| Step | Hyp | Ref
| Expression |
| 1 | | caucvgpr.cau |
. . . . . . 7
⊢ (𝜑 → ∀𝑛 ∈ N ∀𝑘 ∈ N (𝑛 <N
𝑘 → ((𝐹‘𝑛) <Q ((𝐹‘𝑘) +Q
(*Q‘[〈𝑛, 1o〉]
~Q )) ∧ (𝐹‘𝑘) <Q ((𝐹‘𝑛) +Q
(*Q‘[〈𝑛, 1o〉]
~Q ))))) |
| 2 | | caucvgprlemnbj.b |
. . . . . . . 8
⊢ (𝜑 → 𝐵 ∈ N) |
| 3 | | caucvgprlemnbj.j |
. . . . . . . 8
⊢ (𝜑 → 𝐽 ∈ N) |
| 4 | | breq1 4036 |
. . . . . . . . . 10
⊢ (𝑛 = 𝐵 → (𝑛 <N 𝑘 ↔ 𝐵 <N 𝑘)) |
| 5 | | fveq2 5558 |
. . . . . . . . . . . 12
⊢ (𝑛 = 𝐵 → (𝐹‘𝑛) = (𝐹‘𝐵)) |
| 6 | | opeq1 3808 |
. . . . . . . . . . . . . . 15
⊢ (𝑛 = 𝐵 → 〈𝑛, 1o〉 = 〈𝐵,
1o〉) |
| 7 | 6 | eceq1d 6628 |
. . . . . . . . . . . . . 14
⊢ (𝑛 = 𝐵 → [〈𝑛, 1o〉]
~Q = [〈𝐵, 1o〉]
~Q ) |
| 8 | 7 | fveq2d 5562 |
. . . . . . . . . . . . 13
⊢ (𝑛 = 𝐵 →
(*Q‘[〈𝑛, 1o〉]
~Q ) = (*Q‘[〈𝐵, 1o〉]
~Q )) |
| 9 | 8 | oveq2d 5938 |
. . . . . . . . . . . 12
⊢ (𝑛 = 𝐵 → ((𝐹‘𝑘) +Q
(*Q‘[〈𝑛, 1o〉]
~Q )) = ((𝐹‘𝑘) +Q
(*Q‘[〈𝐵, 1o〉]
~Q ))) |
| 10 | 5, 9 | breq12d 4046 |
. . . . . . . . . . 11
⊢ (𝑛 = 𝐵 → ((𝐹‘𝑛) <Q ((𝐹‘𝑘) +Q
(*Q‘[〈𝑛, 1o〉]
~Q )) ↔ (𝐹‘𝐵) <Q ((𝐹‘𝑘) +Q
(*Q‘[〈𝐵, 1o〉]
~Q )))) |
| 11 | 5, 8 | oveq12d 5940 |
. . . . . . . . . . . 12
⊢ (𝑛 = 𝐵 → ((𝐹‘𝑛) +Q
(*Q‘[〈𝑛, 1o〉]
~Q )) = ((𝐹‘𝐵) +Q
(*Q‘[〈𝐵, 1o〉]
~Q ))) |
| 12 | 11 | breq2d 4045 |
. . . . . . . . . . 11
⊢ (𝑛 = 𝐵 → ((𝐹‘𝑘) <Q ((𝐹‘𝑛) +Q
(*Q‘[〈𝑛, 1o〉]
~Q )) ↔ (𝐹‘𝑘) <Q ((𝐹‘𝐵) +Q
(*Q‘[〈𝐵, 1o〉]
~Q )))) |
| 13 | 10, 12 | anbi12d 473 |
. . . . . . . . . 10
⊢ (𝑛 = 𝐵 → (((𝐹‘𝑛) <Q ((𝐹‘𝑘) +Q
(*Q‘[〈𝑛, 1o〉]
~Q )) ∧ (𝐹‘𝑘) <Q ((𝐹‘𝑛) +Q
(*Q‘[〈𝑛, 1o〉]
~Q ))) ↔ ((𝐹‘𝐵) <Q ((𝐹‘𝑘) +Q
(*Q‘[〈𝐵, 1o〉]
~Q )) ∧ (𝐹‘𝑘) <Q ((𝐹‘𝐵) +Q
(*Q‘[〈𝐵, 1o〉]
~Q ))))) |
| 14 | 4, 13 | imbi12d 234 |
. . . . . . . . 9
⊢ (𝑛 = 𝐵 → ((𝑛 <N 𝑘 → ((𝐹‘𝑛) <Q ((𝐹‘𝑘) +Q
(*Q‘[〈𝑛, 1o〉]
~Q )) ∧ (𝐹‘𝑘) <Q ((𝐹‘𝑛) +Q
(*Q‘[〈𝑛, 1o〉]
~Q )))) ↔ (𝐵 <N 𝑘 → ((𝐹‘𝐵) <Q ((𝐹‘𝑘) +Q
(*Q‘[〈𝐵, 1o〉]
~Q )) ∧ (𝐹‘𝑘) <Q ((𝐹‘𝐵) +Q
(*Q‘[〈𝐵, 1o〉]
~Q )))))) |
| 15 | | breq2 4037 |
. . . . . . . . . 10
⊢ (𝑘 = 𝐽 → (𝐵 <N 𝑘 ↔ 𝐵 <N 𝐽)) |
| 16 | | fveq2 5558 |
. . . . . . . . . . . . 13
⊢ (𝑘 = 𝐽 → (𝐹‘𝑘) = (𝐹‘𝐽)) |
| 17 | 16 | oveq1d 5937 |
. . . . . . . . . . . 12
⊢ (𝑘 = 𝐽 → ((𝐹‘𝑘) +Q
(*Q‘[〈𝐵, 1o〉]
~Q )) = ((𝐹‘𝐽) +Q
(*Q‘[〈𝐵, 1o〉]
~Q ))) |
| 18 | 17 | breq2d 4045 |
. . . . . . . . . . 11
⊢ (𝑘 = 𝐽 → ((𝐹‘𝐵) <Q ((𝐹‘𝑘) +Q
(*Q‘[〈𝐵, 1o〉]
~Q )) ↔ (𝐹‘𝐵) <Q ((𝐹‘𝐽) +Q
(*Q‘[〈𝐵, 1o〉]
~Q )))) |
| 19 | 16 | breq1d 4043 |
. . . . . . . . . . 11
⊢ (𝑘 = 𝐽 → ((𝐹‘𝑘) <Q ((𝐹‘𝐵) +Q
(*Q‘[〈𝐵, 1o〉]
~Q )) ↔ (𝐹‘𝐽) <Q ((𝐹‘𝐵) +Q
(*Q‘[〈𝐵, 1o〉]
~Q )))) |
| 20 | 18, 19 | anbi12d 473 |
. . . . . . . . . 10
⊢ (𝑘 = 𝐽 → (((𝐹‘𝐵) <Q ((𝐹‘𝑘) +Q
(*Q‘[〈𝐵, 1o〉]
~Q )) ∧ (𝐹‘𝑘) <Q ((𝐹‘𝐵) +Q
(*Q‘[〈𝐵, 1o〉]
~Q ))) ↔ ((𝐹‘𝐵) <Q ((𝐹‘𝐽) +Q
(*Q‘[〈𝐵, 1o〉]
~Q )) ∧ (𝐹‘𝐽) <Q ((𝐹‘𝐵) +Q
(*Q‘[〈𝐵, 1o〉]
~Q ))))) |
| 21 | 15, 20 | imbi12d 234 |
. . . . . . . . 9
⊢ (𝑘 = 𝐽 → ((𝐵 <N 𝑘 → ((𝐹‘𝐵) <Q ((𝐹‘𝑘) +Q
(*Q‘[〈𝐵, 1o〉]
~Q )) ∧ (𝐹‘𝑘) <Q ((𝐹‘𝐵) +Q
(*Q‘[〈𝐵, 1o〉]
~Q )))) ↔ (𝐵 <N 𝐽 → ((𝐹‘𝐵) <Q ((𝐹‘𝐽) +Q
(*Q‘[〈𝐵, 1o〉]
~Q )) ∧ (𝐹‘𝐽) <Q ((𝐹‘𝐵) +Q
(*Q‘[〈𝐵, 1o〉]
~Q )))))) |
| 22 | 14, 21 | rspc2v 2881 |
. . . . . . . 8
⊢ ((𝐵 ∈ N ∧
𝐽 ∈ N)
→ (∀𝑛 ∈
N ∀𝑘
∈ N (𝑛
<N 𝑘 → ((𝐹‘𝑛) <Q ((𝐹‘𝑘) +Q
(*Q‘[〈𝑛, 1o〉]
~Q )) ∧ (𝐹‘𝑘) <Q ((𝐹‘𝑛) +Q
(*Q‘[〈𝑛, 1o〉]
~Q )))) → (𝐵 <N 𝐽 → ((𝐹‘𝐵) <Q ((𝐹‘𝐽) +Q
(*Q‘[〈𝐵, 1o〉]
~Q )) ∧ (𝐹‘𝐽) <Q ((𝐹‘𝐵) +Q
(*Q‘[〈𝐵, 1o〉]
~Q )))))) |
| 23 | 2, 3, 22 | syl2anc 411 |
. . . . . . 7
⊢ (𝜑 → (∀𝑛 ∈ N
∀𝑘 ∈
N (𝑛
<N 𝑘 → ((𝐹‘𝑛) <Q ((𝐹‘𝑘) +Q
(*Q‘[〈𝑛, 1o〉]
~Q )) ∧ (𝐹‘𝑘) <Q ((𝐹‘𝑛) +Q
(*Q‘[〈𝑛, 1o〉]
~Q )))) → (𝐵 <N 𝐽 → ((𝐹‘𝐵) <Q ((𝐹‘𝐽) +Q
(*Q‘[〈𝐵, 1o〉]
~Q )) ∧ (𝐹‘𝐽) <Q ((𝐹‘𝐵) +Q
(*Q‘[〈𝐵, 1o〉]
~Q )))))) |
| 24 | 1, 23 | mpd 13 |
. . . . . 6
⊢ (𝜑 → (𝐵 <N 𝐽 → ((𝐹‘𝐵) <Q ((𝐹‘𝐽) +Q
(*Q‘[〈𝐵, 1o〉]
~Q )) ∧ (𝐹‘𝐽) <Q ((𝐹‘𝐵) +Q
(*Q‘[〈𝐵, 1o〉]
~Q ))))) |
| 25 | 24 | imp 124 |
. . . . 5
⊢ ((𝜑 ∧ 𝐵 <N 𝐽) → ((𝐹‘𝐵) <Q ((𝐹‘𝐽) +Q
(*Q‘[〈𝐵, 1o〉]
~Q )) ∧ (𝐹‘𝐽) <Q ((𝐹‘𝐵) +Q
(*Q‘[〈𝐵, 1o〉]
~Q )))) |
| 26 | 25 | simprd 114 |
. . . 4
⊢ ((𝜑 ∧ 𝐵 <N 𝐽) → (𝐹‘𝐽) <Q ((𝐹‘𝐵) +Q
(*Q‘[〈𝐵, 1o〉]
~Q ))) |
| 27 | | caucvgpr.f |
. . . . . . . 8
⊢ (𝜑 → 𝐹:N⟶Q) |
| 28 | 27, 2 | ffvelcdmd 5698 |
. . . . . . 7
⊢ (𝜑 → (𝐹‘𝐵) ∈ Q) |
| 29 | | nnnq 7489 |
. . . . . . . 8
⊢ (𝐵 ∈ N →
[〈𝐵,
1o〉] ~Q ∈
Q) |
| 30 | | recclnq 7459 |
. . . . . . . 8
⊢
([〈𝐵,
1o〉] ~Q ∈ Q →
(*Q‘[〈𝐵, 1o〉]
~Q ) ∈ Q) |
| 31 | 2, 29, 30 | 3syl 17 |
. . . . . . 7
⊢ (𝜑 →
(*Q‘[〈𝐵, 1o〉]
~Q ) ∈ Q) |
| 32 | | addclnq 7442 |
. . . . . . 7
⊢ (((𝐹‘𝐵) ∈ Q ∧
(*Q‘[〈𝐵, 1o〉]
~Q ) ∈ Q) → ((𝐹‘𝐵) +Q
(*Q‘[〈𝐵, 1o〉]
~Q )) ∈ Q) |
| 33 | 28, 31, 32 | syl2anc 411 |
. . . . . 6
⊢ (𝜑 → ((𝐹‘𝐵) +Q
(*Q‘[〈𝐵, 1o〉]
~Q )) ∈ Q) |
| 34 | | nnnq 7489 |
. . . . . . 7
⊢ (𝐽 ∈ N →
[〈𝐽,
1o〉] ~Q ∈
Q) |
| 35 | | recclnq 7459 |
. . . . . . 7
⊢
([〈𝐽,
1o〉] ~Q ∈ Q →
(*Q‘[〈𝐽, 1o〉]
~Q ) ∈ Q) |
| 36 | 3, 34, 35 | 3syl 17 |
. . . . . 6
⊢ (𝜑 →
(*Q‘[〈𝐽, 1o〉]
~Q ) ∈ Q) |
| 37 | | ltaddnq 7474 |
. . . . . 6
⊢ ((((𝐹‘𝐵) +Q
(*Q‘[〈𝐵, 1o〉]
~Q )) ∈ Q ∧
(*Q‘[〈𝐽, 1o〉]
~Q ) ∈ Q) → ((𝐹‘𝐵) +Q
(*Q‘[〈𝐵, 1o〉]
~Q )) <Q (((𝐹‘𝐵) +Q
(*Q‘[〈𝐵, 1o〉]
~Q )) +Q
(*Q‘[〈𝐽, 1o〉]
~Q ))) |
| 38 | 33, 36, 37 | syl2anc 411 |
. . . . 5
⊢ (𝜑 → ((𝐹‘𝐵) +Q
(*Q‘[〈𝐵, 1o〉]
~Q )) <Q (((𝐹‘𝐵) +Q
(*Q‘[〈𝐵, 1o〉]
~Q )) +Q
(*Q‘[〈𝐽, 1o〉]
~Q ))) |
| 39 | 38 | adantr 276 |
. . . 4
⊢ ((𝜑 ∧ 𝐵 <N 𝐽) → ((𝐹‘𝐵) +Q
(*Q‘[〈𝐵, 1o〉]
~Q )) <Q (((𝐹‘𝐵) +Q
(*Q‘[〈𝐵, 1o〉]
~Q )) +Q
(*Q‘[〈𝐽, 1o〉]
~Q ))) |
| 40 | | ltsonq 7465 |
. . . . 5
⊢
<Q Or Q |
| 41 | | ltrelnq 7432 |
. . . . 5
⊢
<Q ⊆ (Q ×
Q) |
| 42 | 40, 41 | sotri 5065 |
. . . 4
⊢ (((𝐹‘𝐽) <Q ((𝐹‘𝐵) +Q
(*Q‘[〈𝐵, 1o〉]
~Q )) ∧ ((𝐹‘𝐵) +Q
(*Q‘[〈𝐵, 1o〉]
~Q )) <Q (((𝐹‘𝐵) +Q
(*Q‘[〈𝐵, 1o〉]
~Q )) +Q
(*Q‘[〈𝐽, 1o〉]
~Q ))) → (𝐹‘𝐽) <Q (((𝐹‘𝐵) +Q
(*Q‘[〈𝐵, 1o〉]
~Q )) +Q
(*Q‘[〈𝐽, 1o〉]
~Q ))) |
| 43 | 26, 39, 42 | syl2anc 411 |
. . 3
⊢ ((𝜑 ∧ 𝐵 <N 𝐽) → (𝐹‘𝐽) <Q (((𝐹‘𝐵) +Q
(*Q‘[〈𝐵, 1o〉]
~Q )) +Q
(*Q‘[〈𝐽, 1o〉]
~Q ))) |
| 44 | | ltaddnq 7474 |
. . . . . . 7
⊢ (((𝐹‘𝐵) ∈ Q ∧
(*Q‘[〈𝐵, 1o〉]
~Q ) ∈ Q) → (𝐹‘𝐵) <Q ((𝐹‘𝐵) +Q
(*Q‘[〈𝐵, 1o〉]
~Q ))) |
| 45 | 28, 31, 44 | syl2anc 411 |
. . . . . 6
⊢ (𝜑 → (𝐹‘𝐵) <Q ((𝐹‘𝐵) +Q
(*Q‘[〈𝐵, 1o〉]
~Q ))) |
| 46 | 45 | adantr 276 |
. . . . 5
⊢ ((𝜑 ∧ 𝐵 = 𝐽) → (𝐹‘𝐵) <Q ((𝐹‘𝐵) +Q
(*Q‘[〈𝐵, 1o〉]
~Q ))) |
| 47 | | fveq2 5558 |
. . . . . . 7
⊢ (𝐵 = 𝐽 → (𝐹‘𝐵) = (𝐹‘𝐽)) |
| 48 | 47 | breq1d 4043 |
. . . . . 6
⊢ (𝐵 = 𝐽 → ((𝐹‘𝐵) <Q ((𝐹‘𝐵) +Q
(*Q‘[〈𝐵, 1o〉]
~Q )) ↔ (𝐹‘𝐽) <Q ((𝐹‘𝐵) +Q
(*Q‘[〈𝐵, 1o〉]
~Q )))) |
| 49 | 48 | adantl 277 |
. . . . 5
⊢ ((𝜑 ∧ 𝐵 = 𝐽) → ((𝐹‘𝐵) <Q ((𝐹‘𝐵) +Q
(*Q‘[〈𝐵, 1o〉]
~Q )) ↔ (𝐹‘𝐽) <Q ((𝐹‘𝐵) +Q
(*Q‘[〈𝐵, 1o〉]
~Q )))) |
| 50 | 46, 49 | mpbid 147 |
. . . 4
⊢ ((𝜑 ∧ 𝐵 = 𝐽) → (𝐹‘𝐽) <Q ((𝐹‘𝐵) +Q
(*Q‘[〈𝐵, 1o〉]
~Q ))) |
| 51 | 38 | adantr 276 |
. . . 4
⊢ ((𝜑 ∧ 𝐵 = 𝐽) → ((𝐹‘𝐵) +Q
(*Q‘[〈𝐵, 1o〉]
~Q )) <Q (((𝐹‘𝐵) +Q
(*Q‘[〈𝐵, 1o〉]
~Q )) +Q
(*Q‘[〈𝐽, 1o〉]
~Q ))) |
| 52 | 50, 51, 42 | syl2anc 411 |
. . 3
⊢ ((𝜑 ∧ 𝐵 = 𝐽) → (𝐹‘𝐽) <Q (((𝐹‘𝐵) +Q
(*Q‘[〈𝐵, 1o〉]
~Q )) +Q
(*Q‘[〈𝐽, 1o〉]
~Q ))) |
| 53 | | breq1 4036 |
. . . . . . . . . 10
⊢ (𝑛 = 𝐽 → (𝑛 <N 𝑘 ↔ 𝐽 <N 𝑘)) |
| 54 | | fveq2 5558 |
. . . . . . . . . . . 12
⊢ (𝑛 = 𝐽 → (𝐹‘𝑛) = (𝐹‘𝐽)) |
| 55 | | opeq1 3808 |
. . . . . . . . . . . . . . 15
⊢ (𝑛 = 𝐽 → 〈𝑛, 1o〉 = 〈𝐽,
1o〉) |
| 56 | 55 | eceq1d 6628 |
. . . . . . . . . . . . . 14
⊢ (𝑛 = 𝐽 → [〈𝑛, 1o〉]
~Q = [〈𝐽, 1o〉]
~Q ) |
| 57 | 56 | fveq2d 5562 |
. . . . . . . . . . . . 13
⊢ (𝑛 = 𝐽 →
(*Q‘[〈𝑛, 1o〉]
~Q ) = (*Q‘[〈𝐽, 1o〉]
~Q )) |
| 58 | 57 | oveq2d 5938 |
. . . . . . . . . . . 12
⊢ (𝑛 = 𝐽 → ((𝐹‘𝑘) +Q
(*Q‘[〈𝑛, 1o〉]
~Q )) = ((𝐹‘𝑘) +Q
(*Q‘[〈𝐽, 1o〉]
~Q ))) |
| 59 | 54, 58 | breq12d 4046 |
. . . . . . . . . . 11
⊢ (𝑛 = 𝐽 → ((𝐹‘𝑛) <Q ((𝐹‘𝑘) +Q
(*Q‘[〈𝑛, 1o〉]
~Q )) ↔ (𝐹‘𝐽) <Q ((𝐹‘𝑘) +Q
(*Q‘[〈𝐽, 1o〉]
~Q )))) |
| 60 | 54, 57 | oveq12d 5940 |
. . . . . . . . . . . 12
⊢ (𝑛 = 𝐽 → ((𝐹‘𝑛) +Q
(*Q‘[〈𝑛, 1o〉]
~Q )) = ((𝐹‘𝐽) +Q
(*Q‘[〈𝐽, 1o〉]
~Q ))) |
| 61 | 60 | breq2d 4045 |
. . . . . . . . . . 11
⊢ (𝑛 = 𝐽 → ((𝐹‘𝑘) <Q ((𝐹‘𝑛) +Q
(*Q‘[〈𝑛, 1o〉]
~Q )) ↔ (𝐹‘𝑘) <Q ((𝐹‘𝐽) +Q
(*Q‘[〈𝐽, 1o〉]
~Q )))) |
| 62 | 59, 61 | anbi12d 473 |
. . . . . . . . . 10
⊢ (𝑛 = 𝐽 → (((𝐹‘𝑛) <Q ((𝐹‘𝑘) +Q
(*Q‘[〈𝑛, 1o〉]
~Q )) ∧ (𝐹‘𝑘) <Q ((𝐹‘𝑛) +Q
(*Q‘[〈𝑛, 1o〉]
~Q ))) ↔ ((𝐹‘𝐽) <Q ((𝐹‘𝑘) +Q
(*Q‘[〈𝐽, 1o〉]
~Q )) ∧ (𝐹‘𝑘) <Q ((𝐹‘𝐽) +Q
(*Q‘[〈𝐽, 1o〉]
~Q ))))) |
| 63 | 53, 62 | imbi12d 234 |
. . . . . . . . 9
⊢ (𝑛 = 𝐽 → ((𝑛 <N 𝑘 → ((𝐹‘𝑛) <Q ((𝐹‘𝑘) +Q
(*Q‘[〈𝑛, 1o〉]
~Q )) ∧ (𝐹‘𝑘) <Q ((𝐹‘𝑛) +Q
(*Q‘[〈𝑛, 1o〉]
~Q )))) ↔ (𝐽 <N 𝑘 → ((𝐹‘𝐽) <Q ((𝐹‘𝑘) +Q
(*Q‘[〈𝐽, 1o〉]
~Q )) ∧ (𝐹‘𝑘) <Q ((𝐹‘𝐽) +Q
(*Q‘[〈𝐽, 1o〉]
~Q )))))) |
| 64 | | breq2 4037 |
. . . . . . . . . 10
⊢ (𝑘 = 𝐵 → (𝐽 <N 𝑘 ↔ 𝐽 <N 𝐵)) |
| 65 | | fveq2 5558 |
. . . . . . . . . . . . 13
⊢ (𝑘 = 𝐵 → (𝐹‘𝑘) = (𝐹‘𝐵)) |
| 66 | 65 | oveq1d 5937 |
. . . . . . . . . . . 12
⊢ (𝑘 = 𝐵 → ((𝐹‘𝑘) +Q
(*Q‘[〈𝐽, 1o〉]
~Q )) = ((𝐹‘𝐵) +Q
(*Q‘[〈𝐽, 1o〉]
~Q ))) |
| 67 | 66 | breq2d 4045 |
. . . . . . . . . . 11
⊢ (𝑘 = 𝐵 → ((𝐹‘𝐽) <Q ((𝐹‘𝑘) +Q
(*Q‘[〈𝐽, 1o〉]
~Q )) ↔ (𝐹‘𝐽) <Q ((𝐹‘𝐵) +Q
(*Q‘[〈𝐽, 1o〉]
~Q )))) |
| 68 | 65 | breq1d 4043 |
. . . . . . . . . . 11
⊢ (𝑘 = 𝐵 → ((𝐹‘𝑘) <Q ((𝐹‘𝐽) +Q
(*Q‘[〈𝐽, 1o〉]
~Q )) ↔ (𝐹‘𝐵) <Q ((𝐹‘𝐽) +Q
(*Q‘[〈𝐽, 1o〉]
~Q )))) |
| 69 | 67, 68 | anbi12d 473 |
. . . . . . . . . 10
⊢ (𝑘 = 𝐵 → (((𝐹‘𝐽) <Q ((𝐹‘𝑘) +Q
(*Q‘[〈𝐽, 1o〉]
~Q )) ∧ (𝐹‘𝑘) <Q ((𝐹‘𝐽) +Q
(*Q‘[〈𝐽, 1o〉]
~Q ))) ↔ ((𝐹‘𝐽) <Q ((𝐹‘𝐵) +Q
(*Q‘[〈𝐽, 1o〉]
~Q )) ∧ (𝐹‘𝐵) <Q ((𝐹‘𝐽) +Q
(*Q‘[〈𝐽, 1o〉]
~Q ))))) |
| 70 | 64, 69 | imbi12d 234 |
. . . . . . . . 9
⊢ (𝑘 = 𝐵 → ((𝐽 <N 𝑘 → ((𝐹‘𝐽) <Q ((𝐹‘𝑘) +Q
(*Q‘[〈𝐽, 1o〉]
~Q )) ∧ (𝐹‘𝑘) <Q ((𝐹‘𝐽) +Q
(*Q‘[〈𝐽, 1o〉]
~Q )))) ↔ (𝐽 <N 𝐵 → ((𝐹‘𝐽) <Q ((𝐹‘𝐵) +Q
(*Q‘[〈𝐽, 1o〉]
~Q )) ∧ (𝐹‘𝐵) <Q ((𝐹‘𝐽) +Q
(*Q‘[〈𝐽, 1o〉]
~Q )))))) |
| 71 | 63, 70 | rspc2v 2881 |
. . . . . . . 8
⊢ ((𝐽 ∈ N ∧
𝐵 ∈ N)
→ (∀𝑛 ∈
N ∀𝑘
∈ N (𝑛
<N 𝑘 → ((𝐹‘𝑛) <Q ((𝐹‘𝑘) +Q
(*Q‘[〈𝑛, 1o〉]
~Q )) ∧ (𝐹‘𝑘) <Q ((𝐹‘𝑛) +Q
(*Q‘[〈𝑛, 1o〉]
~Q )))) → (𝐽 <N 𝐵 → ((𝐹‘𝐽) <Q ((𝐹‘𝐵) +Q
(*Q‘[〈𝐽, 1o〉]
~Q )) ∧ (𝐹‘𝐵) <Q ((𝐹‘𝐽) +Q
(*Q‘[〈𝐽, 1o〉]
~Q )))))) |
| 72 | 3, 2, 71 | syl2anc 411 |
. . . . . . 7
⊢ (𝜑 → (∀𝑛 ∈ N
∀𝑘 ∈
N (𝑛
<N 𝑘 → ((𝐹‘𝑛) <Q ((𝐹‘𝑘) +Q
(*Q‘[〈𝑛, 1o〉]
~Q )) ∧ (𝐹‘𝑘) <Q ((𝐹‘𝑛) +Q
(*Q‘[〈𝑛, 1o〉]
~Q )))) → (𝐽 <N 𝐵 → ((𝐹‘𝐽) <Q ((𝐹‘𝐵) +Q
(*Q‘[〈𝐽, 1o〉]
~Q )) ∧ (𝐹‘𝐵) <Q ((𝐹‘𝐽) +Q
(*Q‘[〈𝐽, 1o〉]
~Q )))))) |
| 73 | 1, 72 | mpd 13 |
. . . . . 6
⊢ (𝜑 → (𝐽 <N 𝐵 → ((𝐹‘𝐽) <Q ((𝐹‘𝐵) +Q
(*Q‘[〈𝐽, 1o〉]
~Q )) ∧ (𝐹‘𝐵) <Q ((𝐹‘𝐽) +Q
(*Q‘[〈𝐽, 1o〉]
~Q ))))) |
| 74 | 73 | imp 124 |
. . . . 5
⊢ ((𝜑 ∧ 𝐽 <N 𝐵) → ((𝐹‘𝐽) <Q ((𝐹‘𝐵) +Q
(*Q‘[〈𝐽, 1o〉]
~Q )) ∧ (𝐹‘𝐵) <Q ((𝐹‘𝐽) +Q
(*Q‘[〈𝐽, 1o〉]
~Q )))) |
| 75 | 74 | simpld 112 |
. . . 4
⊢ ((𝜑 ∧ 𝐽 <N 𝐵) → (𝐹‘𝐽) <Q ((𝐹‘𝐵) +Q
(*Q‘[〈𝐽, 1o〉]
~Q ))) |
| 76 | | ltanqg 7467 |
. . . . . . . 8
⊢ ((𝑓 ∈ Q ∧
𝑔 ∈ Q
∧ ℎ ∈
Q) → (𝑓
<Q 𝑔 ↔ (ℎ +Q 𝑓) <Q
(ℎ
+Q 𝑔))) |
| 77 | 76 | adantl 277 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑓 ∈ Q ∧ 𝑔 ∈ Q ∧
ℎ ∈ Q))
→ (𝑓
<Q 𝑔 ↔ (ℎ +Q 𝑓) <Q
(ℎ
+Q 𝑔))) |
| 78 | | addcomnqg 7448 |
. . . . . . . 8
⊢ ((𝑓 ∈ Q ∧
𝑔 ∈ Q)
→ (𝑓
+Q 𝑔) = (𝑔 +Q 𝑓)) |
| 79 | 78 | adantl 277 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑓 ∈ Q ∧ 𝑔 ∈ Q)) →
(𝑓
+Q 𝑔) = (𝑔 +Q 𝑓)) |
| 80 | 77, 28, 33, 36, 79 | caovord2d 6093 |
. . . . . 6
⊢ (𝜑 → ((𝐹‘𝐵) <Q ((𝐹‘𝐵) +Q
(*Q‘[〈𝐵, 1o〉]
~Q )) ↔ ((𝐹‘𝐵) +Q
(*Q‘[〈𝐽, 1o〉]
~Q )) <Q (((𝐹‘𝐵) +Q
(*Q‘[〈𝐵, 1o〉]
~Q )) +Q
(*Q‘[〈𝐽, 1o〉]
~Q )))) |
| 81 | 45, 80 | mpbid 147 |
. . . . 5
⊢ (𝜑 → ((𝐹‘𝐵) +Q
(*Q‘[〈𝐽, 1o〉]
~Q )) <Q (((𝐹‘𝐵) +Q
(*Q‘[〈𝐵, 1o〉]
~Q )) +Q
(*Q‘[〈𝐽, 1o〉]
~Q ))) |
| 82 | 81 | adantr 276 |
. . . 4
⊢ ((𝜑 ∧ 𝐽 <N 𝐵) → ((𝐹‘𝐵) +Q
(*Q‘[〈𝐽, 1o〉]
~Q )) <Q (((𝐹‘𝐵) +Q
(*Q‘[〈𝐵, 1o〉]
~Q )) +Q
(*Q‘[〈𝐽, 1o〉]
~Q ))) |
| 83 | 40, 41 | sotri 5065 |
. . . 4
⊢ (((𝐹‘𝐽) <Q ((𝐹‘𝐵) +Q
(*Q‘[〈𝐽, 1o〉]
~Q )) ∧ ((𝐹‘𝐵) +Q
(*Q‘[〈𝐽, 1o〉]
~Q )) <Q (((𝐹‘𝐵) +Q
(*Q‘[〈𝐵, 1o〉]
~Q )) +Q
(*Q‘[〈𝐽, 1o〉]
~Q ))) → (𝐹‘𝐽) <Q (((𝐹‘𝐵) +Q
(*Q‘[〈𝐵, 1o〉]
~Q )) +Q
(*Q‘[〈𝐽, 1o〉]
~Q ))) |
| 84 | 75, 82, 83 | syl2anc 411 |
. . 3
⊢ ((𝜑 ∧ 𝐽 <N 𝐵) → (𝐹‘𝐽) <Q (((𝐹‘𝐵) +Q
(*Q‘[〈𝐵, 1o〉]
~Q )) +Q
(*Q‘[〈𝐽, 1o〉]
~Q ))) |
| 85 | | pitri3or 7389 |
. . . 4
⊢ ((𝐵 ∈ N ∧
𝐽 ∈ N)
→ (𝐵
<N 𝐽 ∨ 𝐵 = 𝐽 ∨ 𝐽 <N 𝐵)) |
| 86 | 2, 3, 85 | syl2anc 411 |
. . 3
⊢ (𝜑 → (𝐵 <N 𝐽 ∨ 𝐵 = 𝐽 ∨ 𝐽 <N 𝐵)) |
| 87 | 43, 52, 84, 86 | mpjao3dan 1318 |
. 2
⊢ (𝜑 → (𝐹‘𝐽) <Q (((𝐹‘𝐵) +Q
(*Q‘[〈𝐵, 1o〉]
~Q )) +Q
(*Q‘[〈𝐽, 1o〉]
~Q ))) |
| 88 | 27, 3 | ffvelcdmd 5698 |
. . . 4
⊢ (𝜑 → (𝐹‘𝐽) ∈ Q) |
| 89 | | addclnq 7442 |
. . . . 5
⊢ ((((𝐹‘𝐵) +Q
(*Q‘[〈𝐵, 1o〉]
~Q )) ∈ Q ∧
(*Q‘[〈𝐽, 1o〉]
~Q ) ∈ Q) → (((𝐹‘𝐵) +Q
(*Q‘[〈𝐵, 1o〉]
~Q )) +Q
(*Q‘[〈𝐽, 1o〉]
~Q )) ∈ Q) |
| 90 | 33, 36, 89 | syl2anc 411 |
. . . 4
⊢ (𝜑 → (((𝐹‘𝐵) +Q
(*Q‘[〈𝐵, 1o〉]
~Q )) +Q
(*Q‘[〈𝐽, 1o〉]
~Q )) ∈ Q) |
| 91 | | so2nr 4356 |
. . . . 5
⊢ ((
<Q Or Q ∧ ((𝐹‘𝐽) ∈ Q ∧ (((𝐹‘𝐵) +Q
(*Q‘[〈𝐵, 1o〉]
~Q )) +Q
(*Q‘[〈𝐽, 1o〉]
~Q )) ∈ Q)) → ¬ ((𝐹‘𝐽) <Q (((𝐹‘𝐵) +Q
(*Q‘[〈𝐵, 1o〉]
~Q )) +Q
(*Q‘[〈𝐽, 1o〉]
~Q )) ∧ (((𝐹‘𝐵) +Q
(*Q‘[〈𝐵, 1o〉]
~Q )) +Q
(*Q‘[〈𝐽, 1o〉]
~Q )) <Q (𝐹‘𝐽))) |
| 92 | 40, 91 | mpan 424 |
. . . 4
⊢ (((𝐹‘𝐽) ∈ Q ∧ (((𝐹‘𝐵) +Q
(*Q‘[〈𝐵, 1o〉]
~Q )) +Q
(*Q‘[〈𝐽, 1o〉]
~Q )) ∈ Q) → ¬ ((𝐹‘𝐽) <Q (((𝐹‘𝐵) +Q
(*Q‘[〈𝐵, 1o〉]
~Q )) +Q
(*Q‘[〈𝐽, 1o〉]
~Q )) ∧ (((𝐹‘𝐵) +Q
(*Q‘[〈𝐵, 1o〉]
~Q )) +Q
(*Q‘[〈𝐽, 1o〉]
~Q )) <Q (𝐹‘𝐽))) |
| 93 | 88, 90, 92 | syl2anc 411 |
. . 3
⊢ (𝜑 → ¬ ((𝐹‘𝐽) <Q (((𝐹‘𝐵) +Q
(*Q‘[〈𝐵, 1o〉]
~Q )) +Q
(*Q‘[〈𝐽, 1o〉]
~Q )) ∧ (((𝐹‘𝐵) +Q
(*Q‘[〈𝐵, 1o〉]
~Q )) +Q
(*Q‘[〈𝐽, 1o〉]
~Q )) <Q (𝐹‘𝐽))) |
| 94 | | imnan 691 |
. . 3
⊢ (((𝐹‘𝐽) <Q (((𝐹‘𝐵) +Q
(*Q‘[〈𝐵, 1o〉]
~Q )) +Q
(*Q‘[〈𝐽, 1o〉]
~Q )) → ¬ (((𝐹‘𝐵) +Q
(*Q‘[〈𝐵, 1o〉]
~Q )) +Q
(*Q‘[〈𝐽, 1o〉]
~Q )) <Q (𝐹‘𝐽)) ↔ ¬ ((𝐹‘𝐽) <Q (((𝐹‘𝐵) +Q
(*Q‘[〈𝐵, 1o〉]
~Q )) +Q
(*Q‘[〈𝐽, 1o〉]
~Q )) ∧ (((𝐹‘𝐵) +Q
(*Q‘[〈𝐵, 1o〉]
~Q )) +Q
(*Q‘[〈𝐽, 1o〉]
~Q )) <Q (𝐹‘𝐽))) |
| 95 | 93, 94 | sylibr 134 |
. 2
⊢ (𝜑 → ((𝐹‘𝐽) <Q (((𝐹‘𝐵) +Q
(*Q‘[〈𝐵, 1o〉]
~Q )) +Q
(*Q‘[〈𝐽, 1o〉]
~Q )) → ¬ (((𝐹‘𝐵) +Q
(*Q‘[〈𝐵, 1o〉]
~Q )) +Q
(*Q‘[〈𝐽, 1o〉]
~Q )) <Q (𝐹‘𝐽))) |
| 96 | 87, 95 | mpd 13 |
1
⊢ (𝜑 → ¬ (((𝐹‘𝐵) +Q
(*Q‘[〈𝐵, 1o〉]
~Q )) +Q
(*Q‘[〈𝐽, 1o〉]
~Q )) <Q (𝐹‘𝐽)) |