| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > subgrcl | GIF version | ||
| Description: Reverse closure for the subgroup predicate. (Contributed by Mario Carneiro, 2-Dec-2014.) |
| Ref | Expression |
|---|---|
| subgrcl | ⊢ (𝑆 ∈ (SubGrp‘𝐺) → 𝐺 ∈ Grp) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2196 | . . 3 ⊢ (Base‘𝐺) = (Base‘𝐺) | |
| 2 | 1 | issubg 13329 | . 2 ⊢ (𝑆 ∈ (SubGrp‘𝐺) ↔ (𝐺 ∈ Grp ∧ 𝑆 ⊆ (Base‘𝐺) ∧ (𝐺 ↾s 𝑆) ∈ Grp)) |
| 3 | 2 | simp1bi 1014 | 1 ⊢ (𝑆 ∈ (SubGrp‘𝐺) → 𝐺 ∈ Grp) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∈ wcel 2167 ⊆ wss 3157 ‘cfv 5259 (class class class)co 5923 Basecbs 12689 ↾s cress 12690 Grpcgrp 13158 SubGrpcsubg 13323 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4152 ax-pow 4208 ax-pr 4243 ax-un 4469 ax-cnex 7973 ax-resscn 7974 ax-1re 7976 ax-addrcl 7979 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-un 3161 df-in 3163 df-ss 3170 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-int 3876 df-br 4035 df-opab 4096 df-mpt 4097 df-id 4329 df-xp 4670 df-rel 4671 df-cnv 4672 df-co 4673 df-dm 4674 df-rn 4675 df-res 4676 df-ima 4677 df-iota 5220 df-fun 5261 df-fn 5262 df-fv 5267 df-ov 5926 df-inn 8994 df-ndx 12692 df-slot 12693 df-base 12695 df-subg 13326 |
| This theorem is referenced by: subg0 13336 subginv 13337 subgcl 13340 subgsub 13342 subgmulgcl 13343 subgmulg 13344 subgsubm 13352 subsubg 13353 subgintm 13354 isnsg 13358 nsgconj 13362 isnsg3 13363 ssnmz 13367 nmznsg 13369 eqger 13380 eqgid 13382 eqgen 13383 eqgcpbl 13384 qusgrp 13388 quseccl 13389 qusadd 13390 qus0 13391 qusinv 13392 qussub 13393 ecqusaddcl 13395 resghm 13416 resghm2 13417 resghm2b 13418 conjsubg 13433 conjsubgen 13434 conjnmz 13435 conjnmzb 13436 qusghm 13438 issubrng2 13792 issubrg2 13823 |
| Copyright terms: Public domain | W3C validator |