ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ringgrp GIF version

Theorem ringgrp 13189
Description: A ring is a group. (Contributed by NM, 15-Sep-2011.)
Assertion
Ref Expression
ringgrp (𝑅 ∈ Ring → 𝑅 ∈ Grp)

Proof of Theorem ringgrp
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2177 . . 3 (Base‘𝑅) = (Base‘𝑅)
2 eqid 2177 . . 3 (mulGrp‘𝑅) = (mulGrp‘𝑅)
3 eqid 2177 . . 3 (+g𝑅) = (+g𝑅)
4 eqid 2177 . . 3 (.r𝑅) = (.r𝑅)
51, 2, 3, 4isring 13188 . 2 (𝑅 ∈ Ring ↔ (𝑅 ∈ Grp ∧ (mulGrp‘𝑅) ∈ Mnd ∧ ∀𝑥 ∈ (Base‘𝑅)∀𝑦 ∈ (Base‘𝑅)∀𝑧 ∈ (Base‘𝑅)((𝑥(.r𝑅)(𝑦(+g𝑅)𝑧)) = ((𝑥(.r𝑅)𝑦)(+g𝑅)(𝑥(.r𝑅)𝑧)) ∧ ((𝑥(+g𝑅)𝑦)(.r𝑅)𝑧) = ((𝑥(.r𝑅)𝑧)(+g𝑅)(𝑦(.r𝑅)𝑧)))))
65simp1bi 1012 1 (𝑅 ∈ Ring → 𝑅 ∈ Grp)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1353  wcel 2148  wral 2455  cfv 5218  (class class class)co 5877  Basecbs 12464  +gcplusg 12538  .rcmulr 12539  Mndcmnd 12822  Grpcgrp 12882  mulGrpcmgp 13135  Ringcrg 13184
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4123  ax-pow 4176  ax-pr 4211  ax-un 4435  ax-cnex 7904  ax-resscn 7905  ax-1re 7907  ax-addrcl 7910
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-rex 2461  df-rab 2464  df-v 2741  df-sbc 2965  df-un 3135  df-in 3137  df-ss 3144  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-int 3847  df-br 4006  df-opab 4067  df-mpt 4068  df-id 4295  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-rn 4639  df-res 4640  df-iota 5180  df-fun 5220  df-fn 5221  df-fv 5226  df-ov 5880  df-inn 8922  df-2 8980  df-3 8981  df-ndx 12467  df-slot 12468  df-base 12470  df-plusg 12551  df-mulr 12552  df-ring 13186
This theorem is referenced by:  ringgrpd  13193  ringmnd  13194  ring0cl  13209  ringacl  13218  ringcom  13219  ringabl  13220  ringlz  13227  ringrz  13228  ringnegl  13233  ringnegr  13234  ringmneg1  13235  ringmneg2  13236  ringm2neg  13237  ringsubdi  13238  ringsubdir  13239  mulgass2  13240  ringressid  13243  opprring  13254  dvdsrneg  13277  unitnegcl  13304  dvrdir  13317  subrgsubg  13353  lmodfgrp  13391  lmod0vs  13416  lmodvsneg  13426  lmodsubvs  13438  lmodsubdi  13439  lmodsubdir  13440  rmodislmodlem  13445  rmodislmod  13446  cnfld0  13550  cnfldneg  13552  cnfldsub  13554  cnsubglem  13558  zringgrp  13570
  Copyright terms: Public domain W3C validator