![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > subgrcl | GIF version |
Description: Reverse closure for the subgroup predicate. (Contributed by Mario Carneiro, 2-Dec-2014.) |
Ref | Expression |
---|---|
subgrcl | ⊢ (𝑆 ∈ (SubGrp‘𝐺) → 𝐺 ∈ Grp) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2193 | . . 3 ⊢ (Base‘𝐺) = (Base‘𝐺) | |
2 | 1 | issubg 13246 | . 2 ⊢ (𝑆 ∈ (SubGrp‘𝐺) ↔ (𝐺 ∈ Grp ∧ 𝑆 ⊆ (Base‘𝐺) ∧ (𝐺 ↾s 𝑆) ∈ Grp)) |
3 | 2 | simp1bi 1014 | 1 ⊢ (𝑆 ∈ (SubGrp‘𝐺) → 𝐺 ∈ Grp) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∈ wcel 2164 ⊆ wss 3154 ‘cfv 5255 (class class class)co 5919 Basecbs 12621 ↾s cress 12622 Grpcgrp 13075 SubGrpcsubg 13240 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-sep 4148 ax-pow 4204 ax-pr 4239 ax-un 4465 ax-cnex 7965 ax-resscn 7966 ax-1re 7968 ax-addrcl 7971 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ral 2477 df-rex 2478 df-rab 2481 df-v 2762 df-sbc 2987 df-csb 3082 df-un 3158 df-in 3160 df-ss 3167 df-pw 3604 df-sn 3625 df-pr 3626 df-op 3628 df-uni 3837 df-int 3872 df-br 4031 df-opab 4092 df-mpt 4093 df-id 4325 df-xp 4666 df-rel 4667 df-cnv 4668 df-co 4669 df-dm 4670 df-rn 4671 df-res 4672 df-ima 4673 df-iota 5216 df-fun 5257 df-fn 5258 df-fv 5263 df-ov 5922 df-inn 8985 df-ndx 12624 df-slot 12625 df-base 12627 df-subg 13243 |
This theorem is referenced by: subg0 13253 subginv 13254 subgcl 13257 subgsub 13259 subgmulgcl 13260 subgmulg 13261 subgsubm 13269 subsubg 13270 subgintm 13271 isnsg 13275 nsgconj 13279 isnsg3 13280 ssnmz 13284 nmznsg 13286 eqger 13297 eqgid 13299 eqgen 13300 eqgcpbl 13301 qusgrp 13305 quseccl 13306 qusadd 13307 qus0 13308 qusinv 13309 qussub 13310 ecqusaddcl 13312 resghm 13333 resghm2 13334 resghm2b 13335 conjsubg 13350 conjsubgen 13351 conjnmz 13352 conjnmzb 13353 qusghm 13355 issubrng2 13709 issubrg2 13740 |
Copyright terms: Public domain | W3C validator |