| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > simp3d | GIF version | ||
| Description: Deduce a conjunct from a triple conjunction. (Contributed by NM, 4-Sep-2005.) |
| Ref | Expression |
|---|---|
| 3simp1d.1 | ⊢ (𝜑 → (𝜓 ∧ 𝜒 ∧ 𝜃)) |
| Ref | Expression |
|---|---|
| simp3d | ⊢ (𝜑 → 𝜃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3simp1d.1 | . 2 ⊢ (𝜑 → (𝜓 ∧ 𝜒 ∧ 𝜃)) | |
| 2 | simp3 1001 | . 2 ⊢ ((𝜓 ∧ 𝜒 ∧ 𝜃) → 𝜃) | |
| 3 | 1, 2 | syl 14 | 1 ⊢ (𝜑 → 𝜃) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ w3a 980 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 df-3an 982 |
| This theorem is referenced by: simp3bi 1016 erinxp 6669 resixp 6793 exmidapne 7329 addcanprleml 7683 addcanprlemu 7684 ltmprr 7711 lelttrdi 8455 ixxdisj 9980 ixxss1 9981 ixxss2 9982 ixxss12 9983 iccsupr 10043 icodisj 10069 ioom 10352 elicore 10358 intfracq 10414 flqdiv 10415 mulqaddmodid 10458 modsumfzodifsn 10490 seqf1oglem2 10614 cjmul 11052 sumtp 11581 crth 12402 eulerthlem1 12405 eulerthlemh 12409 eulerthlemth 12410 4sqlem13m 12582 ennnfonelemim 12651 ctiunct 12667 strsetsid 12721 strleund 12791 strext 12793 mhm0 13110 submcl 13121 submmnd 13122 eqger 13364 eqgcpbl 13368 lmodvsdir 13878 lssclg 13930 rnglidlmsgrp 14063 2idlcpblrng 14089 lmcvg 14463 lmff 14495 lmtopcnp 14496 xmeter 14682 xmetresbl 14686 tgqioo 14801 ivthinclemlopn 14882 ivthinclemuopn 14884 limccl 14905 limcdifap 14908 limcresi 14912 limccnpcntop 14921 limccnp2lem 14922 limccnp2cntop 14923 limccoap 14924 cosordlem 15095 relogbval 15197 relogbzcl 15198 nnlogbexp 15205 mersenne 15243 perfectlem2 15246 |
| Copyright terms: Public domain | W3C validator |