![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > simp3d | GIF version |
Description: Deduce a conjunct from a triple conjunction. (Contributed by NM, 4-Sep-2005.) |
Ref | Expression |
---|---|
3simp1d.1 | ⊢ (𝜑 → (𝜓 ∧ 𝜒 ∧ 𝜃)) |
Ref | Expression |
---|---|
simp3d | ⊢ (𝜑 → 𝜃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3simp1d.1 | . 2 ⊢ (𝜑 → (𝜓 ∧ 𝜒 ∧ 𝜃)) | |
2 | simp3 951 | . 2 ⊢ ((𝜓 ∧ 𝜒 ∧ 𝜃) → 𝜃) | |
3 | 1, 2 | syl 14 | 1 ⊢ (𝜑 → 𝜃) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ w3a 930 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 |
This theorem depends on definitions: df-bi 116 df-3an 932 |
This theorem is referenced by: simp3bi 966 erinxp 6433 resixp 6557 addcanprleml 7323 addcanprlemu 7324 ltmprr 7351 lelttrdi 8055 ixxdisj 9527 ixxss1 9528 ixxss2 9529 ixxss12 9530 iccsupr 9590 icodisj 9616 ioom 9879 intfracq 9934 flqdiv 9935 mulqaddmodid 9978 modsumfzodifsn 10010 cjmul 10498 sumtp 11022 crth 11692 ennnfonelemim 11729 strsetsid 11774 strleund 11829 lmcvg 12167 lmff 12199 lmtopcnp 12200 xmeter 12364 xmetresbl 12368 tgqioo 12466 limccl 12510 limcdifap 12512 limcresi 12515 limccnpcntop 12520 |
Copyright terms: Public domain | W3C validator |