ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  grpissubg GIF version

Theorem grpissubg 13267
Description: If the base set of a group is contained in the base set of another group, and the group operation of the group is the restriction of the group operation of the other group to its base set, then the (base set of the) group is subgroup of the other group. (Contributed by AV, 14-Mar-2019.)
Hypotheses
Ref Expression
grpissubg.b 𝐵 = (Base‘𝐺)
grpissubg.s 𝑆 = (Base‘𝐻)
Assertion
Ref Expression
grpissubg ((𝐺 ∈ Grp ∧ 𝐻 ∈ Grp) → ((𝑆𝐵 ∧ (+g𝐻) = ((+g𝐺) ↾ (𝑆 × 𝑆))) → 𝑆 ∈ (SubGrp‘𝐺)))

Proof of Theorem grpissubg
Dummy variables 𝑎 𝑏 𝑥 𝑦 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpl 109 . . . 4 ((𝑆𝐵 ∧ (+g𝐻) = ((+g𝐺) ↾ (𝑆 × 𝑆))) → 𝑆𝐵)
21adantl 277 . . 3 (((𝐺 ∈ Grp ∧ 𝐻 ∈ Grp) ∧ (𝑆𝐵 ∧ (+g𝐻) = ((+g𝐺) ↾ (𝑆 × 𝑆)))) → 𝑆𝐵)
3 grpissubg.s . . . . . 6 𝑆 = (Base‘𝐻)
4 eqid 2193 . . . . . 6 (0g𝐻) = (0g𝐻)
53, 4grpidcl 13104 . . . . 5 (𝐻 ∈ Grp → (0g𝐻) ∈ 𝑆)
6 elex2 2776 . . . . 5 ((0g𝐻) ∈ 𝑆 → ∃𝑤 𝑤𝑆)
75, 6syl 14 . . . 4 (𝐻 ∈ Grp → ∃𝑤 𝑤𝑆)
87ad2antlr 489 . . 3 (((𝐺 ∈ Grp ∧ 𝐻 ∈ Grp) ∧ (𝑆𝐵 ∧ (+g𝐻) = ((+g𝐺) ↾ (𝑆 × 𝑆)))) → ∃𝑤 𝑤𝑆)
9 grpmnd 13082 . . . . . . . . . . 11 (𝐺 ∈ Grp → 𝐺 ∈ Mnd)
10 mndmgm 13006 . . . . . . . . . . 11 (𝐺 ∈ Mnd → 𝐺 ∈ Mgm)
119, 10syl 14 . . . . . . . . . 10 (𝐺 ∈ Grp → 𝐺 ∈ Mgm)
12 grpmnd 13082 . . . . . . . . . . 11 (𝐻 ∈ Grp → 𝐻 ∈ Mnd)
13 mndmgm 13006 . . . . . . . . . . 11 (𝐻 ∈ Mnd → 𝐻 ∈ Mgm)
1412, 13syl 14 . . . . . . . . . 10 (𝐻 ∈ Grp → 𝐻 ∈ Mgm)
1511, 14anim12i 338 . . . . . . . . 9 ((𝐺 ∈ Grp ∧ 𝐻 ∈ Grp) → (𝐺 ∈ Mgm ∧ 𝐻 ∈ Mgm))
1615adantr 276 . . . . . . . 8 (((𝐺 ∈ Grp ∧ 𝐻 ∈ Grp) ∧ (𝑆𝐵 ∧ (+g𝐻) = ((+g𝐺) ↾ (𝑆 × 𝑆)))) → (𝐺 ∈ Mgm ∧ 𝐻 ∈ Mgm))
1716ad2antrr 488 . . . . . . 7 (((((𝐺 ∈ Grp ∧ 𝐻 ∈ Grp) ∧ (𝑆𝐵 ∧ (+g𝐻) = ((+g𝐺) ↾ (𝑆 × 𝑆)))) ∧ 𝑎𝑆) ∧ 𝑏𝑆) → (𝐺 ∈ Mgm ∧ 𝐻 ∈ Mgm))
18 simpr 110 . . . . . . . 8 (((𝐺 ∈ Grp ∧ 𝐻 ∈ Grp) ∧ (𝑆𝐵 ∧ (+g𝐻) = ((+g𝐺) ↾ (𝑆 × 𝑆)))) → (𝑆𝐵 ∧ (+g𝐻) = ((+g𝐺) ↾ (𝑆 × 𝑆))))
1918ad2antrr 488 . . . . . . 7 (((((𝐺 ∈ Grp ∧ 𝐻 ∈ Grp) ∧ (𝑆𝐵 ∧ (+g𝐻) = ((+g𝐺) ↾ (𝑆 × 𝑆)))) ∧ 𝑎𝑆) ∧ 𝑏𝑆) → (𝑆𝐵 ∧ (+g𝐻) = ((+g𝐺) ↾ (𝑆 × 𝑆))))
20 simpr 110 . . . . . . . 8 ((((𝐺 ∈ Grp ∧ 𝐻 ∈ Grp) ∧ (𝑆𝐵 ∧ (+g𝐻) = ((+g𝐺) ↾ (𝑆 × 𝑆)))) ∧ 𝑎𝑆) → 𝑎𝑆)
2120anim1i 340 . . . . . . 7 (((((𝐺 ∈ Grp ∧ 𝐻 ∈ Grp) ∧ (𝑆𝐵 ∧ (+g𝐻) = ((+g𝐺) ↾ (𝑆 × 𝑆)))) ∧ 𝑎𝑆) ∧ 𝑏𝑆) → (𝑎𝑆𝑏𝑆))
22 grpissubg.b . . . . . . . 8 𝐵 = (Base‘𝐺)
2322, 3mgmsscl 12947 . . . . . . 7 (((𝐺 ∈ Mgm ∧ 𝐻 ∈ Mgm) ∧ (𝑆𝐵 ∧ (+g𝐻) = ((+g𝐺) ↾ (𝑆 × 𝑆))) ∧ (𝑎𝑆𝑏𝑆)) → (𝑎(+g𝐺)𝑏) ∈ 𝑆)
2417, 19, 21, 23syl3anc 1249 . . . . . 6 (((((𝐺 ∈ Grp ∧ 𝐻 ∈ Grp) ∧ (𝑆𝐵 ∧ (+g𝐻) = ((+g𝐺) ↾ (𝑆 × 𝑆)))) ∧ 𝑎𝑆) ∧ 𝑏𝑆) → (𝑎(+g𝐺)𝑏) ∈ 𝑆)
2524ralrimiva 2567 . . . . 5 ((((𝐺 ∈ Grp ∧ 𝐻 ∈ Grp) ∧ (𝑆𝐵 ∧ (+g𝐻) = ((+g𝐺) ↾ (𝑆 × 𝑆)))) ∧ 𝑎𝑆) → ∀𝑏𝑆 (𝑎(+g𝐺)𝑏) ∈ 𝑆)
26 simpl 109 . . . . . . . . 9 ((𝐺 ∈ Grp ∧ 𝐻 ∈ Grp) → 𝐺 ∈ Grp)
2726adantr 276 . . . . . . . 8 (((𝐺 ∈ Grp ∧ 𝐻 ∈ Grp) ∧ (𝑆𝐵 ∧ (+g𝐻) = ((+g𝐺) ↾ (𝑆 × 𝑆)))) → 𝐺 ∈ Grp)
28 simplr 528 . . . . . . . 8 (((𝐺 ∈ Grp ∧ 𝐻 ∈ Grp) ∧ (𝑆𝐵 ∧ (+g𝐻) = ((+g𝐺) ↾ (𝑆 × 𝑆)))) → 𝐻 ∈ Grp)
2922sseq2i 3207 . . . . . . . . . . 11 (𝑆𝐵𝑆 ⊆ (Base‘𝐺))
3029biimpi 120 . . . . . . . . . 10 (𝑆𝐵𝑆 ⊆ (Base‘𝐺))
3130adantr 276 . . . . . . . . 9 ((𝑆𝐵 ∧ (+g𝐻) = ((+g𝐺) ↾ (𝑆 × 𝑆))) → 𝑆 ⊆ (Base‘𝐺))
3231adantl 277 . . . . . . . 8 (((𝐺 ∈ Grp ∧ 𝐻 ∈ Grp) ∧ (𝑆𝐵 ∧ (+g𝐻) = ((+g𝐺) ↾ (𝑆 × 𝑆)))) → 𝑆 ⊆ (Base‘𝐺))
33 ovres 6060 . . . . . . . . . . 11 ((𝑥𝑆𝑦𝑆) → (𝑥((+g𝐺) ↾ (𝑆 × 𝑆))𝑦) = (𝑥(+g𝐺)𝑦))
3433adantl 277 . . . . . . . . . 10 ((((𝐺 ∈ Grp ∧ 𝐻 ∈ Grp) ∧ (𝑆𝐵 ∧ (+g𝐻) = ((+g𝐺) ↾ (𝑆 × 𝑆)))) ∧ (𝑥𝑆𝑦𝑆)) → (𝑥((+g𝐺) ↾ (𝑆 × 𝑆))𝑦) = (𝑥(+g𝐺)𝑦))
35 oveq 5925 . . . . . . . . . . . . 13 ((+g𝐻) = ((+g𝐺) ↾ (𝑆 × 𝑆)) → (𝑥(+g𝐻)𝑦) = (𝑥((+g𝐺) ↾ (𝑆 × 𝑆))𝑦))
3635adantl 277 . . . . . . . . . . . 12 ((𝑆𝐵 ∧ (+g𝐻) = ((+g𝐺) ↾ (𝑆 × 𝑆))) → (𝑥(+g𝐻)𝑦) = (𝑥((+g𝐺) ↾ (𝑆 × 𝑆))𝑦))
3736eqcomd 2199 . . . . . . . . . . 11 ((𝑆𝐵 ∧ (+g𝐻) = ((+g𝐺) ↾ (𝑆 × 𝑆))) → (𝑥((+g𝐺) ↾ (𝑆 × 𝑆))𝑦) = (𝑥(+g𝐻)𝑦))
3837ad2antlr 489 . . . . . . . . . 10 ((((𝐺 ∈ Grp ∧ 𝐻 ∈ Grp) ∧ (𝑆𝐵 ∧ (+g𝐻) = ((+g𝐺) ↾ (𝑆 × 𝑆)))) ∧ (𝑥𝑆𝑦𝑆)) → (𝑥((+g𝐺) ↾ (𝑆 × 𝑆))𝑦) = (𝑥(+g𝐻)𝑦))
3934, 38eqtr3d 2228 . . . . . . . . 9 ((((𝐺 ∈ Grp ∧ 𝐻 ∈ Grp) ∧ (𝑆𝐵 ∧ (+g𝐻) = ((+g𝐺) ↾ (𝑆 × 𝑆)))) ∧ (𝑥𝑆𝑦𝑆)) → (𝑥(+g𝐺)𝑦) = (𝑥(+g𝐻)𝑦))
4039ralrimivva 2576 . . . . . . . 8 (((𝐺 ∈ Grp ∧ 𝐻 ∈ Grp) ∧ (𝑆𝐵 ∧ (+g𝐻) = ((+g𝐺) ↾ (𝑆 × 𝑆)))) → ∀𝑥𝑆𝑦𝑆 (𝑥(+g𝐺)𝑦) = (𝑥(+g𝐻)𝑦))
4127, 28, 3, 32, 40grpinvssd 13152 . . . . . . 7 (((𝐺 ∈ Grp ∧ 𝐻 ∈ Grp) ∧ (𝑆𝐵 ∧ (+g𝐻) = ((+g𝐺) ↾ (𝑆 × 𝑆)))) → (𝑎𝑆 → ((invg𝐻)‘𝑎) = ((invg𝐺)‘𝑎)))
4241imp 124 . . . . . 6 ((((𝐺 ∈ Grp ∧ 𝐻 ∈ Grp) ∧ (𝑆𝐵 ∧ (+g𝐻) = ((+g𝐺) ↾ (𝑆 × 𝑆)))) ∧ 𝑎𝑆) → ((invg𝐻)‘𝑎) = ((invg𝐺)‘𝑎))
43 eqid 2193 . . . . . . . 8 (invg𝐻) = (invg𝐻)
443, 43grpinvcl 13123 . . . . . . 7 ((𝐻 ∈ Grp ∧ 𝑎𝑆) → ((invg𝐻)‘𝑎) ∈ 𝑆)
4544ad4ant24 516 . . . . . 6 ((((𝐺 ∈ Grp ∧ 𝐻 ∈ Grp) ∧ (𝑆𝐵 ∧ (+g𝐻) = ((+g𝐺) ↾ (𝑆 × 𝑆)))) ∧ 𝑎𝑆) → ((invg𝐻)‘𝑎) ∈ 𝑆)
4642, 45eqeltrrd 2271 . . . . 5 ((((𝐺 ∈ Grp ∧ 𝐻 ∈ Grp) ∧ (𝑆𝐵 ∧ (+g𝐻) = ((+g𝐺) ↾ (𝑆 × 𝑆)))) ∧ 𝑎𝑆) → ((invg𝐺)‘𝑎) ∈ 𝑆)
4725, 46jca 306 . . . 4 ((((𝐺 ∈ Grp ∧ 𝐻 ∈ Grp) ∧ (𝑆𝐵 ∧ (+g𝐻) = ((+g𝐺) ↾ (𝑆 × 𝑆)))) ∧ 𝑎𝑆) → (∀𝑏𝑆 (𝑎(+g𝐺)𝑏) ∈ 𝑆 ∧ ((invg𝐺)‘𝑎) ∈ 𝑆))
4847ralrimiva 2567 . . 3 (((𝐺 ∈ Grp ∧ 𝐻 ∈ Grp) ∧ (𝑆𝐵 ∧ (+g𝐻) = ((+g𝐺) ↾ (𝑆 × 𝑆)))) → ∀𝑎𝑆 (∀𝑏𝑆 (𝑎(+g𝐺)𝑏) ∈ 𝑆 ∧ ((invg𝐺)‘𝑎) ∈ 𝑆))
49 eqid 2193 . . . . 5 (+g𝐺) = (+g𝐺)
50 eqid 2193 . . . . 5 (invg𝐺) = (invg𝐺)
5122, 49, 50issubg2m 13262 . . . 4 (𝐺 ∈ Grp → (𝑆 ∈ (SubGrp‘𝐺) ↔ (𝑆𝐵 ∧ ∃𝑤 𝑤𝑆 ∧ ∀𝑎𝑆 (∀𝑏𝑆 (𝑎(+g𝐺)𝑏) ∈ 𝑆 ∧ ((invg𝐺)‘𝑎) ∈ 𝑆))))
5251ad2antrr 488 . . 3 (((𝐺 ∈ Grp ∧ 𝐻 ∈ Grp) ∧ (𝑆𝐵 ∧ (+g𝐻) = ((+g𝐺) ↾ (𝑆 × 𝑆)))) → (𝑆 ∈ (SubGrp‘𝐺) ↔ (𝑆𝐵 ∧ ∃𝑤 𝑤𝑆 ∧ ∀𝑎𝑆 (∀𝑏𝑆 (𝑎(+g𝐺)𝑏) ∈ 𝑆 ∧ ((invg𝐺)‘𝑎) ∈ 𝑆))))
532, 8, 48, 52mpbir3and 1182 . 2 (((𝐺 ∈ Grp ∧ 𝐻 ∈ Grp) ∧ (𝑆𝐵 ∧ (+g𝐻) = ((+g𝐺) ↾ (𝑆 × 𝑆)))) → 𝑆 ∈ (SubGrp‘𝐺))
5453ex 115 1 ((𝐺 ∈ Grp ∧ 𝐻 ∈ Grp) → ((𝑆𝐵 ∧ (+g𝐻) = ((+g𝐺) ↾ (𝑆 × 𝑆))) → 𝑆 ∈ (SubGrp‘𝐺)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  w3a 980   = wceq 1364  wex 1503  wcel 2164  wral 2472  wss 3154   × cxp 4658  cres 4662  cfv 5255  (class class class)co 5919  Basecbs 12621  +gcplusg 12698  0gc0g 12870  Mgmcmgm 12940  Mndcmnd 13000  Grpcgrp 13075  invgcminusg 13076  SubGrpcsubg 13240
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4145  ax-sep 4148  ax-pow 4204  ax-pr 4239  ax-un 4465  ax-setind 4570  ax-cnex 7965  ax-resscn 7966  ax-1cn 7967  ax-1re 7968  ax-icn 7969  ax-addcl 7970  ax-addrcl 7971  ax-mulcl 7972  ax-addcom 7974  ax-addass 7976  ax-i2m1 7979  ax-0lt1 7980  ax-0id 7982  ax-rnegex 7983  ax-pre-ltirr 7986  ax-pre-ltadd 7990
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rmo 2480  df-rab 2481  df-v 2762  df-sbc 2987  df-csb 3082  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-nul 3448  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-int 3872  df-iun 3915  df-br 4031  df-opab 4092  df-mpt 4093  df-id 4325  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-rn 4671  df-res 4672  df-ima 4673  df-iota 5216  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-riota 5874  df-ov 5922  df-oprab 5923  df-mpo 5924  df-pnf 8058  df-mnf 8059  df-ltxr 8061  df-inn 8985  df-2 9043  df-ndx 12624  df-slot 12625  df-base 12627  df-sets 12628  df-iress 12629  df-plusg 12711  df-0g 12872  df-mgm 12942  df-sgrp 12988  df-mnd 13001  df-grp 13078  df-minusg 13079  df-subg 13243
This theorem is referenced by:  resgrpisgrp  13268
  Copyright terms: Public domain W3C validator