Step | Hyp | Ref
| Expression |
1 | | simpl 109 |
. . . 4
⊢ ((𝑆 ⊆ 𝐵 ∧ (+g‘𝐻) = ((+g‘𝐺) ↾ (𝑆 × 𝑆))) → 𝑆 ⊆ 𝐵) |
2 | 1 | adantl 277 |
. . 3
⊢ (((𝐺 ∈ Grp ∧ 𝐻 ∈ Grp) ∧ (𝑆 ⊆ 𝐵 ∧ (+g‘𝐻) = ((+g‘𝐺) ↾ (𝑆 × 𝑆)))) → 𝑆 ⊆ 𝐵) |
3 | | grpissubg.s |
. . . . . 6
⊢ 𝑆 = (Base‘𝐻) |
4 | | eqid 2177 |
. . . . . 6
⊢
(0g‘𝐻) = (0g‘𝐻) |
5 | 3, 4 | grpidcl 12909 |
. . . . 5
⊢ (𝐻 ∈ Grp →
(0g‘𝐻)
∈ 𝑆) |
6 | | elex2 2755 |
. . . . 5
⊢
((0g‘𝐻) ∈ 𝑆 → ∃𝑤 𝑤 ∈ 𝑆) |
7 | 5, 6 | syl 14 |
. . . 4
⊢ (𝐻 ∈ Grp → ∃𝑤 𝑤 ∈ 𝑆) |
8 | 7 | ad2antlr 489 |
. . 3
⊢ (((𝐺 ∈ Grp ∧ 𝐻 ∈ Grp) ∧ (𝑆 ⊆ 𝐵 ∧ (+g‘𝐻) = ((+g‘𝐺) ↾ (𝑆 × 𝑆)))) → ∃𝑤 𝑤 ∈ 𝑆) |
9 | | grpmnd 12889 |
. . . . . . . . . . 11
⊢ (𝐺 ∈ Grp → 𝐺 ∈ Mnd) |
10 | | mndmgm 12828 |
. . . . . . . . . . 11
⊢ (𝐺 ∈ Mnd → 𝐺 ∈ Mgm) |
11 | 9, 10 | syl 14 |
. . . . . . . . . 10
⊢ (𝐺 ∈ Grp → 𝐺 ∈ Mgm) |
12 | | grpmnd 12889 |
. . . . . . . . . . 11
⊢ (𝐻 ∈ Grp → 𝐻 ∈ Mnd) |
13 | | mndmgm 12828 |
. . . . . . . . . . 11
⊢ (𝐻 ∈ Mnd → 𝐻 ∈ Mgm) |
14 | 12, 13 | syl 14 |
. . . . . . . . . 10
⊢ (𝐻 ∈ Grp → 𝐻 ∈ Mgm) |
15 | 11, 14 | anim12i 338 |
. . . . . . . . 9
⊢ ((𝐺 ∈ Grp ∧ 𝐻 ∈ Grp) → (𝐺 ∈ Mgm ∧ 𝐻 ∈ Mgm)) |
16 | 15 | adantr 276 |
. . . . . . . 8
⊢ (((𝐺 ∈ Grp ∧ 𝐻 ∈ Grp) ∧ (𝑆 ⊆ 𝐵 ∧ (+g‘𝐻) = ((+g‘𝐺) ↾ (𝑆 × 𝑆)))) → (𝐺 ∈ Mgm ∧ 𝐻 ∈ Mgm)) |
17 | 16 | ad2antrr 488 |
. . . . . . 7
⊢
(((((𝐺 ∈ Grp
∧ 𝐻 ∈ Grp) ∧
(𝑆 ⊆ 𝐵 ∧
(+g‘𝐻) =
((+g‘𝐺)
↾ (𝑆 × 𝑆)))) ∧ 𝑎 ∈ 𝑆) ∧ 𝑏 ∈ 𝑆) → (𝐺 ∈ Mgm ∧ 𝐻 ∈ Mgm)) |
18 | | simpr 110 |
. . . . . . . 8
⊢ (((𝐺 ∈ Grp ∧ 𝐻 ∈ Grp) ∧ (𝑆 ⊆ 𝐵 ∧ (+g‘𝐻) = ((+g‘𝐺) ↾ (𝑆 × 𝑆)))) → (𝑆 ⊆ 𝐵 ∧ (+g‘𝐻) = ((+g‘𝐺) ↾ (𝑆 × 𝑆)))) |
19 | 18 | ad2antrr 488 |
. . . . . . 7
⊢
(((((𝐺 ∈ Grp
∧ 𝐻 ∈ Grp) ∧
(𝑆 ⊆ 𝐵 ∧
(+g‘𝐻) =
((+g‘𝐺)
↾ (𝑆 × 𝑆)))) ∧ 𝑎 ∈ 𝑆) ∧ 𝑏 ∈ 𝑆) → (𝑆 ⊆ 𝐵 ∧ (+g‘𝐻) = ((+g‘𝐺) ↾ (𝑆 × 𝑆)))) |
20 | | simpr 110 |
. . . . . . . 8
⊢ ((((𝐺 ∈ Grp ∧ 𝐻 ∈ Grp) ∧ (𝑆 ⊆ 𝐵 ∧ (+g‘𝐻) = ((+g‘𝐺) ↾ (𝑆 × 𝑆)))) ∧ 𝑎 ∈ 𝑆) → 𝑎 ∈ 𝑆) |
21 | 20 | anim1i 340 |
. . . . . . 7
⊢
(((((𝐺 ∈ Grp
∧ 𝐻 ∈ Grp) ∧
(𝑆 ⊆ 𝐵 ∧
(+g‘𝐻) =
((+g‘𝐺)
↾ (𝑆 × 𝑆)))) ∧ 𝑎 ∈ 𝑆) ∧ 𝑏 ∈ 𝑆) → (𝑎 ∈ 𝑆 ∧ 𝑏 ∈ 𝑆)) |
22 | | grpissubg.b |
. . . . . . . 8
⊢ 𝐵 = (Base‘𝐺) |
23 | 22, 3 | mgmsscl 12785 |
. . . . . . 7
⊢ (((𝐺 ∈ Mgm ∧ 𝐻 ∈ Mgm) ∧ (𝑆 ⊆ 𝐵 ∧ (+g‘𝐻) = ((+g‘𝐺) ↾ (𝑆 × 𝑆))) ∧ (𝑎 ∈ 𝑆 ∧ 𝑏 ∈ 𝑆)) → (𝑎(+g‘𝐺)𝑏) ∈ 𝑆) |
24 | 17, 19, 21, 23 | syl3anc 1238 |
. . . . . 6
⊢
(((((𝐺 ∈ Grp
∧ 𝐻 ∈ Grp) ∧
(𝑆 ⊆ 𝐵 ∧
(+g‘𝐻) =
((+g‘𝐺)
↾ (𝑆 × 𝑆)))) ∧ 𝑎 ∈ 𝑆) ∧ 𝑏 ∈ 𝑆) → (𝑎(+g‘𝐺)𝑏) ∈ 𝑆) |
25 | 24 | ralrimiva 2550 |
. . . . 5
⊢ ((((𝐺 ∈ Grp ∧ 𝐻 ∈ Grp) ∧ (𝑆 ⊆ 𝐵 ∧ (+g‘𝐻) = ((+g‘𝐺) ↾ (𝑆 × 𝑆)))) ∧ 𝑎 ∈ 𝑆) → ∀𝑏 ∈ 𝑆 (𝑎(+g‘𝐺)𝑏) ∈ 𝑆) |
26 | | simpl 109 |
. . . . . . . . 9
⊢ ((𝐺 ∈ Grp ∧ 𝐻 ∈ Grp) → 𝐺 ∈ Grp) |
27 | 26 | adantr 276 |
. . . . . . . 8
⊢ (((𝐺 ∈ Grp ∧ 𝐻 ∈ Grp) ∧ (𝑆 ⊆ 𝐵 ∧ (+g‘𝐻) = ((+g‘𝐺) ↾ (𝑆 × 𝑆)))) → 𝐺 ∈ Grp) |
28 | | simplr 528 |
. . . . . . . 8
⊢ (((𝐺 ∈ Grp ∧ 𝐻 ∈ Grp) ∧ (𝑆 ⊆ 𝐵 ∧ (+g‘𝐻) = ((+g‘𝐺) ↾ (𝑆 × 𝑆)))) → 𝐻 ∈ Grp) |
29 | 22 | sseq2i 3184 |
. . . . . . . . . . 11
⊢ (𝑆 ⊆ 𝐵 ↔ 𝑆 ⊆ (Base‘𝐺)) |
30 | 29 | biimpi 120 |
. . . . . . . . . 10
⊢ (𝑆 ⊆ 𝐵 → 𝑆 ⊆ (Base‘𝐺)) |
31 | 30 | adantr 276 |
. . . . . . . . 9
⊢ ((𝑆 ⊆ 𝐵 ∧ (+g‘𝐻) = ((+g‘𝐺) ↾ (𝑆 × 𝑆))) → 𝑆 ⊆ (Base‘𝐺)) |
32 | 31 | adantl 277 |
. . . . . . . 8
⊢ (((𝐺 ∈ Grp ∧ 𝐻 ∈ Grp) ∧ (𝑆 ⊆ 𝐵 ∧ (+g‘𝐻) = ((+g‘𝐺) ↾ (𝑆 × 𝑆)))) → 𝑆 ⊆ (Base‘𝐺)) |
33 | | ovres 6016 |
. . . . . . . . . . 11
⊢ ((𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆) → (𝑥((+g‘𝐺) ↾ (𝑆 × 𝑆))𝑦) = (𝑥(+g‘𝐺)𝑦)) |
34 | 33 | adantl 277 |
. . . . . . . . . 10
⊢ ((((𝐺 ∈ Grp ∧ 𝐻 ∈ Grp) ∧ (𝑆 ⊆ 𝐵 ∧ (+g‘𝐻) = ((+g‘𝐺) ↾ (𝑆 × 𝑆)))) ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥((+g‘𝐺) ↾ (𝑆 × 𝑆))𝑦) = (𝑥(+g‘𝐺)𝑦)) |
35 | | oveq 5883 |
. . . . . . . . . . . . 13
⊢
((+g‘𝐻) = ((+g‘𝐺) ↾ (𝑆 × 𝑆)) → (𝑥(+g‘𝐻)𝑦) = (𝑥((+g‘𝐺) ↾ (𝑆 × 𝑆))𝑦)) |
36 | 35 | adantl 277 |
. . . . . . . . . . . 12
⊢ ((𝑆 ⊆ 𝐵 ∧ (+g‘𝐻) = ((+g‘𝐺) ↾ (𝑆 × 𝑆))) → (𝑥(+g‘𝐻)𝑦) = (𝑥((+g‘𝐺) ↾ (𝑆 × 𝑆))𝑦)) |
37 | 36 | eqcomd 2183 |
. . . . . . . . . . 11
⊢ ((𝑆 ⊆ 𝐵 ∧ (+g‘𝐻) = ((+g‘𝐺) ↾ (𝑆 × 𝑆))) → (𝑥((+g‘𝐺) ↾ (𝑆 × 𝑆))𝑦) = (𝑥(+g‘𝐻)𝑦)) |
38 | 37 | ad2antlr 489 |
. . . . . . . . . 10
⊢ ((((𝐺 ∈ Grp ∧ 𝐻 ∈ Grp) ∧ (𝑆 ⊆ 𝐵 ∧ (+g‘𝐻) = ((+g‘𝐺) ↾ (𝑆 × 𝑆)))) ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥((+g‘𝐺) ↾ (𝑆 × 𝑆))𝑦) = (𝑥(+g‘𝐻)𝑦)) |
39 | 34, 38 | eqtr3d 2212 |
. . . . . . . . 9
⊢ ((((𝐺 ∈ Grp ∧ 𝐻 ∈ Grp) ∧ (𝑆 ⊆ 𝐵 ∧ (+g‘𝐻) = ((+g‘𝐺) ↾ (𝑆 × 𝑆)))) ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥(+g‘𝐺)𝑦) = (𝑥(+g‘𝐻)𝑦)) |
40 | 39 | ralrimivva 2559 |
. . . . . . . 8
⊢ (((𝐺 ∈ Grp ∧ 𝐻 ∈ Grp) ∧ (𝑆 ⊆ 𝐵 ∧ (+g‘𝐻) = ((+g‘𝐺) ↾ (𝑆 × 𝑆)))) → ∀𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑆 (𝑥(+g‘𝐺)𝑦) = (𝑥(+g‘𝐻)𝑦)) |
41 | 27, 28, 3, 32, 40 | grpinvssd 12952 |
. . . . . . 7
⊢ (((𝐺 ∈ Grp ∧ 𝐻 ∈ Grp) ∧ (𝑆 ⊆ 𝐵 ∧ (+g‘𝐻) = ((+g‘𝐺) ↾ (𝑆 × 𝑆)))) → (𝑎 ∈ 𝑆 → ((invg‘𝐻)‘𝑎) = ((invg‘𝐺)‘𝑎))) |
42 | 41 | imp 124 |
. . . . . 6
⊢ ((((𝐺 ∈ Grp ∧ 𝐻 ∈ Grp) ∧ (𝑆 ⊆ 𝐵 ∧ (+g‘𝐻) = ((+g‘𝐺) ↾ (𝑆 × 𝑆)))) ∧ 𝑎 ∈ 𝑆) → ((invg‘𝐻)‘𝑎) = ((invg‘𝐺)‘𝑎)) |
43 | | eqid 2177 |
. . . . . . . 8
⊢
(invg‘𝐻) = (invg‘𝐻) |
44 | 3, 43 | grpinvcl 12926 |
. . . . . . 7
⊢ ((𝐻 ∈ Grp ∧ 𝑎 ∈ 𝑆) → ((invg‘𝐻)‘𝑎) ∈ 𝑆) |
45 | 44 | ad4ant24 516 |
. . . . . 6
⊢ ((((𝐺 ∈ Grp ∧ 𝐻 ∈ Grp) ∧ (𝑆 ⊆ 𝐵 ∧ (+g‘𝐻) = ((+g‘𝐺) ↾ (𝑆 × 𝑆)))) ∧ 𝑎 ∈ 𝑆) → ((invg‘𝐻)‘𝑎) ∈ 𝑆) |
46 | 42, 45 | eqeltrrd 2255 |
. . . . 5
⊢ ((((𝐺 ∈ Grp ∧ 𝐻 ∈ Grp) ∧ (𝑆 ⊆ 𝐵 ∧ (+g‘𝐻) = ((+g‘𝐺) ↾ (𝑆 × 𝑆)))) ∧ 𝑎 ∈ 𝑆) → ((invg‘𝐺)‘𝑎) ∈ 𝑆) |
47 | 25, 46 | jca 306 |
. . . 4
⊢ ((((𝐺 ∈ Grp ∧ 𝐻 ∈ Grp) ∧ (𝑆 ⊆ 𝐵 ∧ (+g‘𝐻) = ((+g‘𝐺) ↾ (𝑆 × 𝑆)))) ∧ 𝑎 ∈ 𝑆) → (∀𝑏 ∈ 𝑆 (𝑎(+g‘𝐺)𝑏) ∈ 𝑆 ∧ ((invg‘𝐺)‘𝑎) ∈ 𝑆)) |
48 | 47 | ralrimiva 2550 |
. . 3
⊢ (((𝐺 ∈ Grp ∧ 𝐻 ∈ Grp) ∧ (𝑆 ⊆ 𝐵 ∧ (+g‘𝐻) = ((+g‘𝐺) ↾ (𝑆 × 𝑆)))) → ∀𝑎 ∈ 𝑆 (∀𝑏 ∈ 𝑆 (𝑎(+g‘𝐺)𝑏) ∈ 𝑆 ∧ ((invg‘𝐺)‘𝑎) ∈ 𝑆)) |
49 | | eqid 2177 |
. . . . 5
⊢
(+g‘𝐺) = (+g‘𝐺) |
50 | | eqid 2177 |
. . . . 5
⊢
(invg‘𝐺) = (invg‘𝐺) |
51 | 22, 49, 50 | issubg2m 13054 |
. . . 4
⊢ (𝐺 ∈ Grp → (𝑆 ∈ (SubGrp‘𝐺) ↔ (𝑆 ⊆ 𝐵 ∧ ∃𝑤 𝑤 ∈ 𝑆 ∧ ∀𝑎 ∈ 𝑆 (∀𝑏 ∈ 𝑆 (𝑎(+g‘𝐺)𝑏) ∈ 𝑆 ∧ ((invg‘𝐺)‘𝑎) ∈ 𝑆)))) |
52 | 51 | ad2antrr 488 |
. . 3
⊢ (((𝐺 ∈ Grp ∧ 𝐻 ∈ Grp) ∧ (𝑆 ⊆ 𝐵 ∧ (+g‘𝐻) = ((+g‘𝐺) ↾ (𝑆 × 𝑆)))) → (𝑆 ∈ (SubGrp‘𝐺) ↔ (𝑆 ⊆ 𝐵 ∧ ∃𝑤 𝑤 ∈ 𝑆 ∧ ∀𝑎 ∈ 𝑆 (∀𝑏 ∈ 𝑆 (𝑎(+g‘𝐺)𝑏) ∈ 𝑆 ∧ ((invg‘𝐺)‘𝑎) ∈ 𝑆)))) |
53 | 2, 8, 48, 52 | mpbir3and 1180 |
. 2
⊢ (((𝐺 ∈ Grp ∧ 𝐻 ∈ Grp) ∧ (𝑆 ⊆ 𝐵 ∧ (+g‘𝐻) = ((+g‘𝐺) ↾ (𝑆 × 𝑆)))) → 𝑆 ∈ (SubGrp‘𝐺)) |
54 | 53 | ex 115 |
1
⊢ ((𝐺 ∈ Grp ∧ 𝐻 ∈ Grp) → ((𝑆 ⊆ 𝐵 ∧ (+g‘𝐻) = ((+g‘𝐺) ↾ (𝑆 × 𝑆))) → 𝑆 ∈ (SubGrp‘𝐺))) |