Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > simp3d | GIF version |
Description: Deduce a conjunct from a triple conjunction. (Contributed by NM, 4-Sep-2005.) |
Ref | Expression |
---|---|
3simp1d.1 | ⊢ (𝜑 → (𝜓 ∧ 𝜒 ∧ 𝜃)) |
Ref | Expression |
---|---|
simp3d | ⊢ (𝜑 → 𝜃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3simp1d.1 | . 2 ⊢ (𝜑 → (𝜓 ∧ 𝜒 ∧ 𝜃)) | |
2 | simp3 994 | . 2 ⊢ ((𝜓 ∧ 𝜒 ∧ 𝜃) → 𝜃) | |
3 | 1, 2 | syl 14 | 1 ⊢ (𝜑 → 𝜃) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ w3a 973 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 |
This theorem depends on definitions: df-bi 116 df-3an 975 |
This theorem is referenced by: simp3bi 1009 erinxp 6587 resixp 6711 addcanprleml 7576 addcanprlemu 7577 ltmprr 7604 lelttrdi 8345 ixxdisj 9860 ixxss1 9861 ixxss2 9862 ixxss12 9863 iccsupr 9923 icodisj 9949 ioom 10217 elicore 10223 intfracq 10276 flqdiv 10277 mulqaddmodid 10320 modsumfzodifsn 10352 cjmul 10849 sumtp 11377 crth 12178 eulerthlem1 12181 eulerthlemh 12185 eulerthlemth 12186 ennnfonelemim 12379 ctiunct 12395 strsetsid 12449 strleund 12506 mhm0 12691 submcl 12701 lmcvg 13011 lmff 13043 lmtopcnp 13044 xmeter 13230 xmetresbl 13234 tgqioo 13341 ivthinclemlopn 13408 ivthinclemuopn 13410 limccl 13422 limcdifap 13425 limcresi 13429 limccnpcntop 13438 limccnp2lem 13439 limccnp2cntop 13440 limccoap 13441 cosordlem 13564 relogbval 13663 relogbzcl 13664 nnlogbexp 13671 |
Copyright terms: Public domain | W3C validator |