Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > simp3d | GIF version |
Description: Deduce a conjunct from a triple conjunction. (Contributed by NM, 4-Sep-2005.) |
Ref | Expression |
---|---|
3simp1d.1 | ⊢ (𝜑 → (𝜓 ∧ 𝜒 ∧ 𝜃)) |
Ref | Expression |
---|---|
simp3d | ⊢ (𝜑 → 𝜃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3simp1d.1 | . 2 ⊢ (𝜑 → (𝜓 ∧ 𝜒 ∧ 𝜃)) | |
2 | simp3 989 | . 2 ⊢ ((𝜓 ∧ 𝜒 ∧ 𝜃) → 𝜃) | |
3 | 1, 2 | syl 14 | 1 ⊢ (𝜑 → 𝜃) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ w3a 968 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 |
This theorem depends on definitions: df-bi 116 df-3an 970 |
This theorem is referenced by: simp3bi 1004 erinxp 6575 resixp 6699 addcanprleml 7555 addcanprlemu 7556 ltmprr 7583 lelttrdi 8324 ixxdisj 9839 ixxss1 9840 ixxss2 9841 ixxss12 9842 iccsupr 9902 icodisj 9928 ioom 10196 elicore 10202 intfracq 10255 flqdiv 10256 mulqaddmodid 10299 modsumfzodifsn 10331 cjmul 10827 sumtp 11355 crth 12156 eulerthlem1 12159 eulerthlemh 12163 eulerthlemth 12164 ennnfonelemim 12357 ctiunct 12373 strsetsid 12427 strleund 12483 lmcvg 12857 lmff 12889 lmtopcnp 12890 xmeter 13076 xmetresbl 13080 tgqioo 13187 ivthinclemlopn 13254 ivthinclemuopn 13256 limccl 13268 limcdifap 13271 limcresi 13275 limccnpcntop 13284 limccnp2lem 13285 limccnp2cntop 13286 limccoap 13287 cosordlem 13410 relogbval 13509 relogbzcl 13510 nnlogbexp 13517 |
Copyright terms: Public domain | W3C validator |