![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > cos11 | GIF version |
Description: Cosine is one-to-one over the closed interval from 0 to π. (Contributed by Paul Chapman, 16-Mar-2008.) (Revised by Jim Kingdon, 6-May-2024.) |
Ref | Expression |
---|---|
cos11 | ⊢ ((𝐴 ∈ (0[,]π) ∧ 𝐵 ∈ (0[,]π)) → (𝐴 = 𝐵 ↔ (cos‘𝐴) = (cos‘𝐵))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fveq2 5555 | . 2 ⊢ (𝐴 = 𝐵 → (cos‘𝐴) = (cos‘𝐵)) | |
2 | simpll 527 | . . . . . . . 8 ⊢ (((𝐴 ∈ (0[,]π) ∧ 𝐵 ∈ (0[,]π)) ∧ 𝐴 < 𝐵) → 𝐴 ∈ (0[,]π)) | |
3 | simplr 528 | . . . . . . . 8 ⊢ (((𝐴 ∈ (0[,]π) ∧ 𝐵 ∈ (0[,]π)) ∧ 𝐴 < 𝐵) → 𝐵 ∈ (0[,]π)) | |
4 | simpr 110 | . . . . . . . 8 ⊢ (((𝐴 ∈ (0[,]π) ∧ 𝐵 ∈ (0[,]π)) ∧ 𝐴 < 𝐵) → 𝐴 < 𝐵) | |
5 | 2, 3, 4 | cosordlem 15025 | . . . . . . 7 ⊢ (((𝐴 ∈ (0[,]π) ∧ 𝐵 ∈ (0[,]π)) ∧ 𝐴 < 𝐵) → (cos‘𝐵) < (cos‘𝐴)) |
6 | 5 | ex 115 | . . . . . 6 ⊢ ((𝐴 ∈ (0[,]π) ∧ 𝐵 ∈ (0[,]π)) → (𝐴 < 𝐵 → (cos‘𝐵) < (cos‘𝐴))) |
7 | simplr 528 | . . . . . . . 8 ⊢ (((𝐴 ∈ (0[,]π) ∧ 𝐵 ∈ (0[,]π)) ∧ 𝐵 < 𝐴) → 𝐵 ∈ (0[,]π)) | |
8 | simpll 527 | . . . . . . . 8 ⊢ (((𝐴 ∈ (0[,]π) ∧ 𝐵 ∈ (0[,]π)) ∧ 𝐵 < 𝐴) → 𝐴 ∈ (0[,]π)) | |
9 | simpr 110 | . . . . . . . 8 ⊢ (((𝐴 ∈ (0[,]π) ∧ 𝐵 ∈ (0[,]π)) ∧ 𝐵 < 𝐴) → 𝐵 < 𝐴) | |
10 | 7, 8, 9 | cosordlem 15025 | . . . . . . 7 ⊢ (((𝐴 ∈ (0[,]π) ∧ 𝐵 ∈ (0[,]π)) ∧ 𝐵 < 𝐴) → (cos‘𝐴) < (cos‘𝐵)) |
11 | 10 | ex 115 | . . . . . 6 ⊢ ((𝐴 ∈ (0[,]π) ∧ 𝐵 ∈ (0[,]π)) → (𝐵 < 𝐴 → (cos‘𝐴) < (cos‘𝐵))) |
12 | 6, 11 | orim12d 787 | . . . . 5 ⊢ ((𝐴 ∈ (0[,]π) ∧ 𝐵 ∈ (0[,]π)) → ((𝐴 < 𝐵 ∨ 𝐵 < 𝐴) → ((cos‘𝐵) < (cos‘𝐴) ∨ (cos‘𝐴) < (cos‘𝐵)))) |
13 | 0re 8021 | . . . . . . . . 9 ⊢ 0 ∈ ℝ | |
14 | pire 14962 | . . . . . . . . 9 ⊢ π ∈ ℝ | |
15 | 13, 14 | elicc2i 10008 | . . . . . . . 8 ⊢ (𝐴 ∈ (0[,]π) ↔ (𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ∧ 𝐴 ≤ π)) |
16 | 15 | simp1bi 1014 | . . . . . . 7 ⊢ (𝐴 ∈ (0[,]π) → 𝐴 ∈ ℝ) |
17 | 16 | adantr 276 | . . . . . 6 ⊢ ((𝐴 ∈ (0[,]π) ∧ 𝐵 ∈ (0[,]π)) → 𝐴 ∈ ℝ) |
18 | 13, 14 | elicc2i 10008 | . . . . . . . 8 ⊢ (𝐵 ∈ (0[,]π) ↔ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵 ∧ 𝐵 ≤ π)) |
19 | 18 | simp1bi 1014 | . . . . . . 7 ⊢ (𝐵 ∈ (0[,]π) → 𝐵 ∈ ℝ) |
20 | 19 | adantl 277 | . . . . . 6 ⊢ ((𝐴 ∈ (0[,]π) ∧ 𝐵 ∈ (0[,]π)) → 𝐵 ∈ ℝ) |
21 | reaplt 8609 | . . . . . 6 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 # 𝐵 ↔ (𝐴 < 𝐵 ∨ 𝐵 < 𝐴))) | |
22 | 17, 20, 21 | syl2anc 411 | . . . . 5 ⊢ ((𝐴 ∈ (0[,]π) ∧ 𝐵 ∈ (0[,]π)) → (𝐴 # 𝐵 ↔ (𝐴 < 𝐵 ∨ 𝐵 < 𝐴))) |
23 | 17 | recoscld 11870 | . . . . . . 7 ⊢ ((𝐴 ∈ (0[,]π) ∧ 𝐵 ∈ (0[,]π)) → (cos‘𝐴) ∈ ℝ) |
24 | 20 | recoscld 11870 | . . . . . . 7 ⊢ ((𝐴 ∈ (0[,]π) ∧ 𝐵 ∈ (0[,]π)) → (cos‘𝐵) ∈ ℝ) |
25 | reaplt 8609 | . . . . . . 7 ⊢ (((cos‘𝐴) ∈ ℝ ∧ (cos‘𝐵) ∈ ℝ) → ((cos‘𝐴) # (cos‘𝐵) ↔ ((cos‘𝐴) < (cos‘𝐵) ∨ (cos‘𝐵) < (cos‘𝐴)))) | |
26 | 23, 24, 25 | syl2anc 411 | . . . . . 6 ⊢ ((𝐴 ∈ (0[,]π) ∧ 𝐵 ∈ (0[,]π)) → ((cos‘𝐴) # (cos‘𝐵) ↔ ((cos‘𝐴) < (cos‘𝐵) ∨ (cos‘𝐵) < (cos‘𝐴)))) |
27 | orcom 729 | . . . . . 6 ⊢ (((cos‘𝐴) < (cos‘𝐵) ∨ (cos‘𝐵) < (cos‘𝐴)) ↔ ((cos‘𝐵) < (cos‘𝐴) ∨ (cos‘𝐴) < (cos‘𝐵))) | |
28 | 26, 27 | bitrdi 196 | . . . . 5 ⊢ ((𝐴 ∈ (0[,]π) ∧ 𝐵 ∈ (0[,]π)) → ((cos‘𝐴) # (cos‘𝐵) ↔ ((cos‘𝐵) < (cos‘𝐴) ∨ (cos‘𝐴) < (cos‘𝐵)))) |
29 | 12, 22, 28 | 3imtr4d 203 | . . . 4 ⊢ ((𝐴 ∈ (0[,]π) ∧ 𝐵 ∈ (0[,]π)) → (𝐴 # 𝐵 → (cos‘𝐴) # (cos‘𝐵))) |
30 | 29 | con3d 632 | . . 3 ⊢ ((𝐴 ∈ (0[,]π) ∧ 𝐵 ∈ (0[,]π)) → (¬ (cos‘𝐴) # (cos‘𝐵) → ¬ 𝐴 # 𝐵)) |
31 | 23 | recnd 8050 | . . . 4 ⊢ ((𝐴 ∈ (0[,]π) ∧ 𝐵 ∈ (0[,]π)) → (cos‘𝐴) ∈ ℂ) |
32 | 24 | recnd 8050 | . . . 4 ⊢ ((𝐴 ∈ (0[,]π) ∧ 𝐵 ∈ (0[,]π)) → (cos‘𝐵) ∈ ℂ) |
33 | apti 8643 | . . . 4 ⊢ (((cos‘𝐴) ∈ ℂ ∧ (cos‘𝐵) ∈ ℂ) → ((cos‘𝐴) = (cos‘𝐵) ↔ ¬ (cos‘𝐴) # (cos‘𝐵))) | |
34 | 31, 32, 33 | syl2anc 411 | . . 3 ⊢ ((𝐴 ∈ (0[,]π) ∧ 𝐵 ∈ (0[,]π)) → ((cos‘𝐴) = (cos‘𝐵) ↔ ¬ (cos‘𝐴) # (cos‘𝐵))) |
35 | 17 | recnd 8050 | . . . 4 ⊢ ((𝐴 ∈ (0[,]π) ∧ 𝐵 ∈ (0[,]π)) → 𝐴 ∈ ℂ) |
36 | 20 | recnd 8050 | . . . 4 ⊢ ((𝐴 ∈ (0[,]π) ∧ 𝐵 ∈ (0[,]π)) → 𝐵 ∈ ℂ) |
37 | apti 8643 | . . . 4 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 = 𝐵 ↔ ¬ 𝐴 # 𝐵)) | |
38 | 35, 36, 37 | syl2anc 411 | . . 3 ⊢ ((𝐴 ∈ (0[,]π) ∧ 𝐵 ∈ (0[,]π)) → (𝐴 = 𝐵 ↔ ¬ 𝐴 # 𝐵)) |
39 | 30, 34, 38 | 3imtr4d 203 | . 2 ⊢ ((𝐴 ∈ (0[,]π) ∧ 𝐵 ∈ (0[,]π)) → ((cos‘𝐴) = (cos‘𝐵) → 𝐴 = 𝐵)) |
40 | 1, 39 | impbid2 143 | 1 ⊢ ((𝐴 ∈ (0[,]π) ∧ 𝐵 ∈ (0[,]π)) → (𝐴 = 𝐵 ↔ (cos‘𝐴) = (cos‘𝐵))) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 104 ↔ wb 105 ∨ wo 709 = wceq 1364 ∈ wcel 2164 class class class wbr 4030 ‘cfv 5255 (class class class)co 5919 ℂcc 7872 ℝcr 7873 0cc0 7874 < clt 8056 ≤ cle 8057 # cap 8602 [,]cicc 9960 cosccos 11791 πcpi 11793 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-coll 4145 ax-sep 4148 ax-nul 4156 ax-pow 4204 ax-pr 4239 ax-un 4465 ax-setind 4570 ax-iinf 4621 ax-cnex 7965 ax-resscn 7966 ax-1cn 7967 ax-1re 7968 ax-icn 7969 ax-addcl 7970 ax-addrcl 7971 ax-mulcl 7972 ax-mulrcl 7973 ax-addcom 7974 ax-mulcom 7975 ax-addass 7976 ax-mulass 7977 ax-distr 7978 ax-i2m1 7979 ax-0lt1 7980 ax-1rid 7981 ax-0id 7982 ax-rnegex 7983 ax-precex 7984 ax-cnre 7985 ax-pre-ltirr 7986 ax-pre-ltwlin 7987 ax-pre-lttrn 7988 ax-pre-apti 7989 ax-pre-ltadd 7990 ax-pre-mulgt0 7991 ax-pre-mulext 7992 ax-arch 7993 ax-caucvg 7994 ax-pre-suploc 7995 ax-addf 7996 ax-mulf 7997 |
This theorem depends on definitions: df-bi 117 df-stab 832 df-dc 836 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ne 2365 df-nel 2460 df-ral 2477 df-rex 2478 df-reu 2479 df-rmo 2480 df-rab 2481 df-v 2762 df-sbc 2987 df-csb 3082 df-dif 3156 df-un 3158 df-in 3160 df-ss 3167 df-nul 3448 df-if 3559 df-pw 3604 df-sn 3625 df-pr 3626 df-op 3628 df-uni 3837 df-int 3872 df-iun 3915 df-disj 4008 df-br 4031 df-opab 4092 df-mpt 4093 df-tr 4129 df-id 4325 df-po 4328 df-iso 4329 df-iord 4398 df-on 4400 df-ilim 4401 df-suc 4403 df-iom 4624 df-xp 4666 df-rel 4667 df-cnv 4668 df-co 4669 df-dm 4670 df-rn 4671 df-res 4672 df-ima 4673 df-iota 5216 df-fun 5257 df-fn 5258 df-f 5259 df-f1 5260 df-fo 5261 df-f1o 5262 df-fv 5263 df-isom 5264 df-riota 5874 df-ov 5922 df-oprab 5923 df-mpo 5924 df-of 6132 df-1st 6195 df-2nd 6196 df-recs 6360 df-irdg 6425 df-frec 6446 df-1o 6471 df-oadd 6475 df-er 6589 df-map 6706 df-pm 6707 df-en 6797 df-dom 6798 df-fin 6799 df-sup 7045 df-inf 7046 df-pnf 8058 df-mnf 8059 df-xr 8060 df-ltxr 8061 df-le 8062 df-sub 8194 df-neg 8195 df-reap 8596 df-ap 8603 df-div 8694 df-inn 8985 df-2 9043 df-3 9044 df-4 9045 df-5 9046 df-6 9047 df-7 9048 df-8 9049 df-9 9050 df-n0 9244 df-z 9321 df-uz 9596 df-q 9688 df-rp 9723 df-xneg 9841 df-xadd 9842 df-ioo 9961 df-ioc 9962 df-ico 9963 df-icc 9964 df-fz 10078 df-fzo 10212 df-seqfrec 10522 df-exp 10613 df-fac 10800 df-bc 10822 df-ihash 10850 df-shft 10962 df-cj 10989 df-re 10990 df-im 10991 df-rsqrt 11145 df-abs 11146 df-clim 11425 df-sumdc 11500 df-ef 11794 df-sin 11796 df-cos 11797 df-pi 11799 df-rest 12855 df-topgen 12874 df-psmet 14042 df-xmet 14043 df-met 14044 df-bl 14045 df-mopn 14046 df-top 14177 df-topon 14190 df-bases 14222 df-ntr 14275 df-cn 14367 df-cnp 14368 df-tx 14432 df-cncf 14750 df-limced 14835 df-dvap 14836 |
This theorem is referenced by: ioocosf1o 15030 |
Copyright terms: Public domain | W3C validator |