| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > cos11 | GIF version | ||
| Description: Cosine is one-to-one over the closed interval from 0 to π. (Contributed by Paul Chapman, 16-Mar-2008.) (Revised by Jim Kingdon, 6-May-2024.) |
| Ref | Expression |
|---|---|
| cos11 | ⊢ ((𝐴 ∈ (0[,]π) ∧ 𝐵 ∈ (0[,]π)) → (𝐴 = 𝐵 ↔ (cos‘𝐴) = (cos‘𝐵))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fveq2 5588 | . 2 ⊢ (𝐴 = 𝐵 → (cos‘𝐴) = (cos‘𝐵)) | |
| 2 | simpll 527 | . . . . . . . 8 ⊢ (((𝐴 ∈ (0[,]π) ∧ 𝐵 ∈ (0[,]π)) ∧ 𝐴 < 𝐵) → 𝐴 ∈ (0[,]π)) | |
| 3 | simplr 528 | . . . . . . . 8 ⊢ (((𝐴 ∈ (0[,]π) ∧ 𝐵 ∈ (0[,]π)) ∧ 𝐴 < 𝐵) → 𝐵 ∈ (0[,]π)) | |
| 4 | simpr 110 | . . . . . . . 8 ⊢ (((𝐴 ∈ (0[,]π) ∧ 𝐵 ∈ (0[,]π)) ∧ 𝐴 < 𝐵) → 𝐴 < 𝐵) | |
| 5 | 2, 3, 4 | cosordlem 15391 | . . . . . . 7 ⊢ (((𝐴 ∈ (0[,]π) ∧ 𝐵 ∈ (0[,]π)) ∧ 𝐴 < 𝐵) → (cos‘𝐵) < (cos‘𝐴)) |
| 6 | 5 | ex 115 | . . . . . 6 ⊢ ((𝐴 ∈ (0[,]π) ∧ 𝐵 ∈ (0[,]π)) → (𝐴 < 𝐵 → (cos‘𝐵) < (cos‘𝐴))) |
| 7 | simplr 528 | . . . . . . . 8 ⊢ (((𝐴 ∈ (0[,]π) ∧ 𝐵 ∈ (0[,]π)) ∧ 𝐵 < 𝐴) → 𝐵 ∈ (0[,]π)) | |
| 8 | simpll 527 | . . . . . . . 8 ⊢ (((𝐴 ∈ (0[,]π) ∧ 𝐵 ∈ (0[,]π)) ∧ 𝐵 < 𝐴) → 𝐴 ∈ (0[,]π)) | |
| 9 | simpr 110 | . . . . . . . 8 ⊢ (((𝐴 ∈ (0[,]π) ∧ 𝐵 ∈ (0[,]π)) ∧ 𝐵 < 𝐴) → 𝐵 < 𝐴) | |
| 10 | 7, 8, 9 | cosordlem 15391 | . . . . . . 7 ⊢ (((𝐴 ∈ (0[,]π) ∧ 𝐵 ∈ (0[,]π)) ∧ 𝐵 < 𝐴) → (cos‘𝐴) < (cos‘𝐵)) |
| 11 | 10 | ex 115 | . . . . . 6 ⊢ ((𝐴 ∈ (0[,]π) ∧ 𝐵 ∈ (0[,]π)) → (𝐵 < 𝐴 → (cos‘𝐴) < (cos‘𝐵))) |
| 12 | 6, 11 | orim12d 788 | . . . . 5 ⊢ ((𝐴 ∈ (0[,]π) ∧ 𝐵 ∈ (0[,]π)) → ((𝐴 < 𝐵 ∨ 𝐵 < 𝐴) → ((cos‘𝐵) < (cos‘𝐴) ∨ (cos‘𝐴) < (cos‘𝐵)))) |
| 13 | 0re 8087 | . . . . . . . . 9 ⊢ 0 ∈ ℝ | |
| 14 | pire 15328 | . . . . . . . . 9 ⊢ π ∈ ℝ | |
| 15 | 13, 14 | elicc2i 10076 | . . . . . . . 8 ⊢ (𝐴 ∈ (0[,]π) ↔ (𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ∧ 𝐴 ≤ π)) |
| 16 | 15 | simp1bi 1015 | . . . . . . 7 ⊢ (𝐴 ∈ (0[,]π) → 𝐴 ∈ ℝ) |
| 17 | 16 | adantr 276 | . . . . . 6 ⊢ ((𝐴 ∈ (0[,]π) ∧ 𝐵 ∈ (0[,]π)) → 𝐴 ∈ ℝ) |
| 18 | 13, 14 | elicc2i 10076 | . . . . . . . 8 ⊢ (𝐵 ∈ (0[,]π) ↔ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵 ∧ 𝐵 ≤ π)) |
| 19 | 18 | simp1bi 1015 | . . . . . . 7 ⊢ (𝐵 ∈ (0[,]π) → 𝐵 ∈ ℝ) |
| 20 | 19 | adantl 277 | . . . . . 6 ⊢ ((𝐴 ∈ (0[,]π) ∧ 𝐵 ∈ (0[,]π)) → 𝐵 ∈ ℝ) |
| 21 | reaplt 8676 | . . . . . 6 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 # 𝐵 ↔ (𝐴 < 𝐵 ∨ 𝐵 < 𝐴))) | |
| 22 | 17, 20, 21 | syl2anc 411 | . . . . 5 ⊢ ((𝐴 ∈ (0[,]π) ∧ 𝐵 ∈ (0[,]π)) → (𝐴 # 𝐵 ↔ (𝐴 < 𝐵 ∨ 𝐵 < 𝐴))) |
| 23 | 17 | recoscld 12105 | . . . . . . 7 ⊢ ((𝐴 ∈ (0[,]π) ∧ 𝐵 ∈ (0[,]π)) → (cos‘𝐴) ∈ ℝ) |
| 24 | 20 | recoscld 12105 | . . . . . . 7 ⊢ ((𝐴 ∈ (0[,]π) ∧ 𝐵 ∈ (0[,]π)) → (cos‘𝐵) ∈ ℝ) |
| 25 | reaplt 8676 | . . . . . . 7 ⊢ (((cos‘𝐴) ∈ ℝ ∧ (cos‘𝐵) ∈ ℝ) → ((cos‘𝐴) # (cos‘𝐵) ↔ ((cos‘𝐴) < (cos‘𝐵) ∨ (cos‘𝐵) < (cos‘𝐴)))) | |
| 26 | 23, 24, 25 | syl2anc 411 | . . . . . 6 ⊢ ((𝐴 ∈ (0[,]π) ∧ 𝐵 ∈ (0[,]π)) → ((cos‘𝐴) # (cos‘𝐵) ↔ ((cos‘𝐴) < (cos‘𝐵) ∨ (cos‘𝐵) < (cos‘𝐴)))) |
| 27 | orcom 730 | . . . . . 6 ⊢ (((cos‘𝐴) < (cos‘𝐵) ∨ (cos‘𝐵) < (cos‘𝐴)) ↔ ((cos‘𝐵) < (cos‘𝐴) ∨ (cos‘𝐴) < (cos‘𝐵))) | |
| 28 | 26, 27 | bitrdi 196 | . . . . 5 ⊢ ((𝐴 ∈ (0[,]π) ∧ 𝐵 ∈ (0[,]π)) → ((cos‘𝐴) # (cos‘𝐵) ↔ ((cos‘𝐵) < (cos‘𝐴) ∨ (cos‘𝐴) < (cos‘𝐵)))) |
| 29 | 12, 22, 28 | 3imtr4d 203 | . . . 4 ⊢ ((𝐴 ∈ (0[,]π) ∧ 𝐵 ∈ (0[,]π)) → (𝐴 # 𝐵 → (cos‘𝐴) # (cos‘𝐵))) |
| 30 | 29 | con3d 632 | . . 3 ⊢ ((𝐴 ∈ (0[,]π) ∧ 𝐵 ∈ (0[,]π)) → (¬ (cos‘𝐴) # (cos‘𝐵) → ¬ 𝐴 # 𝐵)) |
| 31 | 23 | recnd 8116 | . . . 4 ⊢ ((𝐴 ∈ (0[,]π) ∧ 𝐵 ∈ (0[,]π)) → (cos‘𝐴) ∈ ℂ) |
| 32 | 24 | recnd 8116 | . . . 4 ⊢ ((𝐴 ∈ (0[,]π) ∧ 𝐵 ∈ (0[,]π)) → (cos‘𝐵) ∈ ℂ) |
| 33 | apti 8710 | . . . 4 ⊢ (((cos‘𝐴) ∈ ℂ ∧ (cos‘𝐵) ∈ ℂ) → ((cos‘𝐴) = (cos‘𝐵) ↔ ¬ (cos‘𝐴) # (cos‘𝐵))) | |
| 34 | 31, 32, 33 | syl2anc 411 | . . 3 ⊢ ((𝐴 ∈ (0[,]π) ∧ 𝐵 ∈ (0[,]π)) → ((cos‘𝐴) = (cos‘𝐵) ↔ ¬ (cos‘𝐴) # (cos‘𝐵))) |
| 35 | 17 | recnd 8116 | . . . 4 ⊢ ((𝐴 ∈ (0[,]π) ∧ 𝐵 ∈ (0[,]π)) → 𝐴 ∈ ℂ) |
| 36 | 20 | recnd 8116 | . . . 4 ⊢ ((𝐴 ∈ (0[,]π) ∧ 𝐵 ∈ (0[,]π)) → 𝐵 ∈ ℂ) |
| 37 | apti 8710 | . . . 4 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 = 𝐵 ↔ ¬ 𝐴 # 𝐵)) | |
| 38 | 35, 36, 37 | syl2anc 411 | . . 3 ⊢ ((𝐴 ∈ (0[,]π) ∧ 𝐵 ∈ (0[,]π)) → (𝐴 = 𝐵 ↔ ¬ 𝐴 # 𝐵)) |
| 39 | 30, 34, 38 | 3imtr4d 203 | . 2 ⊢ ((𝐴 ∈ (0[,]π) ∧ 𝐵 ∈ (0[,]π)) → ((cos‘𝐴) = (cos‘𝐵) → 𝐴 = 𝐵)) |
| 40 | 1, 39 | impbid2 143 | 1 ⊢ ((𝐴 ∈ (0[,]π) ∧ 𝐵 ∈ (0[,]π)) → (𝐴 = 𝐵 ↔ (cos‘𝐴) = (cos‘𝐵))) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 104 ↔ wb 105 ∨ wo 710 = wceq 1373 ∈ wcel 2177 class class class wbr 4050 ‘cfv 5279 (class class class)co 5956 ℂcc 7938 ℝcr 7939 0cc0 7940 < clt 8122 ≤ cle 8123 # cap 8669 [,]cicc 10028 cosccos 12026 πcpi 12028 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-coll 4166 ax-sep 4169 ax-nul 4177 ax-pow 4225 ax-pr 4260 ax-un 4487 ax-setind 4592 ax-iinf 4643 ax-cnex 8031 ax-resscn 8032 ax-1cn 8033 ax-1re 8034 ax-icn 8035 ax-addcl 8036 ax-addrcl 8037 ax-mulcl 8038 ax-mulrcl 8039 ax-addcom 8040 ax-mulcom 8041 ax-addass 8042 ax-mulass 8043 ax-distr 8044 ax-i2m1 8045 ax-0lt1 8046 ax-1rid 8047 ax-0id 8048 ax-rnegex 8049 ax-precex 8050 ax-cnre 8051 ax-pre-ltirr 8052 ax-pre-ltwlin 8053 ax-pre-lttrn 8054 ax-pre-apti 8055 ax-pre-ltadd 8056 ax-pre-mulgt0 8057 ax-pre-mulext 8058 ax-arch 8059 ax-caucvg 8060 ax-pre-suploc 8061 ax-addf 8062 ax-mulf 8063 |
| This theorem depends on definitions: df-bi 117 df-stab 833 df-dc 837 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-nel 2473 df-ral 2490 df-rex 2491 df-reu 2492 df-rmo 2493 df-rab 2494 df-v 2775 df-sbc 3003 df-csb 3098 df-dif 3172 df-un 3174 df-in 3176 df-ss 3183 df-nul 3465 df-if 3576 df-pw 3622 df-sn 3643 df-pr 3644 df-op 3646 df-uni 3856 df-int 3891 df-iun 3934 df-disj 4027 df-br 4051 df-opab 4113 df-mpt 4114 df-tr 4150 df-id 4347 df-po 4350 df-iso 4351 df-iord 4420 df-on 4422 df-ilim 4423 df-suc 4425 df-iom 4646 df-xp 4688 df-rel 4689 df-cnv 4690 df-co 4691 df-dm 4692 df-rn 4693 df-res 4694 df-ima 4695 df-iota 5240 df-fun 5281 df-fn 5282 df-f 5283 df-f1 5284 df-fo 5285 df-f1o 5286 df-fv 5287 df-isom 5288 df-riota 5911 df-ov 5959 df-oprab 5960 df-mpo 5961 df-of 6170 df-1st 6238 df-2nd 6239 df-recs 6403 df-irdg 6468 df-frec 6489 df-1o 6514 df-oadd 6518 df-er 6632 df-map 6749 df-pm 6750 df-en 6840 df-dom 6841 df-fin 6842 df-sup 7100 df-inf 7101 df-pnf 8124 df-mnf 8125 df-xr 8126 df-ltxr 8127 df-le 8128 df-sub 8260 df-neg 8261 df-reap 8663 df-ap 8670 df-div 8761 df-inn 9052 df-2 9110 df-3 9111 df-4 9112 df-5 9113 df-6 9114 df-7 9115 df-8 9116 df-9 9117 df-n0 9311 df-z 9388 df-uz 9664 df-q 9756 df-rp 9791 df-xneg 9909 df-xadd 9910 df-ioo 10029 df-ioc 10030 df-ico 10031 df-icc 10032 df-fz 10146 df-fzo 10280 df-seqfrec 10610 df-exp 10701 df-fac 10888 df-bc 10910 df-ihash 10938 df-shft 11196 df-cj 11223 df-re 11224 df-im 11225 df-rsqrt 11379 df-abs 11380 df-clim 11660 df-sumdc 11735 df-ef 12029 df-sin 12031 df-cos 12032 df-pi 12034 df-rest 13143 df-topgen 13162 df-psmet 14375 df-xmet 14376 df-met 14377 df-bl 14378 df-mopn 14379 df-top 14540 df-topon 14553 df-bases 14585 df-ntr 14638 df-cn 14730 df-cnp 14731 df-tx 14795 df-cncf 15113 df-limced 15198 df-dvap 15199 |
| This theorem is referenced by: ioocosf1o 15396 |
| Copyright terms: Public domain | W3C validator |