![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > simp3d | GIF version |
Description: Deduce a conjunct from a triple conjunction. (Contributed by NM, 4-Sep-2005.) |
Ref | Expression |
---|---|
3simp1d.1 | ⊢ (𝜑 → (𝜓 ∧ 𝜒 ∧ 𝜃)) |
Ref | Expression |
---|---|
simp3d | ⊢ (𝜑 → 𝜃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3simp1d.1 | . 2 ⊢ (𝜑 → (𝜓 ∧ 𝜒 ∧ 𝜃)) | |
2 | simp3 1001 | . 2 ⊢ ((𝜓 ∧ 𝜒 ∧ 𝜃) → 𝜃) | |
3 | 1, 2 | syl 14 | 1 ⊢ (𝜑 → 𝜃) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ w3a 980 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
This theorem depends on definitions: df-bi 117 df-3an 982 |
This theorem is referenced by: simp3bi 1016 erinxp 6665 resixp 6789 exmidapne 7322 addcanprleml 7676 addcanprlemu 7677 ltmprr 7704 lelttrdi 8447 ixxdisj 9972 ixxss1 9973 ixxss2 9974 ixxss12 9975 iccsupr 10035 icodisj 10061 ioom 10332 elicore 10338 intfracq 10394 flqdiv 10395 mulqaddmodid 10438 modsumfzodifsn 10470 seqf1oglem2 10594 cjmul 11032 sumtp 11560 crth 12365 eulerthlem1 12368 eulerthlemh 12372 eulerthlemth 12373 4sqlem13m 12544 ennnfonelemim 12584 ctiunct 12600 strsetsid 12654 strleund 12724 strext 12726 mhm0 13043 submcl 13054 submmnd 13055 eqger 13297 eqgcpbl 13301 lmodvsdir 13811 lssclg 13863 rnglidlmsgrp 13996 2idlcpblrng 14022 lmcvg 14396 lmff 14428 lmtopcnp 14429 xmeter 14615 xmetresbl 14619 tgqioo 14734 ivthinclemlopn 14815 ivthinclemuopn 14817 limccl 14838 limcdifap 14841 limcresi 14845 limccnpcntop 14854 limccnp2lem 14855 limccnp2cntop 14856 limccoap 14857 cosordlem 15025 relogbval 15124 relogbzcl 15125 nnlogbexp 15132 |
Copyright terms: Public domain | W3C validator |