| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > simp3d | GIF version | ||
| Description: Deduce a conjunct from a triple conjunction. (Contributed by NM, 4-Sep-2005.) |
| Ref | Expression |
|---|---|
| 3simp1d.1 | ⊢ (𝜑 → (𝜓 ∧ 𝜒 ∧ 𝜃)) |
| Ref | Expression |
|---|---|
| simp3d | ⊢ (𝜑 → 𝜃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3simp1d.1 | . 2 ⊢ (𝜑 → (𝜓 ∧ 𝜒 ∧ 𝜃)) | |
| 2 | simp3 1023 | . 2 ⊢ ((𝜓 ∧ 𝜒 ∧ 𝜃) → 𝜃) | |
| 3 | 1, 2 | syl 14 | 1 ⊢ (𝜑 → 𝜃) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ w3a 1002 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 |
| This theorem is referenced by: simp3bi 1038 erinxp 6764 resixp 6888 exmidapne 7454 addcanprleml 7809 addcanprlemu 7810 ltmprr 7837 lelttrdi 8581 ixxdisj 10107 ixxss1 10108 ixxss2 10109 ixxss12 10110 iccsupr 10170 icodisj 10196 ioom 10488 elicore 10494 intfracq 10550 flqdiv 10551 mulqaddmodid 10594 modsumfzodifsn 10626 seqf1oglem2 10750 cjmul 11404 sumtp 11933 crth 12754 eulerthlem1 12757 eulerthlemh 12761 eulerthlemth 12762 4sqlem13m 12934 ennnfonelemim 13003 ctiunct 13019 strsetsid 13073 strleund 13144 strext 13146 mhm0 13509 submcl 13520 submmnd 13521 eqger 13769 eqgcpbl 13773 lmodvsdir 14284 lssclg 14336 rnglidlmsgrp 14469 2idlcpblrng 14495 lmcvg 14899 lmff 14931 lmtopcnp 14932 xmeter 15118 xmetresbl 15122 tgqioo 15237 ivthinclemlopn 15318 ivthinclemuopn 15320 limccl 15341 limcdifap 15344 limcresi 15348 limccnpcntop 15357 limccnp2lem 15358 limccnp2cntop 15359 limccoap 15360 cosordlem 15531 relogbval 15633 relogbzcl 15634 nnlogbexp 15641 mersenne 15679 perfectlem2 15682 wlk1walkdom 16080 upgr2wlkdc 16096 |
| Copyright terms: Public domain | W3C validator |