| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > subgrcl | GIF version | ||
| Description: Reverse closure for the subgroup predicate. (Contributed by Mario Carneiro, 2-Dec-2014.) |
| Ref | Expression |
|---|---|
| subgrcl | ⊢ (𝑆 ∈ (SubGrp‘𝐺) → 𝐺 ∈ Grp) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2206 | . . 3 ⊢ (Base‘𝐺) = (Base‘𝐺) | |
| 2 | 1 | issubg 13559 | . 2 ⊢ (𝑆 ∈ (SubGrp‘𝐺) ↔ (𝐺 ∈ Grp ∧ 𝑆 ⊆ (Base‘𝐺) ∧ (𝐺 ↾s 𝑆) ∈ Grp)) |
| 3 | 2 | simp1bi 1015 | 1 ⊢ (𝑆 ∈ (SubGrp‘𝐺) → 𝐺 ∈ Grp) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∈ wcel 2177 ⊆ wss 3168 ‘cfv 5277 (class class class)co 5954 Basecbs 12882 ↾s cress 12883 Grpcgrp 13382 SubGrpcsubg 13553 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-sep 4167 ax-pow 4223 ax-pr 4258 ax-un 4485 ax-cnex 8029 ax-resscn 8030 ax-1re 8032 ax-addrcl 8035 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ral 2490 df-rex 2491 df-rab 2494 df-v 2775 df-sbc 3001 df-csb 3096 df-un 3172 df-in 3174 df-ss 3181 df-pw 3620 df-sn 3641 df-pr 3642 df-op 3644 df-uni 3854 df-int 3889 df-br 4049 df-opab 4111 df-mpt 4112 df-id 4345 df-xp 4686 df-rel 4687 df-cnv 4688 df-co 4689 df-dm 4690 df-rn 4691 df-res 4692 df-ima 4693 df-iota 5238 df-fun 5279 df-fn 5280 df-fv 5285 df-ov 5957 df-inn 9050 df-ndx 12885 df-slot 12886 df-base 12888 df-subg 13556 |
| This theorem is referenced by: subg0 13566 subginv 13567 subgcl 13570 subgsub 13572 subgmulgcl 13573 subgmulg 13574 subgsubm 13582 subsubg 13583 subgintm 13584 isnsg 13588 nsgconj 13592 isnsg3 13593 ssnmz 13597 nmznsg 13599 eqger 13610 eqgid 13612 eqgen 13613 eqgcpbl 13614 qusgrp 13618 quseccl 13619 qusadd 13620 qus0 13621 qusinv 13622 qussub 13623 ecqusaddcl 13625 resghm 13646 resghm2 13647 resghm2b 13648 conjsubg 13663 conjsubgen 13664 conjnmz 13665 conjnmzb 13666 qusghm 13668 issubrng2 14022 issubrg2 14053 |
| Copyright terms: Public domain | W3C validator |