ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  subgrcl GIF version

Theorem subgrcl 13249
Description: Reverse closure for the subgroup predicate. (Contributed by Mario Carneiro, 2-Dec-2014.)
Assertion
Ref Expression
subgrcl (𝑆 ∈ (SubGrp‘𝐺) → 𝐺 ∈ Grp)

Proof of Theorem subgrcl
StepHypRef Expression
1 eqid 2193 . . 3 (Base‘𝐺) = (Base‘𝐺)
21issubg 13243 . 2 (𝑆 ∈ (SubGrp‘𝐺) ↔ (𝐺 ∈ Grp ∧ 𝑆 ⊆ (Base‘𝐺) ∧ (𝐺s 𝑆) ∈ Grp))
32simp1bi 1014 1 (𝑆 ∈ (SubGrp‘𝐺) → 𝐺 ∈ Grp)
Colors of variables: wff set class
Syntax hints:  wi 4  wcel 2164  wss 3153  cfv 5254  (class class class)co 5918  Basecbs 12618  s cress 12619  Grpcgrp 13072  SubGrpcsubg 13237
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-cnex 7963  ax-resscn 7964  ax-1re 7966  ax-addrcl 7969
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-rab 2481  df-v 2762  df-sbc 2986  df-csb 3081  df-un 3157  df-in 3159  df-ss 3166  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-int 3871  df-br 4030  df-opab 4091  df-mpt 4092  df-id 4324  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fn 5257  df-fv 5262  df-ov 5921  df-inn 8983  df-ndx 12621  df-slot 12622  df-base 12624  df-subg 13240
This theorem is referenced by:  subg0  13250  subginv  13251  subgcl  13254  subgsub  13256  subgmulgcl  13257  subgmulg  13258  subgsubm  13266  subsubg  13267  subgintm  13268  isnsg  13272  nsgconj  13276  isnsg3  13277  ssnmz  13281  nmznsg  13283  eqger  13294  eqgid  13296  eqgen  13297  eqgcpbl  13298  qusgrp  13302  quseccl  13303  qusadd  13304  qus0  13305  qusinv  13306  qussub  13307  ecqusaddcl  13309  resghm  13330  resghm2  13331  resghm2b  13332  conjsubg  13347  conjsubgen  13348  conjnmz  13349  conjnmzb  13350  qusghm  13352  issubrng2  13706  issubrg2  13737
  Copyright terms: Public domain W3C validator