| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > cos11 | GIF version | ||
| Description: Cosine is one-to-one over the closed interval from 0 to π. (Contributed by Paul Chapman, 16-Mar-2008.) (Revised by Jim Kingdon, 6-May-2024.) | 
| Ref | Expression | 
|---|---|
| cos11 | ⊢ ((𝐴 ∈ (0[,]π) ∧ 𝐵 ∈ (0[,]π)) → (𝐴 = 𝐵 ↔ (cos‘𝐴) = (cos‘𝐵))) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | fveq2 5558 | . 2 ⊢ (𝐴 = 𝐵 → (cos‘𝐴) = (cos‘𝐵)) | |
| 2 | simpll 527 | . . . . . . . 8 ⊢ (((𝐴 ∈ (0[,]π) ∧ 𝐵 ∈ (0[,]π)) ∧ 𝐴 < 𝐵) → 𝐴 ∈ (0[,]π)) | |
| 3 | simplr 528 | . . . . . . . 8 ⊢ (((𝐴 ∈ (0[,]π) ∧ 𝐵 ∈ (0[,]π)) ∧ 𝐴 < 𝐵) → 𝐵 ∈ (0[,]π)) | |
| 4 | simpr 110 | . . . . . . . 8 ⊢ (((𝐴 ∈ (0[,]π) ∧ 𝐵 ∈ (0[,]π)) ∧ 𝐴 < 𝐵) → 𝐴 < 𝐵) | |
| 5 | 2, 3, 4 | cosordlem 15085 | . . . . . . 7 ⊢ (((𝐴 ∈ (0[,]π) ∧ 𝐵 ∈ (0[,]π)) ∧ 𝐴 < 𝐵) → (cos‘𝐵) < (cos‘𝐴)) | 
| 6 | 5 | ex 115 | . . . . . 6 ⊢ ((𝐴 ∈ (0[,]π) ∧ 𝐵 ∈ (0[,]π)) → (𝐴 < 𝐵 → (cos‘𝐵) < (cos‘𝐴))) | 
| 7 | simplr 528 | . . . . . . . 8 ⊢ (((𝐴 ∈ (0[,]π) ∧ 𝐵 ∈ (0[,]π)) ∧ 𝐵 < 𝐴) → 𝐵 ∈ (0[,]π)) | |
| 8 | simpll 527 | . . . . . . . 8 ⊢ (((𝐴 ∈ (0[,]π) ∧ 𝐵 ∈ (0[,]π)) ∧ 𝐵 < 𝐴) → 𝐴 ∈ (0[,]π)) | |
| 9 | simpr 110 | . . . . . . . 8 ⊢ (((𝐴 ∈ (0[,]π) ∧ 𝐵 ∈ (0[,]π)) ∧ 𝐵 < 𝐴) → 𝐵 < 𝐴) | |
| 10 | 7, 8, 9 | cosordlem 15085 | . . . . . . 7 ⊢ (((𝐴 ∈ (0[,]π) ∧ 𝐵 ∈ (0[,]π)) ∧ 𝐵 < 𝐴) → (cos‘𝐴) < (cos‘𝐵)) | 
| 11 | 10 | ex 115 | . . . . . 6 ⊢ ((𝐴 ∈ (0[,]π) ∧ 𝐵 ∈ (0[,]π)) → (𝐵 < 𝐴 → (cos‘𝐴) < (cos‘𝐵))) | 
| 12 | 6, 11 | orim12d 787 | . . . . 5 ⊢ ((𝐴 ∈ (0[,]π) ∧ 𝐵 ∈ (0[,]π)) → ((𝐴 < 𝐵 ∨ 𝐵 < 𝐴) → ((cos‘𝐵) < (cos‘𝐴) ∨ (cos‘𝐴) < (cos‘𝐵)))) | 
| 13 | 0re 8026 | . . . . . . . . 9 ⊢ 0 ∈ ℝ | |
| 14 | pire 15022 | . . . . . . . . 9 ⊢ π ∈ ℝ | |
| 15 | 13, 14 | elicc2i 10014 | . . . . . . . 8 ⊢ (𝐴 ∈ (0[,]π) ↔ (𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ∧ 𝐴 ≤ π)) | 
| 16 | 15 | simp1bi 1014 | . . . . . . 7 ⊢ (𝐴 ∈ (0[,]π) → 𝐴 ∈ ℝ) | 
| 17 | 16 | adantr 276 | . . . . . 6 ⊢ ((𝐴 ∈ (0[,]π) ∧ 𝐵 ∈ (0[,]π)) → 𝐴 ∈ ℝ) | 
| 18 | 13, 14 | elicc2i 10014 | . . . . . . . 8 ⊢ (𝐵 ∈ (0[,]π) ↔ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵 ∧ 𝐵 ≤ π)) | 
| 19 | 18 | simp1bi 1014 | . . . . . . 7 ⊢ (𝐵 ∈ (0[,]π) → 𝐵 ∈ ℝ) | 
| 20 | 19 | adantl 277 | . . . . . 6 ⊢ ((𝐴 ∈ (0[,]π) ∧ 𝐵 ∈ (0[,]π)) → 𝐵 ∈ ℝ) | 
| 21 | reaplt 8615 | . . . . . 6 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 # 𝐵 ↔ (𝐴 < 𝐵 ∨ 𝐵 < 𝐴))) | |
| 22 | 17, 20, 21 | syl2anc 411 | . . . . 5 ⊢ ((𝐴 ∈ (0[,]π) ∧ 𝐵 ∈ (0[,]π)) → (𝐴 # 𝐵 ↔ (𝐴 < 𝐵 ∨ 𝐵 < 𝐴))) | 
| 23 | 17 | recoscld 11889 | . . . . . . 7 ⊢ ((𝐴 ∈ (0[,]π) ∧ 𝐵 ∈ (0[,]π)) → (cos‘𝐴) ∈ ℝ) | 
| 24 | 20 | recoscld 11889 | . . . . . . 7 ⊢ ((𝐴 ∈ (0[,]π) ∧ 𝐵 ∈ (0[,]π)) → (cos‘𝐵) ∈ ℝ) | 
| 25 | reaplt 8615 | . . . . . . 7 ⊢ (((cos‘𝐴) ∈ ℝ ∧ (cos‘𝐵) ∈ ℝ) → ((cos‘𝐴) # (cos‘𝐵) ↔ ((cos‘𝐴) < (cos‘𝐵) ∨ (cos‘𝐵) < (cos‘𝐴)))) | |
| 26 | 23, 24, 25 | syl2anc 411 | . . . . . 6 ⊢ ((𝐴 ∈ (0[,]π) ∧ 𝐵 ∈ (0[,]π)) → ((cos‘𝐴) # (cos‘𝐵) ↔ ((cos‘𝐴) < (cos‘𝐵) ∨ (cos‘𝐵) < (cos‘𝐴)))) | 
| 27 | orcom 729 | . . . . . 6 ⊢ (((cos‘𝐴) < (cos‘𝐵) ∨ (cos‘𝐵) < (cos‘𝐴)) ↔ ((cos‘𝐵) < (cos‘𝐴) ∨ (cos‘𝐴) < (cos‘𝐵))) | |
| 28 | 26, 27 | bitrdi 196 | . . . . 5 ⊢ ((𝐴 ∈ (0[,]π) ∧ 𝐵 ∈ (0[,]π)) → ((cos‘𝐴) # (cos‘𝐵) ↔ ((cos‘𝐵) < (cos‘𝐴) ∨ (cos‘𝐴) < (cos‘𝐵)))) | 
| 29 | 12, 22, 28 | 3imtr4d 203 | . . . 4 ⊢ ((𝐴 ∈ (0[,]π) ∧ 𝐵 ∈ (0[,]π)) → (𝐴 # 𝐵 → (cos‘𝐴) # (cos‘𝐵))) | 
| 30 | 29 | con3d 632 | . . 3 ⊢ ((𝐴 ∈ (0[,]π) ∧ 𝐵 ∈ (0[,]π)) → (¬ (cos‘𝐴) # (cos‘𝐵) → ¬ 𝐴 # 𝐵)) | 
| 31 | 23 | recnd 8055 | . . . 4 ⊢ ((𝐴 ∈ (0[,]π) ∧ 𝐵 ∈ (0[,]π)) → (cos‘𝐴) ∈ ℂ) | 
| 32 | 24 | recnd 8055 | . . . 4 ⊢ ((𝐴 ∈ (0[,]π) ∧ 𝐵 ∈ (0[,]π)) → (cos‘𝐵) ∈ ℂ) | 
| 33 | apti 8649 | . . . 4 ⊢ (((cos‘𝐴) ∈ ℂ ∧ (cos‘𝐵) ∈ ℂ) → ((cos‘𝐴) = (cos‘𝐵) ↔ ¬ (cos‘𝐴) # (cos‘𝐵))) | |
| 34 | 31, 32, 33 | syl2anc 411 | . . 3 ⊢ ((𝐴 ∈ (0[,]π) ∧ 𝐵 ∈ (0[,]π)) → ((cos‘𝐴) = (cos‘𝐵) ↔ ¬ (cos‘𝐴) # (cos‘𝐵))) | 
| 35 | 17 | recnd 8055 | . . . 4 ⊢ ((𝐴 ∈ (0[,]π) ∧ 𝐵 ∈ (0[,]π)) → 𝐴 ∈ ℂ) | 
| 36 | 20 | recnd 8055 | . . . 4 ⊢ ((𝐴 ∈ (0[,]π) ∧ 𝐵 ∈ (0[,]π)) → 𝐵 ∈ ℂ) | 
| 37 | apti 8649 | . . . 4 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 = 𝐵 ↔ ¬ 𝐴 # 𝐵)) | |
| 38 | 35, 36, 37 | syl2anc 411 | . . 3 ⊢ ((𝐴 ∈ (0[,]π) ∧ 𝐵 ∈ (0[,]π)) → (𝐴 = 𝐵 ↔ ¬ 𝐴 # 𝐵)) | 
| 39 | 30, 34, 38 | 3imtr4d 203 | . 2 ⊢ ((𝐴 ∈ (0[,]π) ∧ 𝐵 ∈ (0[,]π)) → ((cos‘𝐴) = (cos‘𝐵) → 𝐴 = 𝐵)) | 
| 40 | 1, 39 | impbid2 143 | 1 ⊢ ((𝐴 ∈ (0[,]π) ∧ 𝐵 ∈ (0[,]π)) → (𝐴 = 𝐵 ↔ (cos‘𝐴) = (cos‘𝐵))) | 
| Colors of variables: wff set class | 
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 104 ↔ wb 105 ∨ wo 709 = wceq 1364 ∈ wcel 2167 class class class wbr 4033 ‘cfv 5258 (class class class)co 5922 ℂcc 7877 ℝcr 7878 0cc0 7879 < clt 8061 ≤ cle 8062 # cap 8608 [,]cicc 9966 cosccos 11810 πcpi 11812 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-coll 4148 ax-sep 4151 ax-nul 4159 ax-pow 4207 ax-pr 4242 ax-un 4468 ax-setind 4573 ax-iinf 4624 ax-cnex 7970 ax-resscn 7971 ax-1cn 7972 ax-1re 7973 ax-icn 7974 ax-addcl 7975 ax-addrcl 7976 ax-mulcl 7977 ax-mulrcl 7978 ax-addcom 7979 ax-mulcom 7980 ax-addass 7981 ax-mulass 7982 ax-distr 7983 ax-i2m1 7984 ax-0lt1 7985 ax-1rid 7986 ax-0id 7987 ax-rnegex 7988 ax-precex 7989 ax-cnre 7990 ax-pre-ltirr 7991 ax-pre-ltwlin 7992 ax-pre-lttrn 7993 ax-pre-apti 7994 ax-pre-ltadd 7995 ax-pre-mulgt0 7996 ax-pre-mulext 7997 ax-arch 7998 ax-caucvg 7999 ax-pre-suploc 8000 ax-addf 8001 ax-mulf 8002 | 
| This theorem depends on definitions: df-bi 117 df-stab 832 df-dc 836 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-reu 2482 df-rmo 2483 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3451 df-if 3562 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-int 3875 df-iun 3918 df-disj 4011 df-br 4034 df-opab 4095 df-mpt 4096 df-tr 4132 df-id 4328 df-po 4331 df-iso 4332 df-iord 4401 df-on 4403 df-ilim 4404 df-suc 4406 df-iom 4627 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-rn 4674 df-res 4675 df-ima 4676 df-iota 5219 df-fun 5260 df-fn 5261 df-f 5262 df-f1 5263 df-fo 5264 df-f1o 5265 df-fv 5266 df-isom 5267 df-riota 5877 df-ov 5925 df-oprab 5926 df-mpo 5927 df-of 6135 df-1st 6198 df-2nd 6199 df-recs 6363 df-irdg 6428 df-frec 6449 df-1o 6474 df-oadd 6478 df-er 6592 df-map 6709 df-pm 6710 df-en 6800 df-dom 6801 df-fin 6802 df-sup 7050 df-inf 7051 df-pnf 8063 df-mnf 8064 df-xr 8065 df-ltxr 8066 df-le 8067 df-sub 8199 df-neg 8200 df-reap 8602 df-ap 8609 df-div 8700 df-inn 8991 df-2 9049 df-3 9050 df-4 9051 df-5 9052 df-6 9053 df-7 9054 df-8 9055 df-9 9056 df-n0 9250 df-z 9327 df-uz 9602 df-q 9694 df-rp 9729 df-xneg 9847 df-xadd 9848 df-ioo 9967 df-ioc 9968 df-ico 9969 df-icc 9970 df-fz 10084 df-fzo 10218 df-seqfrec 10540 df-exp 10631 df-fac 10818 df-bc 10840 df-ihash 10868 df-shft 10980 df-cj 11007 df-re 11008 df-im 11009 df-rsqrt 11163 df-abs 11164 df-clim 11444 df-sumdc 11519 df-ef 11813 df-sin 11815 df-cos 11816 df-pi 11818 df-rest 12912 df-topgen 12931 df-psmet 14099 df-xmet 14100 df-met 14101 df-bl 14102 df-mopn 14103 df-top 14234 df-topon 14247 df-bases 14279 df-ntr 14332 df-cn 14424 df-cnp 14425 df-tx 14489 df-cncf 14807 df-limced 14892 df-dvap 14893 | 
| This theorem is referenced by: ioocosf1o 15090 | 
| Copyright terms: Public domain | W3C validator |