 2, 3, 4isring 13949 . 2 (𝑅 ∈ Ring ↔ (𝑅 ∈ Grp ∧ (mulGrp‘𝑅) ∈ Mnd ∧ ∀𝑥 ∈ (Base‘𝑅)∀𝑦 ∈ (Base‘𝑅)∀𝑧 ∈ (Base‘𝑅)((𝑥(.r𝑅)(𝑦(+g𝑅)𝑧)) = ((𝑥(.r𝑅)𝑦)(+g𝑅)(𝑥(.r𝑅)𝑧)) ∧ ((𝑥(+g𝑅)𝑦)(.r𝑅)𝑧) = ((𝑥(.r𝑅)𝑧)(+g𝑅)(𝑦(.r𝑅)𝑧)))))
65simp1bi 1036 1 (𝑅 ∈ Ring → 𝑅 ∈ Grp)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1395  wcel 2200  wral 2508  cfv 5314  (class class class)co 5994  Basecbs 13018  +gcplusg 13096  .rcmulr 13097  Mndcmnd 13435  Grpcgrp 13519  mulGrpcmgp 13869  Ringcrg 13945
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4201  ax-pow 4257  ax-pr 4292  ax-un 4521  ax-cnex 8078  ax-resscn 8079  ax-1re 8081  ax-addrcl 8084
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-rab 2517  df-v 2801  df-sbc 3029  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-int 3923  df-br 4083  df-opab 4145  df-mpt 4146  df-id 4381  df-xp 4722  df-rel 4723  df-cnv 4724  df-co 4725  df-dm 4726  df-rn 4727  df-res 4728  df-iota 5274  df-fun 5316  df-fn 5317  df-fv 5322  df-ov 5997  df-inn 9099  df-2 9157  df-3 9158  df-ndx 13021  df-slot 13022  df-base 13024  df-plusg 13109  df-mulr 13110  df-ring 13947
This theorem is referenced by:  ringgrpd  13954  ringmnd  13955  ring0cl  13970  ringacl  13979  ringcom  13980  ringabl  13981  ringlz  13992  ringrz  13993  ringnegl  14000  ringnegr  14001  ringmneg1  14002  ringmneg2  14003  ringm2neg  14004  ringsubdi  14005  ringsubdir  14006  mulgass2  14007  ringlghm  14010  ringrghm  14011  ringressid  14012  imasring  14013  opprring  14028  dvdsrneg  14052  unitnegcl  14079  dvrdir  14092  dfrhm2  14103  isrhm  14107  isrhmd  14115  rhmfn  14121  rhmval  14122  subrgsubg  14176  lmodfgrp  14245  lmod0vs  14270  lmodvsneg  14280  lmodsubvs  14292  lmodsubdi  14293  lmodsubdir  14294  rmodislmodlem  14299  rmodislmod  14300  issubrgd  14401  lidlsubg  14435  cnfld0  14520  cnfldneg  14522  cnfldsub  14524  cnsubglem  14528  zringgrp  14544  mulgrhm  14558  zrhmulg  14569
  Copyright terms: Public domain W3C validator