ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  lmodgrp GIF version

Theorem lmodgrp 14100
Description: A left module is a group. (Contributed by NM, 8-Dec-2013.) (Revised by Mario Carneiro, 25-Jun-2014.)
Assertion
Ref Expression
lmodgrp (𝑊 ∈ LMod → 𝑊 ∈ Grp)

Proof of Theorem lmodgrp
Dummy variables 𝑟 𝑞 𝑤 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2206 . . 3 (Base‘𝑊) = (Base‘𝑊)
2 eqid 2206 . . 3 (+g𝑊) = (+g𝑊)
3 eqid 2206 . . 3 ( ·𝑠𝑊) = ( ·𝑠𝑊)
4 eqid 2206 . . 3 (Scalar‘𝑊) = (Scalar‘𝑊)
5 eqid 2206 . . 3 (Base‘(Scalar‘𝑊)) = (Base‘(Scalar‘𝑊))
6 eqid 2206 . . 3 (+g‘(Scalar‘𝑊)) = (+g‘(Scalar‘𝑊))
7 eqid 2206 . . 3 (.r‘(Scalar‘𝑊)) = (.r‘(Scalar‘𝑊))
8 eqid 2206 . . 3 (1r‘(Scalar‘𝑊)) = (1r‘(Scalar‘𝑊))
91, 2, 3, 4, 5, 6, 7, 8islmod 14097 . 2 (𝑊 ∈ LMod ↔ (𝑊 ∈ Grp ∧ (Scalar‘𝑊) ∈ Ring ∧ ∀𝑞 ∈ (Base‘(Scalar‘𝑊))∀𝑟 ∈ (Base‘(Scalar‘𝑊))∀𝑥 ∈ (Base‘𝑊)∀𝑤 ∈ (Base‘𝑊)(((𝑟( ·𝑠𝑊)𝑤) ∈ (Base‘𝑊) ∧ (𝑟( ·𝑠𝑊)(𝑤(+g𝑊)𝑥)) = ((𝑟( ·𝑠𝑊)𝑤)(+g𝑊)(𝑟( ·𝑠𝑊)𝑥)) ∧ ((𝑞(+g‘(Scalar‘𝑊))𝑟)( ·𝑠𝑊)𝑤) = ((𝑞( ·𝑠𝑊)𝑤)(+g𝑊)(𝑟( ·𝑠𝑊)𝑤))) ∧ (((𝑞(.r‘(Scalar‘𝑊))𝑟)( ·𝑠𝑊)𝑤) = (𝑞( ·𝑠𝑊)(𝑟( ·𝑠𝑊)𝑤)) ∧ ((1r‘(Scalar‘𝑊))( ·𝑠𝑊)𝑤) = 𝑤))))
109simp1bi 1015 1 (𝑊 ∈ LMod → 𝑊 ∈ Grp)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  w3a 981   = wceq 1373  wcel 2177  wral 2485  cfv 5276  (class class class)co 5951  Basecbs 12876  +gcplusg 12953  .rcmulr 12954  Scalarcsca 12956   ·𝑠 cvsca 12957  Grpcgrp 13376  1rcur 13765  Ringcrg 13802  LModclmod 14093
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-sep 4166  ax-pow 4222  ax-pr 4257  ax-un 4484  ax-cnex 8023  ax-resscn 8024  ax-1re 8026  ax-addrcl 8029
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ral 2490  df-rex 2491  df-rab 2494  df-v 2775  df-sbc 3000  df-un 3171  df-in 3173  df-ss 3180  df-pw 3619  df-sn 3640  df-pr 3641  df-op 3643  df-uni 3853  df-int 3888  df-br 4048  df-opab 4110  df-mpt 4111  df-id 4344  df-xp 4685  df-rel 4686  df-cnv 4687  df-co 4688  df-dm 4689  df-rn 4690  df-res 4691  df-iota 5237  df-fun 5278  df-fn 5279  df-fv 5284  df-ov 5954  df-inn 9044  df-2 9102  df-3 9103  df-4 9104  df-5 9105  df-6 9106  df-ndx 12879  df-slot 12880  df-base 12882  df-plusg 12966  df-mulr 12967  df-sca 12969  df-vsca 12970  df-lmod 14095
This theorem is referenced by:  lmodgrpd  14103  lmodbn0  14104  lmodvacl  14108  lmodass  14109  lmodlcan  14110  lmod0vcl  14123  lmod0vlid  14124  lmod0vrid  14125  lmod0vid  14126  lmodvsmmulgdi  14129  lmodfopnelem1  14130  lmodfopne  14132  lmodvnegcl  14134  lmodvnegid  14135  lmodvsubcl  14138  lmodcom  14139  lmodabl  14140  lmodvpncan  14146  lmodvnpcan  14147  lmodsubeq0  14152  lmodsubid  14153  lmodprop2d  14154  lss1  14168  lsssubg  14183  islss3  14185  lspsnneg  14226  lspsnsub  14227  lmodindp1  14234
  Copyright terms: Public domain W3C validator