Step | Hyp | Ref
| Expression |
1 | | caucvgpr.cau |
. . . . . . 7
⊢ (𝜑 → ∀𝑛 ∈ N ∀𝑘 ∈ N (𝑛 <N
𝑘 → ((𝐹‘𝑛) <Q ((𝐹‘𝑘) +Q
(*Q‘[〈𝑛, 1o〉]
~Q )) ∧ (𝐹‘𝑘) <Q ((𝐹‘𝑛) +Q
(*Q‘[〈𝑛, 1o〉]
~Q ))))) |
2 | | caucvgprlemnbj.b |
. . . . . . . 8
⊢ (𝜑 → 𝐵 ∈ N) |
3 | | caucvgprlemnbj.j |
. . . . . . . 8
⊢ (𝜑 → 𝐽 ∈ N) |
4 | | breq1 3985 |
. . . . . . . . . 10
⊢ (𝑛 = 𝐵 → (𝑛 <N 𝑘 ↔ 𝐵 <N 𝑘)) |
5 | | fveq2 5486 |
. . . . . . . . . . . 12
⊢ (𝑛 = 𝐵 → (𝐹‘𝑛) = (𝐹‘𝐵)) |
6 | | opeq1 3758 |
. . . . . . . . . . . . . . 15
⊢ (𝑛 = 𝐵 → 〈𝑛, 1o〉 = 〈𝐵,
1o〉) |
7 | 6 | eceq1d 6537 |
. . . . . . . . . . . . . 14
⊢ (𝑛 = 𝐵 → [〈𝑛, 1o〉]
~Q = [〈𝐵, 1o〉]
~Q ) |
8 | 7 | fveq2d 5490 |
. . . . . . . . . . . . 13
⊢ (𝑛 = 𝐵 →
(*Q‘[〈𝑛, 1o〉]
~Q ) = (*Q‘[〈𝐵, 1o〉]
~Q )) |
9 | 8 | oveq2d 5858 |
. . . . . . . . . . . 12
⊢ (𝑛 = 𝐵 → ((𝐹‘𝑘) +Q
(*Q‘[〈𝑛, 1o〉]
~Q )) = ((𝐹‘𝑘) +Q
(*Q‘[〈𝐵, 1o〉]
~Q ))) |
10 | 5, 9 | breq12d 3995 |
. . . . . . . . . . 11
⊢ (𝑛 = 𝐵 → ((𝐹‘𝑛) <Q ((𝐹‘𝑘) +Q
(*Q‘[〈𝑛, 1o〉]
~Q )) ↔ (𝐹‘𝐵) <Q ((𝐹‘𝑘) +Q
(*Q‘[〈𝐵, 1o〉]
~Q )))) |
11 | 5, 8 | oveq12d 5860 |
. . . . . . . . . . . 12
⊢ (𝑛 = 𝐵 → ((𝐹‘𝑛) +Q
(*Q‘[〈𝑛, 1o〉]
~Q )) = ((𝐹‘𝐵) +Q
(*Q‘[〈𝐵, 1o〉]
~Q ))) |
12 | 11 | breq2d 3994 |
. . . . . . . . . . 11
⊢ (𝑛 = 𝐵 → ((𝐹‘𝑘) <Q ((𝐹‘𝑛) +Q
(*Q‘[〈𝑛, 1o〉]
~Q )) ↔ (𝐹‘𝑘) <Q ((𝐹‘𝐵) +Q
(*Q‘[〈𝐵, 1o〉]
~Q )))) |
13 | 10, 12 | anbi12d 465 |
. . . . . . . . . 10
⊢ (𝑛 = 𝐵 → (((𝐹‘𝑛) <Q ((𝐹‘𝑘) +Q
(*Q‘[〈𝑛, 1o〉]
~Q )) ∧ (𝐹‘𝑘) <Q ((𝐹‘𝑛) +Q
(*Q‘[〈𝑛, 1o〉]
~Q ))) ↔ ((𝐹‘𝐵) <Q ((𝐹‘𝑘) +Q
(*Q‘[〈𝐵, 1o〉]
~Q )) ∧ (𝐹‘𝑘) <Q ((𝐹‘𝐵) +Q
(*Q‘[〈𝐵, 1o〉]
~Q ))))) |
14 | 4, 13 | imbi12d 233 |
. . . . . . . . 9
⊢ (𝑛 = 𝐵 → ((𝑛 <N 𝑘 → ((𝐹‘𝑛) <Q ((𝐹‘𝑘) +Q
(*Q‘[〈𝑛, 1o〉]
~Q )) ∧ (𝐹‘𝑘) <Q ((𝐹‘𝑛) +Q
(*Q‘[〈𝑛, 1o〉]
~Q )))) ↔ (𝐵 <N 𝑘 → ((𝐹‘𝐵) <Q ((𝐹‘𝑘) +Q
(*Q‘[〈𝐵, 1o〉]
~Q )) ∧ (𝐹‘𝑘) <Q ((𝐹‘𝐵) +Q
(*Q‘[〈𝐵, 1o〉]
~Q )))))) |
15 | | breq2 3986 |
. . . . . . . . . 10
⊢ (𝑘 = 𝐽 → (𝐵 <N 𝑘 ↔ 𝐵 <N 𝐽)) |
16 | | fveq2 5486 |
. . . . . . . . . . . . 13
⊢ (𝑘 = 𝐽 → (𝐹‘𝑘) = (𝐹‘𝐽)) |
17 | 16 | oveq1d 5857 |
. . . . . . . . . . . 12
⊢ (𝑘 = 𝐽 → ((𝐹‘𝑘) +Q
(*Q‘[〈𝐵, 1o〉]
~Q )) = ((𝐹‘𝐽) +Q
(*Q‘[〈𝐵, 1o〉]
~Q ))) |
18 | 17 | breq2d 3994 |
. . . . . . . . . . 11
⊢ (𝑘 = 𝐽 → ((𝐹‘𝐵) <Q ((𝐹‘𝑘) +Q
(*Q‘[〈𝐵, 1o〉]
~Q )) ↔ (𝐹‘𝐵) <Q ((𝐹‘𝐽) +Q
(*Q‘[〈𝐵, 1o〉]
~Q )))) |
19 | 16 | breq1d 3992 |
. . . . . . . . . . 11
⊢ (𝑘 = 𝐽 → ((𝐹‘𝑘) <Q ((𝐹‘𝐵) +Q
(*Q‘[〈𝐵, 1o〉]
~Q )) ↔ (𝐹‘𝐽) <Q ((𝐹‘𝐵) +Q
(*Q‘[〈𝐵, 1o〉]
~Q )))) |
20 | 18, 19 | anbi12d 465 |
. . . . . . . . . 10
⊢ (𝑘 = 𝐽 → (((𝐹‘𝐵) <Q ((𝐹‘𝑘) +Q
(*Q‘[〈𝐵, 1o〉]
~Q )) ∧ (𝐹‘𝑘) <Q ((𝐹‘𝐵) +Q
(*Q‘[〈𝐵, 1o〉]
~Q ))) ↔ ((𝐹‘𝐵) <Q ((𝐹‘𝐽) +Q
(*Q‘[〈𝐵, 1o〉]
~Q )) ∧ (𝐹‘𝐽) <Q ((𝐹‘𝐵) +Q
(*Q‘[〈𝐵, 1o〉]
~Q ))))) |
21 | 15, 20 | imbi12d 233 |
. . . . . . . . 9
⊢ (𝑘 = 𝐽 → ((𝐵 <N 𝑘 → ((𝐹‘𝐵) <Q ((𝐹‘𝑘) +Q
(*Q‘[〈𝐵, 1o〉]
~Q )) ∧ (𝐹‘𝑘) <Q ((𝐹‘𝐵) +Q
(*Q‘[〈𝐵, 1o〉]
~Q )))) ↔ (𝐵 <N 𝐽 → ((𝐹‘𝐵) <Q ((𝐹‘𝐽) +Q
(*Q‘[〈𝐵, 1o〉]
~Q )) ∧ (𝐹‘𝐽) <Q ((𝐹‘𝐵) +Q
(*Q‘[〈𝐵, 1o〉]
~Q )))))) |
22 | 14, 21 | rspc2v 2843 |
. . . . . . . 8
⊢ ((𝐵 ∈ N ∧
𝐽 ∈ N)
→ (∀𝑛 ∈
N ∀𝑘
∈ N (𝑛
<N 𝑘 → ((𝐹‘𝑛) <Q ((𝐹‘𝑘) +Q
(*Q‘[〈𝑛, 1o〉]
~Q )) ∧ (𝐹‘𝑘) <Q ((𝐹‘𝑛) +Q
(*Q‘[〈𝑛, 1o〉]
~Q )))) → (𝐵 <N 𝐽 → ((𝐹‘𝐵) <Q ((𝐹‘𝐽) +Q
(*Q‘[〈𝐵, 1o〉]
~Q )) ∧ (𝐹‘𝐽) <Q ((𝐹‘𝐵) +Q
(*Q‘[〈𝐵, 1o〉]
~Q )))))) |
23 | 2, 3, 22 | syl2anc 409 |
. . . . . . 7
⊢ (𝜑 → (∀𝑛 ∈ N
∀𝑘 ∈
N (𝑛
<N 𝑘 → ((𝐹‘𝑛) <Q ((𝐹‘𝑘) +Q
(*Q‘[〈𝑛, 1o〉]
~Q )) ∧ (𝐹‘𝑘) <Q ((𝐹‘𝑛) +Q
(*Q‘[〈𝑛, 1o〉]
~Q )))) → (𝐵 <N 𝐽 → ((𝐹‘𝐵) <Q ((𝐹‘𝐽) +Q
(*Q‘[〈𝐵, 1o〉]
~Q )) ∧ (𝐹‘𝐽) <Q ((𝐹‘𝐵) +Q
(*Q‘[〈𝐵, 1o〉]
~Q )))))) |
24 | 1, 23 | mpd 13 |
. . . . . 6
⊢ (𝜑 → (𝐵 <N 𝐽 → ((𝐹‘𝐵) <Q ((𝐹‘𝐽) +Q
(*Q‘[〈𝐵, 1o〉]
~Q )) ∧ (𝐹‘𝐽) <Q ((𝐹‘𝐵) +Q
(*Q‘[〈𝐵, 1o〉]
~Q ))))) |
25 | 24 | imp 123 |
. . . . 5
⊢ ((𝜑 ∧ 𝐵 <N 𝐽) → ((𝐹‘𝐵) <Q ((𝐹‘𝐽) +Q
(*Q‘[〈𝐵, 1o〉]
~Q )) ∧ (𝐹‘𝐽) <Q ((𝐹‘𝐵) +Q
(*Q‘[〈𝐵, 1o〉]
~Q )))) |
26 | 25 | simprd 113 |
. . . 4
⊢ ((𝜑 ∧ 𝐵 <N 𝐽) → (𝐹‘𝐽) <Q ((𝐹‘𝐵) +Q
(*Q‘[〈𝐵, 1o〉]
~Q ))) |
27 | | caucvgpr.f |
. . . . . . . 8
⊢ (𝜑 → 𝐹:N⟶Q) |
28 | 27, 2 | ffvelrnd 5621 |
. . . . . . 7
⊢ (𝜑 → (𝐹‘𝐵) ∈ Q) |
29 | | nnnq 7363 |
. . . . . . . 8
⊢ (𝐵 ∈ N →
[〈𝐵,
1o〉] ~Q ∈
Q) |
30 | | recclnq 7333 |
. . . . . . . 8
⊢
([〈𝐵,
1o〉] ~Q ∈ Q →
(*Q‘[〈𝐵, 1o〉]
~Q ) ∈ Q) |
31 | 2, 29, 30 | 3syl 17 |
. . . . . . 7
⊢ (𝜑 →
(*Q‘[〈𝐵, 1o〉]
~Q ) ∈ Q) |
32 | | addclnq 7316 |
. . . . . . 7
⊢ (((𝐹‘𝐵) ∈ Q ∧
(*Q‘[〈𝐵, 1o〉]
~Q ) ∈ Q) → ((𝐹‘𝐵) +Q
(*Q‘[〈𝐵, 1o〉]
~Q )) ∈ Q) |
33 | 28, 31, 32 | syl2anc 409 |
. . . . . 6
⊢ (𝜑 → ((𝐹‘𝐵) +Q
(*Q‘[〈𝐵, 1o〉]
~Q )) ∈ Q) |
34 | | nnnq 7363 |
. . . . . . 7
⊢ (𝐽 ∈ N →
[〈𝐽,
1o〉] ~Q ∈
Q) |
35 | | recclnq 7333 |
. . . . . . 7
⊢
([〈𝐽,
1o〉] ~Q ∈ Q →
(*Q‘[〈𝐽, 1o〉]
~Q ) ∈ Q) |
36 | 3, 34, 35 | 3syl 17 |
. . . . . 6
⊢ (𝜑 →
(*Q‘[〈𝐽, 1o〉]
~Q ) ∈ Q) |
37 | | ltaddnq 7348 |
. . . . . 6
⊢ ((((𝐹‘𝐵) +Q
(*Q‘[〈𝐵, 1o〉]
~Q )) ∈ Q ∧
(*Q‘[〈𝐽, 1o〉]
~Q ) ∈ Q) → ((𝐹‘𝐵) +Q
(*Q‘[〈𝐵, 1o〉]
~Q )) <Q (((𝐹‘𝐵) +Q
(*Q‘[〈𝐵, 1o〉]
~Q )) +Q
(*Q‘[〈𝐽, 1o〉]
~Q ))) |
38 | 33, 36, 37 | syl2anc 409 |
. . . . 5
⊢ (𝜑 → ((𝐹‘𝐵) +Q
(*Q‘[〈𝐵, 1o〉]
~Q )) <Q (((𝐹‘𝐵) +Q
(*Q‘[〈𝐵, 1o〉]
~Q )) +Q
(*Q‘[〈𝐽, 1o〉]
~Q ))) |
39 | 38 | adantr 274 |
. . . 4
⊢ ((𝜑 ∧ 𝐵 <N 𝐽) → ((𝐹‘𝐵) +Q
(*Q‘[〈𝐵, 1o〉]
~Q )) <Q (((𝐹‘𝐵) +Q
(*Q‘[〈𝐵, 1o〉]
~Q )) +Q
(*Q‘[〈𝐽, 1o〉]
~Q ))) |
40 | | ltsonq 7339 |
. . . . 5
⊢
<Q Or Q |
41 | | ltrelnq 7306 |
. . . . 5
⊢
<Q ⊆ (Q ×
Q) |
42 | 40, 41 | sotri 4999 |
. . . 4
⊢ (((𝐹‘𝐽) <Q ((𝐹‘𝐵) +Q
(*Q‘[〈𝐵, 1o〉]
~Q )) ∧ ((𝐹‘𝐵) +Q
(*Q‘[〈𝐵, 1o〉]
~Q )) <Q (((𝐹‘𝐵) +Q
(*Q‘[〈𝐵, 1o〉]
~Q )) +Q
(*Q‘[〈𝐽, 1o〉]
~Q ))) → (𝐹‘𝐽) <Q (((𝐹‘𝐵) +Q
(*Q‘[〈𝐵, 1o〉]
~Q )) +Q
(*Q‘[〈𝐽, 1o〉]
~Q ))) |
43 | 26, 39, 42 | syl2anc 409 |
. . 3
⊢ ((𝜑 ∧ 𝐵 <N 𝐽) → (𝐹‘𝐽) <Q (((𝐹‘𝐵) +Q
(*Q‘[〈𝐵, 1o〉]
~Q )) +Q
(*Q‘[〈𝐽, 1o〉]
~Q ))) |
44 | | ltaddnq 7348 |
. . . . . . 7
⊢ (((𝐹‘𝐵) ∈ Q ∧
(*Q‘[〈𝐵, 1o〉]
~Q ) ∈ Q) → (𝐹‘𝐵) <Q ((𝐹‘𝐵) +Q
(*Q‘[〈𝐵, 1o〉]
~Q ))) |
45 | 28, 31, 44 | syl2anc 409 |
. . . . . 6
⊢ (𝜑 → (𝐹‘𝐵) <Q ((𝐹‘𝐵) +Q
(*Q‘[〈𝐵, 1o〉]
~Q ))) |
46 | 45 | adantr 274 |
. . . . 5
⊢ ((𝜑 ∧ 𝐵 = 𝐽) → (𝐹‘𝐵) <Q ((𝐹‘𝐵) +Q
(*Q‘[〈𝐵, 1o〉]
~Q ))) |
47 | | fveq2 5486 |
. . . . . . 7
⊢ (𝐵 = 𝐽 → (𝐹‘𝐵) = (𝐹‘𝐽)) |
48 | 47 | breq1d 3992 |
. . . . . 6
⊢ (𝐵 = 𝐽 → ((𝐹‘𝐵) <Q ((𝐹‘𝐵) +Q
(*Q‘[〈𝐵, 1o〉]
~Q )) ↔ (𝐹‘𝐽) <Q ((𝐹‘𝐵) +Q
(*Q‘[〈𝐵, 1o〉]
~Q )))) |
49 | 48 | adantl 275 |
. . . . 5
⊢ ((𝜑 ∧ 𝐵 = 𝐽) → ((𝐹‘𝐵) <Q ((𝐹‘𝐵) +Q
(*Q‘[〈𝐵, 1o〉]
~Q )) ↔ (𝐹‘𝐽) <Q ((𝐹‘𝐵) +Q
(*Q‘[〈𝐵, 1o〉]
~Q )))) |
50 | 46, 49 | mpbid 146 |
. . . 4
⊢ ((𝜑 ∧ 𝐵 = 𝐽) → (𝐹‘𝐽) <Q ((𝐹‘𝐵) +Q
(*Q‘[〈𝐵, 1o〉]
~Q ))) |
51 | 38 | adantr 274 |
. . . 4
⊢ ((𝜑 ∧ 𝐵 = 𝐽) → ((𝐹‘𝐵) +Q
(*Q‘[〈𝐵, 1o〉]
~Q )) <Q (((𝐹‘𝐵) +Q
(*Q‘[〈𝐵, 1o〉]
~Q )) +Q
(*Q‘[〈𝐽, 1o〉]
~Q ))) |
52 | 50, 51, 42 | syl2anc 409 |
. . 3
⊢ ((𝜑 ∧ 𝐵 = 𝐽) → (𝐹‘𝐽) <Q (((𝐹‘𝐵) +Q
(*Q‘[〈𝐵, 1o〉]
~Q )) +Q
(*Q‘[〈𝐽, 1o〉]
~Q ))) |
53 | | breq1 3985 |
. . . . . . . . . 10
⊢ (𝑛 = 𝐽 → (𝑛 <N 𝑘 ↔ 𝐽 <N 𝑘)) |
54 | | fveq2 5486 |
. . . . . . . . . . . 12
⊢ (𝑛 = 𝐽 → (𝐹‘𝑛) = (𝐹‘𝐽)) |
55 | | opeq1 3758 |
. . . . . . . . . . . . . . 15
⊢ (𝑛 = 𝐽 → 〈𝑛, 1o〉 = 〈𝐽,
1o〉) |
56 | 55 | eceq1d 6537 |
. . . . . . . . . . . . . 14
⊢ (𝑛 = 𝐽 → [〈𝑛, 1o〉]
~Q = [〈𝐽, 1o〉]
~Q ) |
57 | 56 | fveq2d 5490 |
. . . . . . . . . . . . 13
⊢ (𝑛 = 𝐽 →
(*Q‘[〈𝑛, 1o〉]
~Q ) = (*Q‘[〈𝐽, 1o〉]
~Q )) |
58 | 57 | oveq2d 5858 |
. . . . . . . . . . . 12
⊢ (𝑛 = 𝐽 → ((𝐹‘𝑘) +Q
(*Q‘[〈𝑛, 1o〉]
~Q )) = ((𝐹‘𝑘) +Q
(*Q‘[〈𝐽, 1o〉]
~Q ))) |
59 | 54, 58 | breq12d 3995 |
. . . . . . . . . . 11
⊢ (𝑛 = 𝐽 → ((𝐹‘𝑛) <Q ((𝐹‘𝑘) +Q
(*Q‘[〈𝑛, 1o〉]
~Q )) ↔ (𝐹‘𝐽) <Q ((𝐹‘𝑘) +Q
(*Q‘[〈𝐽, 1o〉]
~Q )))) |
60 | 54, 57 | oveq12d 5860 |
. . . . . . . . . . . 12
⊢ (𝑛 = 𝐽 → ((𝐹‘𝑛) +Q
(*Q‘[〈𝑛, 1o〉]
~Q )) = ((𝐹‘𝐽) +Q
(*Q‘[〈𝐽, 1o〉]
~Q ))) |
61 | 60 | breq2d 3994 |
. . . . . . . . . . 11
⊢ (𝑛 = 𝐽 → ((𝐹‘𝑘) <Q ((𝐹‘𝑛) +Q
(*Q‘[〈𝑛, 1o〉]
~Q )) ↔ (𝐹‘𝑘) <Q ((𝐹‘𝐽) +Q
(*Q‘[〈𝐽, 1o〉]
~Q )))) |
62 | 59, 61 | anbi12d 465 |
. . . . . . . . . 10
⊢ (𝑛 = 𝐽 → (((𝐹‘𝑛) <Q ((𝐹‘𝑘) +Q
(*Q‘[〈𝑛, 1o〉]
~Q )) ∧ (𝐹‘𝑘) <Q ((𝐹‘𝑛) +Q
(*Q‘[〈𝑛, 1o〉]
~Q ))) ↔ ((𝐹‘𝐽) <Q ((𝐹‘𝑘) +Q
(*Q‘[〈𝐽, 1o〉]
~Q )) ∧ (𝐹‘𝑘) <Q ((𝐹‘𝐽) +Q
(*Q‘[〈𝐽, 1o〉]
~Q ))))) |
63 | 53, 62 | imbi12d 233 |
. . . . . . . . 9
⊢ (𝑛 = 𝐽 → ((𝑛 <N 𝑘 → ((𝐹‘𝑛) <Q ((𝐹‘𝑘) +Q
(*Q‘[〈𝑛, 1o〉]
~Q )) ∧ (𝐹‘𝑘) <Q ((𝐹‘𝑛) +Q
(*Q‘[〈𝑛, 1o〉]
~Q )))) ↔ (𝐽 <N 𝑘 → ((𝐹‘𝐽) <Q ((𝐹‘𝑘) +Q
(*Q‘[〈𝐽, 1o〉]
~Q )) ∧ (𝐹‘𝑘) <Q ((𝐹‘𝐽) +Q
(*Q‘[〈𝐽, 1o〉]
~Q )))))) |
64 | | breq2 3986 |
. . . . . . . . . 10
⊢ (𝑘 = 𝐵 → (𝐽 <N 𝑘 ↔ 𝐽 <N 𝐵)) |
65 | | fveq2 5486 |
. . . . . . . . . . . . 13
⊢ (𝑘 = 𝐵 → (𝐹‘𝑘) = (𝐹‘𝐵)) |
66 | 65 | oveq1d 5857 |
. . . . . . . . . . . 12
⊢ (𝑘 = 𝐵 → ((𝐹‘𝑘) +Q
(*Q‘[〈𝐽, 1o〉]
~Q )) = ((𝐹‘𝐵) +Q
(*Q‘[〈𝐽, 1o〉]
~Q ))) |
67 | 66 | breq2d 3994 |
. . . . . . . . . . 11
⊢ (𝑘 = 𝐵 → ((𝐹‘𝐽) <Q ((𝐹‘𝑘) +Q
(*Q‘[〈𝐽, 1o〉]
~Q )) ↔ (𝐹‘𝐽) <Q ((𝐹‘𝐵) +Q
(*Q‘[〈𝐽, 1o〉]
~Q )))) |
68 | 65 | breq1d 3992 |
. . . . . . . . . . 11
⊢ (𝑘 = 𝐵 → ((𝐹‘𝑘) <Q ((𝐹‘𝐽) +Q
(*Q‘[〈𝐽, 1o〉]
~Q )) ↔ (𝐹‘𝐵) <Q ((𝐹‘𝐽) +Q
(*Q‘[〈𝐽, 1o〉]
~Q )))) |
69 | 67, 68 | anbi12d 465 |
. . . . . . . . . 10
⊢ (𝑘 = 𝐵 → (((𝐹‘𝐽) <Q ((𝐹‘𝑘) +Q
(*Q‘[〈𝐽, 1o〉]
~Q )) ∧ (𝐹‘𝑘) <Q ((𝐹‘𝐽) +Q
(*Q‘[〈𝐽, 1o〉]
~Q ))) ↔ ((𝐹‘𝐽) <Q ((𝐹‘𝐵) +Q
(*Q‘[〈𝐽, 1o〉]
~Q )) ∧ (𝐹‘𝐵) <Q ((𝐹‘𝐽) +Q
(*Q‘[〈𝐽, 1o〉]
~Q ))))) |
70 | 64, 69 | imbi12d 233 |
. . . . . . . . 9
⊢ (𝑘 = 𝐵 → ((𝐽 <N 𝑘 → ((𝐹‘𝐽) <Q ((𝐹‘𝑘) +Q
(*Q‘[〈𝐽, 1o〉]
~Q )) ∧ (𝐹‘𝑘) <Q ((𝐹‘𝐽) +Q
(*Q‘[〈𝐽, 1o〉]
~Q )))) ↔ (𝐽 <N 𝐵 → ((𝐹‘𝐽) <Q ((𝐹‘𝐵) +Q
(*Q‘[〈𝐽, 1o〉]
~Q )) ∧ (𝐹‘𝐵) <Q ((𝐹‘𝐽) +Q
(*Q‘[〈𝐽, 1o〉]
~Q )))))) |
71 | 63, 70 | rspc2v 2843 |
. . . . . . . 8
⊢ ((𝐽 ∈ N ∧
𝐵 ∈ N)
→ (∀𝑛 ∈
N ∀𝑘
∈ N (𝑛
<N 𝑘 → ((𝐹‘𝑛) <Q ((𝐹‘𝑘) +Q
(*Q‘[〈𝑛, 1o〉]
~Q )) ∧ (𝐹‘𝑘) <Q ((𝐹‘𝑛) +Q
(*Q‘[〈𝑛, 1o〉]
~Q )))) → (𝐽 <N 𝐵 → ((𝐹‘𝐽) <Q ((𝐹‘𝐵) +Q
(*Q‘[〈𝐽, 1o〉]
~Q )) ∧ (𝐹‘𝐵) <Q ((𝐹‘𝐽) +Q
(*Q‘[〈𝐽, 1o〉]
~Q )))))) |
72 | 3, 2, 71 | syl2anc 409 |
. . . . . . 7
⊢ (𝜑 → (∀𝑛 ∈ N
∀𝑘 ∈
N (𝑛
<N 𝑘 → ((𝐹‘𝑛) <Q ((𝐹‘𝑘) +Q
(*Q‘[〈𝑛, 1o〉]
~Q )) ∧ (𝐹‘𝑘) <Q ((𝐹‘𝑛) +Q
(*Q‘[〈𝑛, 1o〉]
~Q )))) → (𝐽 <N 𝐵 → ((𝐹‘𝐽) <Q ((𝐹‘𝐵) +Q
(*Q‘[〈𝐽, 1o〉]
~Q )) ∧ (𝐹‘𝐵) <Q ((𝐹‘𝐽) +Q
(*Q‘[〈𝐽, 1o〉]
~Q )))))) |
73 | 1, 72 | mpd 13 |
. . . . . 6
⊢ (𝜑 → (𝐽 <N 𝐵 → ((𝐹‘𝐽) <Q ((𝐹‘𝐵) +Q
(*Q‘[〈𝐽, 1o〉]
~Q )) ∧ (𝐹‘𝐵) <Q ((𝐹‘𝐽) +Q
(*Q‘[〈𝐽, 1o〉]
~Q ))))) |
74 | 73 | imp 123 |
. . . . 5
⊢ ((𝜑 ∧ 𝐽 <N 𝐵) → ((𝐹‘𝐽) <Q ((𝐹‘𝐵) +Q
(*Q‘[〈𝐽, 1o〉]
~Q )) ∧ (𝐹‘𝐵) <Q ((𝐹‘𝐽) +Q
(*Q‘[〈𝐽, 1o〉]
~Q )))) |
75 | 74 | simpld 111 |
. . . 4
⊢ ((𝜑 ∧ 𝐽 <N 𝐵) → (𝐹‘𝐽) <Q ((𝐹‘𝐵) +Q
(*Q‘[〈𝐽, 1o〉]
~Q ))) |
76 | | ltanqg 7341 |
. . . . . . . 8
⊢ ((𝑓 ∈ Q ∧
𝑔 ∈ Q
∧ ℎ ∈
Q) → (𝑓
<Q 𝑔 ↔ (ℎ +Q 𝑓) <Q
(ℎ
+Q 𝑔))) |
77 | 76 | adantl 275 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑓 ∈ Q ∧ 𝑔 ∈ Q ∧
ℎ ∈ Q))
→ (𝑓
<Q 𝑔 ↔ (ℎ +Q 𝑓) <Q
(ℎ
+Q 𝑔))) |
78 | | addcomnqg 7322 |
. . . . . . . 8
⊢ ((𝑓 ∈ Q ∧
𝑔 ∈ Q)
→ (𝑓
+Q 𝑔) = (𝑔 +Q 𝑓)) |
79 | 78 | adantl 275 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑓 ∈ Q ∧ 𝑔 ∈ Q)) →
(𝑓
+Q 𝑔) = (𝑔 +Q 𝑓)) |
80 | 77, 28, 33, 36, 79 | caovord2d 6011 |
. . . . . 6
⊢ (𝜑 → ((𝐹‘𝐵) <Q ((𝐹‘𝐵) +Q
(*Q‘[〈𝐵, 1o〉]
~Q )) ↔ ((𝐹‘𝐵) +Q
(*Q‘[〈𝐽, 1o〉]
~Q )) <Q (((𝐹‘𝐵) +Q
(*Q‘[〈𝐵, 1o〉]
~Q )) +Q
(*Q‘[〈𝐽, 1o〉]
~Q )))) |
81 | 45, 80 | mpbid 146 |
. . . . 5
⊢ (𝜑 → ((𝐹‘𝐵) +Q
(*Q‘[〈𝐽, 1o〉]
~Q )) <Q (((𝐹‘𝐵) +Q
(*Q‘[〈𝐵, 1o〉]
~Q )) +Q
(*Q‘[〈𝐽, 1o〉]
~Q ))) |
82 | 81 | adantr 274 |
. . . 4
⊢ ((𝜑 ∧ 𝐽 <N 𝐵) → ((𝐹‘𝐵) +Q
(*Q‘[〈𝐽, 1o〉]
~Q )) <Q (((𝐹‘𝐵) +Q
(*Q‘[〈𝐵, 1o〉]
~Q )) +Q
(*Q‘[〈𝐽, 1o〉]
~Q ))) |
83 | 40, 41 | sotri 4999 |
. . . 4
⊢ (((𝐹‘𝐽) <Q ((𝐹‘𝐵) +Q
(*Q‘[〈𝐽, 1o〉]
~Q )) ∧ ((𝐹‘𝐵) +Q
(*Q‘[〈𝐽, 1o〉]
~Q )) <Q (((𝐹‘𝐵) +Q
(*Q‘[〈𝐵, 1o〉]
~Q )) +Q
(*Q‘[〈𝐽, 1o〉]
~Q ))) → (𝐹‘𝐽) <Q (((𝐹‘𝐵) +Q
(*Q‘[〈𝐵, 1o〉]
~Q )) +Q
(*Q‘[〈𝐽, 1o〉]
~Q ))) |
84 | 75, 82, 83 | syl2anc 409 |
. . 3
⊢ ((𝜑 ∧ 𝐽 <N 𝐵) → (𝐹‘𝐽) <Q (((𝐹‘𝐵) +Q
(*Q‘[〈𝐵, 1o〉]
~Q )) +Q
(*Q‘[〈𝐽, 1o〉]
~Q ))) |
85 | | pitri3or 7263 |
. . . 4
⊢ ((𝐵 ∈ N ∧
𝐽 ∈ N)
→ (𝐵
<N 𝐽 ∨ 𝐵 = 𝐽 ∨ 𝐽 <N 𝐵)) |
86 | 2, 3, 85 | syl2anc 409 |
. . 3
⊢ (𝜑 → (𝐵 <N 𝐽 ∨ 𝐵 = 𝐽 ∨ 𝐽 <N 𝐵)) |
87 | 43, 52, 84, 86 | mpjao3dan 1297 |
. 2
⊢ (𝜑 → (𝐹‘𝐽) <Q (((𝐹‘𝐵) +Q
(*Q‘[〈𝐵, 1o〉]
~Q )) +Q
(*Q‘[〈𝐽, 1o〉]
~Q ))) |
88 | 27, 3 | ffvelrnd 5621 |
. . . 4
⊢ (𝜑 → (𝐹‘𝐽) ∈ Q) |
89 | | addclnq 7316 |
. . . . 5
⊢ ((((𝐹‘𝐵) +Q
(*Q‘[〈𝐵, 1o〉]
~Q )) ∈ Q ∧
(*Q‘[〈𝐽, 1o〉]
~Q ) ∈ Q) → (((𝐹‘𝐵) +Q
(*Q‘[〈𝐵, 1o〉]
~Q )) +Q
(*Q‘[〈𝐽, 1o〉]
~Q )) ∈ Q) |
90 | 33, 36, 89 | syl2anc 409 |
. . . 4
⊢ (𝜑 → (((𝐹‘𝐵) +Q
(*Q‘[〈𝐵, 1o〉]
~Q )) +Q
(*Q‘[〈𝐽, 1o〉]
~Q )) ∈ Q) |
91 | | so2nr 4299 |
. . . . 5
⊢ ((
<Q Or Q ∧ ((𝐹‘𝐽) ∈ Q ∧ (((𝐹‘𝐵) +Q
(*Q‘[〈𝐵, 1o〉]
~Q )) +Q
(*Q‘[〈𝐽, 1o〉]
~Q )) ∈ Q)) → ¬ ((𝐹‘𝐽) <Q (((𝐹‘𝐵) +Q
(*Q‘[〈𝐵, 1o〉]
~Q )) +Q
(*Q‘[〈𝐽, 1o〉]
~Q )) ∧ (((𝐹‘𝐵) +Q
(*Q‘[〈𝐵, 1o〉]
~Q )) +Q
(*Q‘[〈𝐽, 1o〉]
~Q )) <Q (𝐹‘𝐽))) |
92 | 40, 91 | mpan 421 |
. . . 4
⊢ (((𝐹‘𝐽) ∈ Q ∧ (((𝐹‘𝐵) +Q
(*Q‘[〈𝐵, 1o〉]
~Q )) +Q
(*Q‘[〈𝐽, 1o〉]
~Q )) ∈ Q) → ¬ ((𝐹‘𝐽) <Q (((𝐹‘𝐵) +Q
(*Q‘[〈𝐵, 1o〉]
~Q )) +Q
(*Q‘[〈𝐽, 1o〉]
~Q )) ∧ (((𝐹‘𝐵) +Q
(*Q‘[〈𝐵, 1o〉]
~Q )) +Q
(*Q‘[〈𝐽, 1o〉]
~Q )) <Q (𝐹‘𝐽))) |
93 | 88, 90, 92 | syl2anc 409 |
. . 3
⊢ (𝜑 → ¬ ((𝐹‘𝐽) <Q (((𝐹‘𝐵) +Q
(*Q‘[〈𝐵, 1o〉]
~Q )) +Q
(*Q‘[〈𝐽, 1o〉]
~Q )) ∧ (((𝐹‘𝐵) +Q
(*Q‘[〈𝐵, 1o〉]
~Q )) +Q
(*Q‘[〈𝐽, 1o〉]
~Q )) <Q (𝐹‘𝐽))) |
94 | | imnan 680 |
. . 3
⊢ (((𝐹‘𝐽) <Q (((𝐹‘𝐵) +Q
(*Q‘[〈𝐵, 1o〉]
~Q )) +Q
(*Q‘[〈𝐽, 1o〉]
~Q )) → ¬ (((𝐹‘𝐵) +Q
(*Q‘[〈𝐵, 1o〉]
~Q )) +Q
(*Q‘[〈𝐽, 1o〉]
~Q )) <Q (𝐹‘𝐽)) ↔ ¬ ((𝐹‘𝐽) <Q (((𝐹‘𝐵) +Q
(*Q‘[〈𝐵, 1o〉]
~Q )) +Q
(*Q‘[〈𝐽, 1o〉]
~Q )) ∧ (((𝐹‘𝐵) +Q
(*Q‘[〈𝐵, 1o〉]
~Q )) +Q
(*Q‘[〈𝐽, 1o〉]
~Q )) <Q (𝐹‘𝐽))) |
95 | 93, 94 | sylibr 133 |
. 2
⊢ (𝜑 → ((𝐹‘𝐽) <Q (((𝐹‘𝐵) +Q
(*Q‘[〈𝐵, 1o〉]
~Q )) +Q
(*Q‘[〈𝐽, 1o〉]
~Q )) → ¬ (((𝐹‘𝐵) +Q
(*Q‘[〈𝐵, 1o〉]
~Q )) +Q
(*Q‘[〈𝐽, 1o〉]
~Q )) <Q (𝐹‘𝐽))) |
96 | 87, 95 | mpd 13 |
1
⊢ (𝜑 → ¬ (((𝐹‘𝐵) +Q
(*Q‘[〈𝐵, 1o〉]
~Q )) +Q
(*Q‘[〈𝐽, 1o〉]
~Q )) <Q (𝐹‘𝐽)) |