![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > cos11 | GIF version |
Description: Cosine is one-to-one over the closed interval from 0 to π. (Contributed by Paul Chapman, 16-Mar-2008.) (Revised by Jim Kingdon, 6-May-2024.) |
Ref | Expression |
---|---|
cos11 | ⊢ ((𝐴 ∈ (0[,]π) ∧ 𝐵 ∈ (0[,]π)) → (𝐴 = 𝐵 ↔ (cos‘𝐴) = (cos‘𝐵))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fveq2 5554 | . 2 ⊢ (𝐴 = 𝐵 → (cos‘𝐴) = (cos‘𝐵)) | |
2 | simpll 527 | . . . . . . . 8 ⊢ (((𝐴 ∈ (0[,]π) ∧ 𝐵 ∈ (0[,]π)) ∧ 𝐴 < 𝐵) → 𝐴 ∈ (0[,]π)) | |
3 | simplr 528 | . . . . . . . 8 ⊢ (((𝐴 ∈ (0[,]π) ∧ 𝐵 ∈ (0[,]π)) ∧ 𝐴 < 𝐵) → 𝐵 ∈ (0[,]π)) | |
4 | simpr 110 | . . . . . . . 8 ⊢ (((𝐴 ∈ (0[,]π) ∧ 𝐵 ∈ (0[,]π)) ∧ 𝐴 < 𝐵) → 𝐴 < 𝐵) | |
5 | 2, 3, 4 | cosordlem 14984 | . . . . . . 7 ⊢ (((𝐴 ∈ (0[,]π) ∧ 𝐵 ∈ (0[,]π)) ∧ 𝐴 < 𝐵) → (cos‘𝐵) < (cos‘𝐴)) |
6 | 5 | ex 115 | . . . . . 6 ⊢ ((𝐴 ∈ (0[,]π) ∧ 𝐵 ∈ (0[,]π)) → (𝐴 < 𝐵 → (cos‘𝐵) < (cos‘𝐴))) |
7 | simplr 528 | . . . . . . . 8 ⊢ (((𝐴 ∈ (0[,]π) ∧ 𝐵 ∈ (0[,]π)) ∧ 𝐵 < 𝐴) → 𝐵 ∈ (0[,]π)) | |
8 | simpll 527 | . . . . . . . 8 ⊢ (((𝐴 ∈ (0[,]π) ∧ 𝐵 ∈ (0[,]π)) ∧ 𝐵 < 𝐴) → 𝐴 ∈ (0[,]π)) | |
9 | simpr 110 | . . . . . . . 8 ⊢ (((𝐴 ∈ (0[,]π) ∧ 𝐵 ∈ (0[,]π)) ∧ 𝐵 < 𝐴) → 𝐵 < 𝐴) | |
10 | 7, 8, 9 | cosordlem 14984 | . . . . . . 7 ⊢ (((𝐴 ∈ (0[,]π) ∧ 𝐵 ∈ (0[,]π)) ∧ 𝐵 < 𝐴) → (cos‘𝐴) < (cos‘𝐵)) |
11 | 10 | ex 115 | . . . . . 6 ⊢ ((𝐴 ∈ (0[,]π) ∧ 𝐵 ∈ (0[,]π)) → (𝐵 < 𝐴 → (cos‘𝐴) < (cos‘𝐵))) |
12 | 6, 11 | orim12d 787 | . . . . 5 ⊢ ((𝐴 ∈ (0[,]π) ∧ 𝐵 ∈ (0[,]π)) → ((𝐴 < 𝐵 ∨ 𝐵 < 𝐴) → ((cos‘𝐵) < (cos‘𝐴) ∨ (cos‘𝐴) < (cos‘𝐵)))) |
13 | 0re 8019 | . . . . . . . . 9 ⊢ 0 ∈ ℝ | |
14 | pire 14921 | . . . . . . . . 9 ⊢ π ∈ ℝ | |
15 | 13, 14 | elicc2i 10005 | . . . . . . . 8 ⊢ (𝐴 ∈ (0[,]π) ↔ (𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ∧ 𝐴 ≤ π)) |
16 | 15 | simp1bi 1014 | . . . . . . 7 ⊢ (𝐴 ∈ (0[,]π) → 𝐴 ∈ ℝ) |
17 | 16 | adantr 276 | . . . . . 6 ⊢ ((𝐴 ∈ (0[,]π) ∧ 𝐵 ∈ (0[,]π)) → 𝐴 ∈ ℝ) |
18 | 13, 14 | elicc2i 10005 | . . . . . . . 8 ⊢ (𝐵 ∈ (0[,]π) ↔ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵 ∧ 𝐵 ≤ π)) |
19 | 18 | simp1bi 1014 | . . . . . . 7 ⊢ (𝐵 ∈ (0[,]π) → 𝐵 ∈ ℝ) |
20 | 19 | adantl 277 | . . . . . 6 ⊢ ((𝐴 ∈ (0[,]π) ∧ 𝐵 ∈ (0[,]π)) → 𝐵 ∈ ℝ) |
21 | reaplt 8607 | . . . . . 6 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 # 𝐵 ↔ (𝐴 < 𝐵 ∨ 𝐵 < 𝐴))) | |
22 | 17, 20, 21 | syl2anc 411 | . . . . 5 ⊢ ((𝐴 ∈ (0[,]π) ∧ 𝐵 ∈ (0[,]π)) → (𝐴 # 𝐵 ↔ (𝐴 < 𝐵 ∨ 𝐵 < 𝐴))) |
23 | 17 | recoscld 11867 | . . . . . . 7 ⊢ ((𝐴 ∈ (0[,]π) ∧ 𝐵 ∈ (0[,]π)) → (cos‘𝐴) ∈ ℝ) |
24 | 20 | recoscld 11867 | . . . . . . 7 ⊢ ((𝐴 ∈ (0[,]π) ∧ 𝐵 ∈ (0[,]π)) → (cos‘𝐵) ∈ ℝ) |
25 | reaplt 8607 | . . . . . . 7 ⊢ (((cos‘𝐴) ∈ ℝ ∧ (cos‘𝐵) ∈ ℝ) → ((cos‘𝐴) # (cos‘𝐵) ↔ ((cos‘𝐴) < (cos‘𝐵) ∨ (cos‘𝐵) < (cos‘𝐴)))) | |
26 | 23, 24, 25 | syl2anc 411 | . . . . . 6 ⊢ ((𝐴 ∈ (0[,]π) ∧ 𝐵 ∈ (0[,]π)) → ((cos‘𝐴) # (cos‘𝐵) ↔ ((cos‘𝐴) < (cos‘𝐵) ∨ (cos‘𝐵) < (cos‘𝐴)))) |
27 | orcom 729 | . . . . . 6 ⊢ (((cos‘𝐴) < (cos‘𝐵) ∨ (cos‘𝐵) < (cos‘𝐴)) ↔ ((cos‘𝐵) < (cos‘𝐴) ∨ (cos‘𝐴) < (cos‘𝐵))) | |
28 | 26, 27 | bitrdi 196 | . . . . 5 ⊢ ((𝐴 ∈ (0[,]π) ∧ 𝐵 ∈ (0[,]π)) → ((cos‘𝐴) # (cos‘𝐵) ↔ ((cos‘𝐵) < (cos‘𝐴) ∨ (cos‘𝐴) < (cos‘𝐵)))) |
29 | 12, 22, 28 | 3imtr4d 203 | . . . 4 ⊢ ((𝐴 ∈ (0[,]π) ∧ 𝐵 ∈ (0[,]π)) → (𝐴 # 𝐵 → (cos‘𝐴) # (cos‘𝐵))) |
30 | 29 | con3d 632 | . . 3 ⊢ ((𝐴 ∈ (0[,]π) ∧ 𝐵 ∈ (0[,]π)) → (¬ (cos‘𝐴) # (cos‘𝐵) → ¬ 𝐴 # 𝐵)) |
31 | 23 | recnd 8048 | . . . 4 ⊢ ((𝐴 ∈ (0[,]π) ∧ 𝐵 ∈ (0[,]π)) → (cos‘𝐴) ∈ ℂ) |
32 | 24 | recnd 8048 | . . . 4 ⊢ ((𝐴 ∈ (0[,]π) ∧ 𝐵 ∈ (0[,]π)) → (cos‘𝐵) ∈ ℂ) |
33 | apti 8641 | . . . 4 ⊢ (((cos‘𝐴) ∈ ℂ ∧ (cos‘𝐵) ∈ ℂ) → ((cos‘𝐴) = (cos‘𝐵) ↔ ¬ (cos‘𝐴) # (cos‘𝐵))) | |
34 | 31, 32, 33 | syl2anc 411 | . . 3 ⊢ ((𝐴 ∈ (0[,]π) ∧ 𝐵 ∈ (0[,]π)) → ((cos‘𝐴) = (cos‘𝐵) ↔ ¬ (cos‘𝐴) # (cos‘𝐵))) |
35 | 17 | recnd 8048 | . . . 4 ⊢ ((𝐴 ∈ (0[,]π) ∧ 𝐵 ∈ (0[,]π)) → 𝐴 ∈ ℂ) |
36 | 20 | recnd 8048 | . . . 4 ⊢ ((𝐴 ∈ (0[,]π) ∧ 𝐵 ∈ (0[,]π)) → 𝐵 ∈ ℂ) |
37 | apti 8641 | . . . 4 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 = 𝐵 ↔ ¬ 𝐴 # 𝐵)) | |
38 | 35, 36, 37 | syl2anc 411 | . . 3 ⊢ ((𝐴 ∈ (0[,]π) ∧ 𝐵 ∈ (0[,]π)) → (𝐴 = 𝐵 ↔ ¬ 𝐴 # 𝐵)) |
39 | 30, 34, 38 | 3imtr4d 203 | . 2 ⊢ ((𝐴 ∈ (0[,]π) ∧ 𝐵 ∈ (0[,]π)) → ((cos‘𝐴) = (cos‘𝐵) → 𝐴 = 𝐵)) |
40 | 1, 39 | impbid2 143 | 1 ⊢ ((𝐴 ∈ (0[,]π) ∧ 𝐵 ∈ (0[,]π)) → (𝐴 = 𝐵 ↔ (cos‘𝐴) = (cos‘𝐵))) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 104 ↔ wb 105 ∨ wo 709 = wceq 1364 ∈ wcel 2164 class class class wbr 4029 ‘cfv 5254 (class class class)co 5918 ℂcc 7870 ℝcr 7871 0cc0 7872 < clt 8054 ≤ cle 8055 # cap 8600 [,]cicc 9957 cosccos 11788 πcpi 11790 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-coll 4144 ax-sep 4147 ax-nul 4155 ax-pow 4203 ax-pr 4238 ax-un 4464 ax-setind 4569 ax-iinf 4620 ax-cnex 7963 ax-resscn 7964 ax-1cn 7965 ax-1re 7966 ax-icn 7967 ax-addcl 7968 ax-addrcl 7969 ax-mulcl 7970 ax-mulrcl 7971 ax-addcom 7972 ax-mulcom 7973 ax-addass 7974 ax-mulass 7975 ax-distr 7976 ax-i2m1 7977 ax-0lt1 7978 ax-1rid 7979 ax-0id 7980 ax-rnegex 7981 ax-precex 7982 ax-cnre 7983 ax-pre-ltirr 7984 ax-pre-ltwlin 7985 ax-pre-lttrn 7986 ax-pre-apti 7987 ax-pre-ltadd 7988 ax-pre-mulgt0 7989 ax-pre-mulext 7990 ax-arch 7991 ax-caucvg 7992 ax-pre-suploc 7993 ax-addf 7994 ax-mulf 7995 |
This theorem depends on definitions: df-bi 117 df-stab 832 df-dc 836 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ne 2365 df-nel 2460 df-ral 2477 df-rex 2478 df-reu 2479 df-rmo 2480 df-rab 2481 df-v 2762 df-sbc 2986 df-csb 3081 df-dif 3155 df-un 3157 df-in 3159 df-ss 3166 df-nul 3447 df-if 3558 df-pw 3603 df-sn 3624 df-pr 3625 df-op 3627 df-uni 3836 df-int 3871 df-iun 3914 df-disj 4007 df-br 4030 df-opab 4091 df-mpt 4092 df-tr 4128 df-id 4324 df-po 4327 df-iso 4328 df-iord 4397 df-on 4399 df-ilim 4400 df-suc 4402 df-iom 4623 df-xp 4665 df-rel 4666 df-cnv 4667 df-co 4668 df-dm 4669 df-rn 4670 df-res 4671 df-ima 4672 df-iota 5215 df-fun 5256 df-fn 5257 df-f 5258 df-f1 5259 df-fo 5260 df-f1o 5261 df-fv 5262 df-isom 5263 df-riota 5873 df-ov 5921 df-oprab 5922 df-mpo 5923 df-of 6130 df-1st 6193 df-2nd 6194 df-recs 6358 df-irdg 6423 df-frec 6444 df-1o 6469 df-oadd 6473 df-er 6587 df-map 6704 df-pm 6705 df-en 6795 df-dom 6796 df-fin 6797 df-sup 7043 df-inf 7044 df-pnf 8056 df-mnf 8057 df-xr 8058 df-ltxr 8059 df-le 8060 df-sub 8192 df-neg 8193 df-reap 8594 df-ap 8601 df-div 8692 df-inn 8983 df-2 9041 df-3 9042 df-4 9043 df-5 9044 df-6 9045 df-7 9046 df-8 9047 df-9 9048 df-n0 9241 df-z 9318 df-uz 9593 df-q 9685 df-rp 9720 df-xneg 9838 df-xadd 9839 df-ioo 9958 df-ioc 9959 df-ico 9960 df-icc 9961 df-fz 10075 df-fzo 10209 df-seqfrec 10519 df-exp 10610 df-fac 10797 df-bc 10819 df-ihash 10847 df-shft 10959 df-cj 10986 df-re 10987 df-im 10988 df-rsqrt 11142 df-abs 11143 df-clim 11422 df-sumdc 11497 df-ef 11791 df-sin 11793 df-cos 11794 df-pi 11796 df-rest 12852 df-topgen 12871 df-psmet 14039 df-xmet 14040 df-met 14041 df-bl 14042 df-mopn 14043 df-top 14166 df-topon 14179 df-bases 14211 df-ntr 14264 df-cn 14356 df-cnp 14357 df-tx 14421 df-cncf 14726 df-limced 14810 df-dvap 14811 |
This theorem is referenced by: ioocosf1o 14989 |
Copyright terms: Public domain | W3C validator |