![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > lmodgrp | GIF version |
Description: A left module is a group. (Contributed by NM, 8-Dec-2013.) (Revised by Mario Carneiro, 25-Jun-2014.) |
Ref | Expression |
---|---|
lmodgrp | β’ (π β LMod β π β Grp) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2177 | . . 3 β’ (Baseβπ) = (Baseβπ) | |
2 | eqid 2177 | . . 3 β’ (+gβπ) = (+gβπ) | |
3 | eqid 2177 | . . 3 β’ ( Β·π βπ) = ( Β·π βπ) | |
4 | eqid 2177 | . . 3 β’ (Scalarβπ) = (Scalarβπ) | |
5 | eqid 2177 | . . 3 β’ (Baseβ(Scalarβπ)) = (Baseβ(Scalarβπ)) | |
6 | eqid 2177 | . . 3 β’ (+gβ(Scalarβπ)) = (+gβ(Scalarβπ)) | |
7 | eqid 2177 | . . 3 β’ (.rβ(Scalarβπ)) = (.rβ(Scalarβπ)) | |
8 | eqid 2177 | . . 3 β’ (1rβ(Scalarβπ)) = (1rβ(Scalarβπ)) | |
9 | 1, 2, 3, 4, 5, 6, 7, 8 | islmod 13381 | . 2 β’ (π β LMod β (π β Grp β§ (Scalarβπ) β Ring β§ βπ β (Baseβ(Scalarβπ))βπ β (Baseβ(Scalarβπ))βπ₯ β (Baseβπ)βπ€ β (Baseβπ)(((π( Β·π βπ)π€) β (Baseβπ) β§ (π( Β·π βπ)(π€(+gβπ)π₯)) = ((π( Β·π βπ)π€)(+gβπ)(π( Β·π βπ)π₯)) β§ ((π(+gβ(Scalarβπ))π)( Β·π βπ)π€) = ((π( Β·π βπ)π€)(+gβπ)(π( Β·π βπ)π€))) β§ (((π(.rβ(Scalarβπ))π)( Β·π βπ)π€) = (π( Β·π βπ)(π( Β·π βπ)π€)) β§ ((1rβ(Scalarβπ))( Β·π βπ)π€) = π€)))) |
10 | 9 | simp1bi 1012 | 1 β’ (π β LMod β π β Grp) |
Colors of variables: wff set class |
Syntax hints: β wi 4 β§ wa 104 β§ w3a 978 = wceq 1353 β wcel 2148 βwral 2455 βcfv 5217 (class class class)co 5875 Basecbs 12462 +gcplusg 12536 .rcmulr 12537 Scalarcsca 12539 Β·π cvsca 12540 Grpcgrp 12877 1rcur 13142 Ringcrg 13179 LModclmod 13377 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-13 2150 ax-14 2151 ax-ext 2159 ax-sep 4122 ax-pow 4175 ax-pr 4210 ax-un 4434 ax-cnex 7902 ax-resscn 7903 ax-1re 7905 ax-addrcl 7908 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-nf 1461 df-sb 1763 df-eu 2029 df-mo 2030 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ral 2460 df-rex 2461 df-rab 2464 df-v 2740 df-sbc 2964 df-un 3134 df-in 3136 df-ss 3143 df-pw 3578 df-sn 3599 df-pr 3600 df-op 3602 df-uni 3811 df-int 3846 df-br 4005 df-opab 4066 df-mpt 4067 df-id 4294 df-xp 4633 df-rel 4634 df-cnv 4635 df-co 4636 df-dm 4637 df-rn 4638 df-res 4639 df-iota 5179 df-fun 5219 df-fn 5220 df-fv 5225 df-ov 5878 df-inn 8920 df-2 8978 df-3 8979 df-4 8980 df-5 8981 df-6 8982 df-ndx 12465 df-slot 12466 df-base 12468 df-plusg 12549 df-mulr 12550 df-sca 12552 df-vsca 12553 df-lmod 13379 |
This theorem is referenced by: lmodgrpd 13387 lmodbn0 13388 lmodvacl 13392 lmodass 13393 lmodlcan 13394 lmod0vcl 13407 lmod0vlid 13408 lmod0vrid 13409 lmod0vid 13410 lmodvsmmulgdi 13413 lmodfopnelem1 13414 lmodfopne 13416 lmodvnegcl 13418 lmodvnegid 13419 lmodvsubcl 13422 lmodcom 13423 lmodabl 13424 lmodvpncan 13430 lmodvnpcan 13431 lmodsubeq0 13436 lmodsubid 13437 lmodprop2d 13438 |
Copyright terms: Public domain | W3C validator |