| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ringgrp | GIF version | ||
| Description: A ring is a group. (Contributed by NM, 15-Sep-2011.) |
| Ref | Expression |
|---|---|
| ringgrp | ⊢ (𝑅 ∈ Ring → 𝑅 ∈ Grp) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2206 | . . 3 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
| 2 | eqid 2206 | . . 3 ⊢ (mulGrp‘𝑅) = (mulGrp‘𝑅) | |
| 3 | eqid 2206 | . . 3 ⊢ (+g‘𝑅) = (+g‘𝑅) | |
| 4 | eqid 2206 | . . 3 ⊢ (.r‘𝑅) = (.r‘𝑅) | |
| 5 | 1, 2, 3, 4 | isring 13806 | . 2 ⊢ (𝑅 ∈ Ring ↔ (𝑅 ∈ Grp ∧ (mulGrp‘𝑅) ∈ Mnd ∧ ∀𝑥 ∈ (Base‘𝑅)∀𝑦 ∈ (Base‘𝑅)∀𝑧 ∈ (Base‘𝑅)((𝑥(.r‘𝑅)(𝑦(+g‘𝑅)𝑧)) = ((𝑥(.r‘𝑅)𝑦)(+g‘𝑅)(𝑥(.r‘𝑅)𝑧)) ∧ ((𝑥(+g‘𝑅)𝑦)(.r‘𝑅)𝑧) = ((𝑥(.r‘𝑅)𝑧)(+g‘𝑅)(𝑦(.r‘𝑅)𝑧))))) |
| 6 | 5 | simp1bi 1015 | 1 ⊢ (𝑅 ∈ Ring → 𝑅 ∈ Grp) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1373 ∈ wcel 2177 ∀wral 2485 ‘cfv 5276 (class class class)co 5951 Basecbs 12876 +gcplusg 12953 .rcmulr 12954 Mndcmnd 13292 Grpcgrp 13376 mulGrpcmgp 13726 Ringcrg 13802 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-sep 4166 ax-pow 4222 ax-pr 4257 ax-un 4484 ax-cnex 8023 ax-resscn 8024 ax-1re 8026 ax-addrcl 8029 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ral 2490 df-rex 2491 df-rab 2494 df-v 2775 df-sbc 3000 df-un 3171 df-in 3173 df-ss 3180 df-pw 3619 df-sn 3640 df-pr 3641 df-op 3643 df-uni 3853 df-int 3888 df-br 4048 df-opab 4110 df-mpt 4111 df-id 4344 df-xp 4685 df-rel 4686 df-cnv 4687 df-co 4688 df-dm 4689 df-rn 4690 df-res 4691 df-iota 5237 df-fun 5278 df-fn 5279 df-fv 5284 df-ov 5954 df-inn 9044 df-2 9102 df-3 9103 df-ndx 12879 df-slot 12880 df-base 12882 df-plusg 12966 df-mulr 12967 df-ring 13804 |
| This theorem is referenced by: ringgrpd 13811 ringmnd 13812 ring0cl 13827 ringacl 13836 ringcom 13837 ringabl 13838 ringlz 13849 ringrz 13850 ringnegl 13857 ringnegr 13858 ringmneg1 13859 ringmneg2 13860 ringm2neg 13861 ringsubdi 13862 ringsubdir 13863 mulgass2 13864 ringlghm 13867 ringrghm 13868 ringressid 13869 imasring 13870 opprring 13885 dvdsrneg 13909 unitnegcl 13936 dvrdir 13949 dfrhm2 13960 isrhm 13964 isrhmd 13972 rhmfn 13978 rhmval 13979 subrgsubg 14033 lmodfgrp 14102 lmod0vs 14127 lmodvsneg 14137 lmodsubvs 14149 lmodsubdi 14150 lmodsubdir 14151 rmodislmodlem 14156 rmodislmod 14157 issubrgd 14258 lidlsubg 14292 cnfld0 14377 cnfldneg 14379 cnfldsub 14381 cnsubglem 14385 zringgrp 14401 mulgrhm 14415 zrhmulg 14426 |
| Copyright terms: Public domain | W3C validator |