| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > simp3d | GIF version | ||
| Description: Deduce a conjunct from a triple conjunction. (Contributed by NM, 4-Sep-2005.) |
| Ref | Expression |
|---|---|
| 3simp1d.1 | ⊢ (𝜑 → (𝜓 ∧ 𝜒 ∧ 𝜃)) |
| Ref | Expression |
|---|---|
| simp3d | ⊢ (𝜑 → 𝜃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3simp1d.1 | . 2 ⊢ (𝜑 → (𝜓 ∧ 𝜒 ∧ 𝜃)) | |
| 2 | simp3 1002 | . 2 ⊢ ((𝜓 ∧ 𝜒 ∧ 𝜃) → 𝜃) | |
| 3 | 1, 2 | syl 14 | 1 ⊢ (𝜑 → 𝜃) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ w3a 981 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 df-3an 983 |
| This theorem is referenced by: simp3bi 1017 erinxp 6703 resixp 6827 exmidapne 7379 addcanprleml 7734 addcanprlemu 7735 ltmprr 7762 lelttrdi 8506 ixxdisj 10032 ixxss1 10033 ixxss2 10034 ixxss12 10035 iccsupr 10095 icodisj 10121 ioom 10410 elicore 10416 intfracq 10472 flqdiv 10473 mulqaddmodid 10516 modsumfzodifsn 10548 seqf1oglem2 10672 cjmul 11240 sumtp 11769 crth 12590 eulerthlem1 12593 eulerthlemh 12597 eulerthlemth 12598 4sqlem13m 12770 ennnfonelemim 12839 ctiunct 12855 strsetsid 12909 strleund 12979 strext 12981 mhm0 13344 submcl 13355 submmnd 13356 eqger 13604 eqgcpbl 13608 lmodvsdir 14118 lssclg 14170 rnglidlmsgrp 14303 2idlcpblrng 14329 lmcvg 14733 lmff 14765 lmtopcnp 14766 xmeter 14952 xmetresbl 14956 tgqioo 15071 ivthinclemlopn 15152 ivthinclemuopn 15154 limccl 15175 limcdifap 15178 limcresi 15182 limccnpcntop 15191 limccnp2lem 15192 limccnp2cntop 15193 limccoap 15194 cosordlem 15365 relogbval 15467 relogbzcl 15468 nnlogbexp 15475 mersenne 15513 perfectlem2 15516 |
| Copyright terms: Public domain | W3C validator |