ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  subgrcl GIF version

Theorem subgrcl 13252
Description: Reverse closure for the subgroup predicate. (Contributed by Mario Carneiro, 2-Dec-2014.)
Assertion
Ref Expression
subgrcl (𝑆 ∈ (SubGrp‘𝐺) → 𝐺 ∈ Grp)

Proof of Theorem subgrcl
StepHypRef Expression
1 eqid 2193 . . 3 (Base‘𝐺) = (Base‘𝐺)
21issubg 13246 . 2 (𝑆 ∈ (SubGrp‘𝐺) ↔ (𝐺 ∈ Grp ∧ 𝑆 ⊆ (Base‘𝐺) ∧ (𝐺s 𝑆) ∈ Grp))
32simp1bi 1014 1 (𝑆 ∈ (SubGrp‘𝐺) → 𝐺 ∈ Grp)
Colors of variables: wff set class
Syntax hints:  wi 4  wcel 2164  wss 3154  cfv 5255  (class class class)co 5919  Basecbs 12621  s cress 12622  Grpcgrp 13075  SubGrpcsubg 13240
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4148  ax-pow 4204  ax-pr 4239  ax-un 4465  ax-cnex 7965  ax-resscn 7966  ax-1re 7968  ax-addrcl 7971
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-rab 2481  df-v 2762  df-sbc 2987  df-csb 3082  df-un 3158  df-in 3160  df-ss 3167  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-int 3872  df-br 4031  df-opab 4092  df-mpt 4093  df-id 4325  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-rn 4671  df-res 4672  df-ima 4673  df-iota 5216  df-fun 5257  df-fn 5258  df-fv 5263  df-ov 5922  df-inn 8985  df-ndx 12624  df-slot 12625  df-base 12627  df-subg 13243
This theorem is referenced by:  subg0  13253  subginv  13254  subgcl  13257  subgsub  13259  subgmulgcl  13260  subgmulg  13261  subgsubm  13269  subsubg  13270  subgintm  13271  isnsg  13275  nsgconj  13279  isnsg3  13280  ssnmz  13284  nmznsg  13286  eqger  13297  eqgid  13299  eqgen  13300  eqgcpbl  13301  qusgrp  13305  quseccl  13306  qusadd  13307  qus0  13308  qusinv  13309  qussub  13310  ecqusaddcl  13312  resghm  13333  resghm2  13334  resghm2b  13335  conjsubg  13350  conjsubgen  13351  conjnmz  13352  conjnmzb  13353  qusghm  13355  issubrng2  13709  issubrg2  13740
  Copyright terms: Public domain W3C validator