![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > simp3d | GIF version |
Description: Deduce a conjunct from a triple conjunction. (Contributed by NM, 4-Sep-2005.) |
Ref | Expression |
---|---|
3simp1d.1 | ⊢ (𝜑 → (𝜓 ∧ 𝜒 ∧ 𝜃)) |
Ref | Expression |
---|---|
simp3d | ⊢ (𝜑 → 𝜃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3simp1d.1 | . 2 ⊢ (𝜑 → (𝜓 ∧ 𝜒 ∧ 𝜃)) | |
2 | simp3 1001 | . 2 ⊢ ((𝜓 ∧ 𝜒 ∧ 𝜃) → 𝜃) | |
3 | 1, 2 | syl 14 | 1 ⊢ (𝜑 → 𝜃) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ w3a 980 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
This theorem depends on definitions: df-bi 117 df-3an 982 |
This theorem is referenced by: simp3bi 1016 erinxp 6663 resixp 6787 exmidapne 7320 addcanprleml 7674 addcanprlemu 7675 ltmprr 7702 lelttrdi 8445 ixxdisj 9969 ixxss1 9970 ixxss2 9971 ixxss12 9972 iccsupr 10032 icodisj 10058 ioom 10329 elicore 10335 intfracq 10391 flqdiv 10392 mulqaddmodid 10435 modsumfzodifsn 10467 seqf1oglem2 10591 cjmul 11029 sumtp 11557 crth 12362 eulerthlem1 12365 eulerthlemh 12369 eulerthlemth 12370 4sqlem13m 12541 ennnfonelemim 12581 ctiunct 12597 strsetsid 12651 strleund 12721 strext 12723 mhm0 13040 submcl 13051 submmnd 13052 eqger 13294 eqgcpbl 13298 lmodvsdir 13808 lssclg 13860 rnglidlmsgrp 13993 2idlcpblrng 14019 lmcvg 14385 lmff 14417 lmtopcnp 14418 xmeter 14604 xmetresbl 14608 tgqioo 14715 ivthinclemlopn 14790 ivthinclemuopn 14792 limccl 14813 limcdifap 14816 limcresi 14820 limccnpcntop 14829 limccnp2lem 14830 limccnp2cntop 14831 limccoap 14832 cosordlem 14984 relogbval 15083 relogbzcl 15084 nnlogbexp 15091 |
Copyright terms: Public domain | W3C validator |