![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > subgrcl | GIF version |
Description: Reverse closure for the subgroup predicate. (Contributed by Mario Carneiro, 2-Dec-2014.) |
Ref | Expression |
---|---|
subgrcl | ⊢ (𝑆 ∈ (SubGrp‘𝐺) → 𝐺 ∈ Grp) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2188 | . . 3 ⊢ (Base‘𝐺) = (Base‘𝐺) | |
2 | 1 | issubg 13077 | . 2 ⊢ (𝑆 ∈ (SubGrp‘𝐺) ↔ (𝐺 ∈ Grp ∧ 𝑆 ⊆ (Base‘𝐺) ∧ (𝐺 ↾s 𝑆) ∈ Grp)) |
3 | 2 | simp1bi 1013 | 1 ⊢ (𝑆 ∈ (SubGrp‘𝐺) → 𝐺 ∈ Grp) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∈ wcel 2159 ⊆ wss 3143 ‘cfv 5230 (class class class)co 5890 Basecbs 12479 ↾s cress 12480 Grpcgrp 12910 SubGrpcsubg 13071 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1457 ax-7 1458 ax-gen 1459 ax-ie1 1503 ax-ie2 1504 ax-8 1514 ax-10 1515 ax-11 1516 ax-i12 1517 ax-bndl 1519 ax-4 1520 ax-17 1536 ax-i9 1540 ax-ial 1544 ax-i5r 1545 ax-13 2161 ax-14 2162 ax-ext 2170 ax-sep 4135 ax-pow 4188 ax-pr 4223 ax-un 4447 ax-cnex 7919 ax-resscn 7920 ax-1re 7922 ax-addrcl 7925 |
This theorem depends on definitions: df-bi 117 df-3an 981 df-tru 1366 df-nf 1471 df-sb 1773 df-eu 2040 df-mo 2041 df-clab 2175 df-cleq 2181 df-clel 2184 df-nfc 2320 df-ral 2472 df-rex 2473 df-rab 2476 df-v 2753 df-sbc 2977 df-csb 3072 df-un 3147 df-in 3149 df-ss 3156 df-pw 3591 df-sn 3612 df-pr 3613 df-op 3615 df-uni 3824 df-int 3859 df-br 4018 df-opab 4079 df-mpt 4080 df-id 4307 df-xp 4646 df-rel 4647 df-cnv 4648 df-co 4649 df-dm 4650 df-rn 4651 df-res 4652 df-ima 4653 df-iota 5192 df-fun 5232 df-fn 5233 df-fv 5238 df-ov 5893 df-inn 8937 df-ndx 12482 df-slot 12483 df-base 12485 df-subg 13074 |
This theorem is referenced by: subg0 13084 subginv 13085 subgcl 13088 subgsub 13090 subgmulgcl 13091 subgmulg 13092 subgsubm 13100 subsubg 13101 subgintm 13102 isnsg 13106 nsgconj 13110 isnsg3 13111 ssnmz 13115 nmznsg 13117 eqger 13128 eqgid 13130 eqgen 13131 eqgcpbl 13132 qusgrp 13136 quseccl 13137 qusadd 13138 resghm 13159 resghm2 13160 resghm2b 13161 conjsubg 13176 conjsubgen 13177 conjnmz 13178 conjnmzb 13179 qusghm 13181 issubrng2 13517 issubrg2 13548 |
Copyright terms: Public domain | W3C validator |