| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > simp3d | GIF version | ||
| Description: Deduce a conjunct from a triple conjunction. (Contributed by NM, 4-Sep-2005.) |
| Ref | Expression |
|---|---|
| 3simp1d.1 | ⊢ (𝜑 → (𝜓 ∧ 𝜒 ∧ 𝜃)) |
| Ref | Expression |
|---|---|
| simp3d | ⊢ (𝜑 → 𝜃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3simp1d.1 | . 2 ⊢ (𝜑 → (𝜓 ∧ 𝜒 ∧ 𝜃)) | |
| 2 | simp3 1004 | . 2 ⊢ ((𝜓 ∧ 𝜒 ∧ 𝜃) → 𝜃) | |
| 3 | 1, 2 | syl 14 | 1 ⊢ (𝜑 → 𝜃) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ w3a 983 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 df-3an 985 |
| This theorem is referenced by: simp3bi 1019 erinxp 6726 resixp 6850 exmidapne 7414 addcanprleml 7769 addcanprlemu 7770 ltmprr 7797 lelttrdi 8541 ixxdisj 10067 ixxss1 10068 ixxss2 10069 ixxss12 10070 iccsupr 10130 icodisj 10156 ioom 10447 elicore 10453 intfracq 10509 flqdiv 10510 mulqaddmodid 10553 modsumfzodifsn 10585 seqf1oglem2 10709 cjmul 11362 sumtp 11891 crth 12712 eulerthlem1 12715 eulerthlemh 12719 eulerthlemth 12720 4sqlem13m 12892 ennnfonelemim 12961 ctiunct 12977 strsetsid 13031 strleund 13102 strext 13104 mhm0 13467 submcl 13478 submmnd 13479 eqger 13727 eqgcpbl 13731 lmodvsdir 14241 lssclg 14293 rnglidlmsgrp 14426 2idlcpblrng 14452 lmcvg 14856 lmff 14888 lmtopcnp 14889 xmeter 15075 xmetresbl 15079 tgqioo 15194 ivthinclemlopn 15275 ivthinclemuopn 15277 limccl 15298 limcdifap 15301 limcresi 15305 limccnpcntop 15314 limccnp2lem 15315 limccnp2cntop 15316 limccoap 15317 cosordlem 15488 relogbval 15590 relogbzcl 15591 nnlogbexp 15598 mersenne 15636 perfectlem2 15639 |
| Copyright terms: Public domain | W3C validator |