ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elfzouz GIF version

Theorem elfzouz 10028
Description: Membership in a half-open integer interval. (Contributed by Mario Carneiro, 29-Sep-2015.)
Assertion
Ref Expression
elfzouz (𝐾 ∈ (𝑀..^𝑁) → 𝐾 ∈ (ℤ𝑀))

Proof of Theorem elfzouz
StepHypRef Expression
1 elfzo2 10027 . 2 (𝐾 ∈ (𝑀..^𝑁) ↔ (𝐾 ∈ (ℤ𝑀) ∧ 𝑁 ∈ ℤ ∧ 𝐾 < 𝑁))
21simp1bi 997 1 (𝐾 ∈ (𝑀..^𝑁) → 𝐾 ∈ (ℤ𝑀))
Colors of variables: wff set class
Syntax hints:  wi 4  wcel 2125   class class class wbr 3961  cfv 5163  (class class class)co 5814   < clt 7891  cz 9146  cuz 9418  ..^cfzo 10019
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1481  ax-10 1482  ax-11 1483  ax-i12 1484  ax-bndl 1486  ax-4 1487  ax-17 1503  ax-i9 1507  ax-ial 1511  ax-i5r 1512  ax-13 2127  ax-14 2128  ax-ext 2136  ax-sep 4078  ax-pow 4130  ax-pr 4164  ax-un 4388  ax-setind 4490  ax-cnex 7802  ax-resscn 7803  ax-1cn 7804  ax-1re 7805  ax-icn 7806  ax-addcl 7807  ax-addrcl 7808  ax-mulcl 7809  ax-addcom 7811  ax-addass 7813  ax-distr 7815  ax-i2m1 7816  ax-0lt1 7817  ax-0id 7819  ax-rnegex 7820  ax-cnre 7822  ax-pre-ltirr 7823  ax-pre-ltwlin 7824  ax-pre-lttrn 7825  ax-pre-ltadd 7827
This theorem depends on definitions:  df-bi 116  df-3or 964  df-3an 965  df-tru 1335  df-fal 1338  df-nf 1438  df-sb 1740  df-eu 2006  df-mo 2007  df-clab 2141  df-cleq 2147  df-clel 2150  df-nfc 2285  df-ne 2325  df-nel 2420  df-ral 2437  df-rex 2438  df-reu 2439  df-rab 2441  df-v 2711  df-sbc 2934  df-csb 3028  df-dif 3100  df-un 3102  df-in 3104  df-ss 3111  df-pw 3541  df-sn 3562  df-pr 3563  df-op 3565  df-uni 3769  df-int 3804  df-iun 3847  df-br 3962  df-opab 4022  df-mpt 4023  df-id 4248  df-xp 4585  df-rel 4586  df-cnv 4587  df-co 4588  df-dm 4589  df-rn 4590  df-res 4591  df-ima 4592  df-iota 5128  df-fun 5165  df-fn 5166  df-f 5167  df-fv 5171  df-riota 5770  df-ov 5817  df-oprab 5818  df-mpo 5819  df-1st 6078  df-2nd 6079  df-pnf 7893  df-mnf 7894  df-xr 7895  df-ltxr 7896  df-le 7897  df-sub 8027  df-neg 8028  df-inn 8813  df-n0 9070  df-z 9147  df-uz 9419  df-fz 9891  df-fzo 10020
This theorem is referenced by:  elfzofz  10039  fzouzsplit  10056  elfzo0  10059  elfzonn0  10063  exfzdc  10117  seq3clss  10344  seq3caopr3  10358  seq3caopr2  10359  seq3id3  10384  ser3ge0  10394  geosergap  11380  prodfap0  11419  prodfrecap  11420  eulerthlemrprm  12073  eulerthlema  12074  trilpolemeq1  13560
  Copyright terms: Public domain W3C validator