![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > lmodgrp | GIF version |
Description: A left module is a group. (Contributed by NM, 8-Dec-2013.) (Revised by Mario Carneiro, 25-Jun-2014.) |
Ref | Expression |
---|---|
lmodgrp | ⊢ (𝑊 ∈ LMod → 𝑊 ∈ Grp) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2189 | . . 3 ⊢ (Base‘𝑊) = (Base‘𝑊) | |
2 | eqid 2189 | . . 3 ⊢ (+g‘𝑊) = (+g‘𝑊) | |
3 | eqid 2189 | . . 3 ⊢ ( ·𝑠 ‘𝑊) = ( ·𝑠 ‘𝑊) | |
4 | eqid 2189 | . . 3 ⊢ (Scalar‘𝑊) = (Scalar‘𝑊) | |
5 | eqid 2189 | . . 3 ⊢ (Base‘(Scalar‘𝑊)) = (Base‘(Scalar‘𝑊)) | |
6 | eqid 2189 | . . 3 ⊢ (+g‘(Scalar‘𝑊)) = (+g‘(Scalar‘𝑊)) | |
7 | eqid 2189 | . . 3 ⊢ (.r‘(Scalar‘𝑊)) = (.r‘(Scalar‘𝑊)) | |
8 | eqid 2189 | . . 3 ⊢ (1r‘(Scalar‘𝑊)) = (1r‘(Scalar‘𝑊)) | |
9 | 1, 2, 3, 4, 5, 6, 7, 8 | islmod 13600 | . 2 ⊢ (𝑊 ∈ LMod ↔ (𝑊 ∈ Grp ∧ (Scalar‘𝑊) ∈ Ring ∧ ∀𝑞 ∈ (Base‘(Scalar‘𝑊))∀𝑟 ∈ (Base‘(Scalar‘𝑊))∀𝑥 ∈ (Base‘𝑊)∀𝑤 ∈ (Base‘𝑊)(((𝑟( ·𝑠 ‘𝑊)𝑤) ∈ (Base‘𝑊) ∧ (𝑟( ·𝑠 ‘𝑊)(𝑤(+g‘𝑊)𝑥)) = ((𝑟( ·𝑠 ‘𝑊)𝑤)(+g‘𝑊)(𝑟( ·𝑠 ‘𝑊)𝑥)) ∧ ((𝑞(+g‘(Scalar‘𝑊))𝑟)( ·𝑠 ‘𝑊)𝑤) = ((𝑞( ·𝑠 ‘𝑊)𝑤)(+g‘𝑊)(𝑟( ·𝑠 ‘𝑊)𝑤))) ∧ (((𝑞(.r‘(Scalar‘𝑊))𝑟)( ·𝑠 ‘𝑊)𝑤) = (𝑞( ·𝑠 ‘𝑊)(𝑟( ·𝑠 ‘𝑊)𝑤)) ∧ ((1r‘(Scalar‘𝑊))( ·𝑠 ‘𝑊)𝑤) = 𝑤)))) |
10 | 9 | simp1bi 1014 | 1 ⊢ (𝑊 ∈ LMod → 𝑊 ∈ Grp) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ∧ w3a 980 = wceq 1364 ∈ wcel 2160 ∀wral 2468 ‘cfv 5232 (class class class)co 5892 Basecbs 12507 +gcplusg 12582 .rcmulr 12583 Scalarcsca 12585 ·𝑠 cvsca 12586 Grpcgrp 12938 1rcur 13306 Ringcrg 13343 LModclmod 13596 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2162 ax-14 2163 ax-ext 2171 ax-sep 4136 ax-pow 4189 ax-pr 4224 ax-un 4448 ax-cnex 7927 ax-resscn 7928 ax-1re 7930 ax-addrcl 7933 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1472 df-sb 1774 df-eu 2041 df-mo 2042 df-clab 2176 df-cleq 2182 df-clel 2185 df-nfc 2321 df-ral 2473 df-rex 2474 df-rab 2477 df-v 2754 df-sbc 2978 df-un 3148 df-in 3150 df-ss 3157 df-pw 3592 df-sn 3613 df-pr 3614 df-op 3616 df-uni 3825 df-int 3860 df-br 4019 df-opab 4080 df-mpt 4081 df-id 4308 df-xp 4647 df-rel 4648 df-cnv 4649 df-co 4650 df-dm 4651 df-rn 4652 df-res 4653 df-iota 5193 df-fun 5234 df-fn 5235 df-fv 5240 df-ov 5895 df-inn 8945 df-2 9003 df-3 9004 df-4 9005 df-5 9006 df-6 9007 df-ndx 12510 df-slot 12511 df-base 12513 df-plusg 12595 df-mulr 12596 df-sca 12598 df-vsca 12599 df-lmod 13598 |
This theorem is referenced by: lmodgrpd 13606 lmodbn0 13607 lmodvacl 13611 lmodass 13612 lmodlcan 13613 lmod0vcl 13626 lmod0vlid 13627 lmod0vrid 13628 lmod0vid 13629 lmodvsmmulgdi 13632 lmodfopnelem1 13633 lmodfopne 13635 lmodvnegcl 13637 lmodvnegid 13638 lmodvsubcl 13641 lmodcom 13642 lmodabl 13643 lmodvpncan 13649 lmodvnpcan 13650 lmodsubeq0 13655 lmodsubid 13656 lmodprop2d 13657 lss1 13671 lsssubg 13686 islss3 13688 lspsnneg 13729 lspsnsub 13730 lmodindp1 13737 |
Copyright terms: Public domain | W3C validator |