| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > simp3d | GIF version | ||
| Description: Deduce a conjunct from a triple conjunction. (Contributed by NM, 4-Sep-2005.) |
| Ref | Expression |
|---|---|
| 3simp1d.1 | ⊢ (𝜑 → (𝜓 ∧ 𝜒 ∧ 𝜃)) |
| Ref | Expression |
|---|---|
| simp3d | ⊢ (𝜑 → 𝜃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3simp1d.1 | . 2 ⊢ (𝜑 → (𝜓 ∧ 𝜒 ∧ 𝜃)) | |
| 2 | simp3 1001 | . 2 ⊢ ((𝜓 ∧ 𝜒 ∧ 𝜃) → 𝜃) | |
| 3 | 1, 2 | syl 14 | 1 ⊢ (𝜑 → 𝜃) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ w3a 980 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 df-3an 982 |
| This theorem is referenced by: simp3bi 1016 erinxp 6677 resixp 6801 exmidapne 7345 addcanprleml 7700 addcanprlemu 7701 ltmprr 7728 lelttrdi 8472 ixxdisj 9997 ixxss1 9998 ixxss2 9999 ixxss12 10000 iccsupr 10060 icodisj 10086 ioom 10369 elicore 10375 intfracq 10431 flqdiv 10432 mulqaddmodid 10475 modsumfzodifsn 10507 seqf1oglem2 10631 cjmul 11069 sumtp 11598 crth 12419 eulerthlem1 12422 eulerthlemh 12426 eulerthlemth 12427 4sqlem13m 12599 ennnfonelemim 12668 ctiunct 12684 strsetsid 12738 strleund 12808 strext 12810 mhm0 13172 submcl 13183 submmnd 13184 eqger 13432 eqgcpbl 13436 lmodvsdir 13946 lssclg 13998 rnglidlmsgrp 14131 2idlcpblrng 14157 lmcvg 14539 lmff 14571 lmtopcnp 14572 xmeter 14758 xmetresbl 14762 tgqioo 14877 ivthinclemlopn 14958 ivthinclemuopn 14960 limccl 14981 limcdifap 14984 limcresi 14988 limccnpcntop 14997 limccnp2lem 14998 limccnp2cntop 14999 limccoap 15000 cosordlem 15171 relogbval 15273 relogbzcl 15274 nnlogbexp 15281 mersenne 15319 perfectlem2 15322 |
| Copyright terms: Public domain | W3C validator |