ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  grpissubg GIF version

Theorem grpissubg 13402
Description: If the base set of a group is contained in the base set of another group, and the group operation of the group is the restriction of the group operation of the other group to its base set, then the (base set of the) group is subgroup of the other group. (Contributed by AV, 14-Mar-2019.)
Hypotheses
Ref Expression
grpissubg.b 𝐵 = (Base‘𝐺)
grpissubg.s 𝑆 = (Base‘𝐻)
Assertion
Ref Expression
grpissubg ((𝐺 ∈ Grp ∧ 𝐻 ∈ Grp) → ((𝑆𝐵 ∧ (+g𝐻) = ((+g𝐺) ↾ (𝑆 × 𝑆))) → 𝑆 ∈ (SubGrp‘𝐺)))

Proof of Theorem grpissubg
Dummy variables 𝑎 𝑏 𝑥 𝑦 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpl 109 . . . 4 ((𝑆𝐵 ∧ (+g𝐻) = ((+g𝐺) ↾ (𝑆 × 𝑆))) → 𝑆𝐵)
21adantl 277 . . 3 (((𝐺 ∈ Grp ∧ 𝐻 ∈ Grp) ∧ (𝑆𝐵 ∧ (+g𝐻) = ((+g𝐺) ↾ (𝑆 × 𝑆)))) → 𝑆𝐵)
3 grpissubg.s . . . . . 6 𝑆 = (Base‘𝐻)
4 eqid 2196 . . . . . 6 (0g𝐻) = (0g𝐻)
53, 4grpidcl 13233 . . . . 5 (𝐻 ∈ Grp → (0g𝐻) ∈ 𝑆)
6 elex2 2779 . . . . 5 ((0g𝐻) ∈ 𝑆 → ∃𝑤 𝑤𝑆)
75, 6syl 14 . . . 4 (𝐻 ∈ Grp → ∃𝑤 𝑤𝑆)
87ad2antlr 489 . . 3 (((𝐺 ∈ Grp ∧ 𝐻 ∈ Grp) ∧ (𝑆𝐵 ∧ (+g𝐻) = ((+g𝐺) ↾ (𝑆 × 𝑆)))) → ∃𝑤 𝑤𝑆)
9 grpmnd 13211 . . . . . . . . . . 11 (𝐺 ∈ Grp → 𝐺 ∈ Mnd)
10 mndmgm 13126 . . . . . . . . . . 11 (𝐺 ∈ Mnd → 𝐺 ∈ Mgm)
119, 10syl 14 . . . . . . . . . 10 (𝐺 ∈ Grp → 𝐺 ∈ Mgm)
12 grpmnd 13211 . . . . . . . . . . 11 (𝐻 ∈ Grp → 𝐻 ∈ Mnd)
13 mndmgm 13126 . . . . . . . . . . 11 (𝐻 ∈ Mnd → 𝐻 ∈ Mgm)
1412, 13syl 14 . . . . . . . . . 10 (𝐻 ∈ Grp → 𝐻 ∈ Mgm)
1511, 14anim12i 338 . . . . . . . . 9 ((𝐺 ∈ Grp ∧ 𝐻 ∈ Grp) → (𝐺 ∈ Mgm ∧ 𝐻 ∈ Mgm))
1615adantr 276 . . . . . . . 8 (((𝐺 ∈ Grp ∧ 𝐻 ∈ Grp) ∧ (𝑆𝐵 ∧ (+g𝐻) = ((+g𝐺) ↾ (𝑆 × 𝑆)))) → (𝐺 ∈ Mgm ∧ 𝐻 ∈ Mgm))
1716ad2antrr 488 . . . . . . 7 (((((𝐺 ∈ Grp ∧ 𝐻 ∈ Grp) ∧ (𝑆𝐵 ∧ (+g𝐻) = ((+g𝐺) ↾ (𝑆 × 𝑆)))) ∧ 𝑎𝑆) ∧ 𝑏𝑆) → (𝐺 ∈ Mgm ∧ 𝐻 ∈ Mgm))
18 simpr 110 . . . . . . . 8 (((𝐺 ∈ Grp ∧ 𝐻 ∈ Grp) ∧ (𝑆𝐵 ∧ (+g𝐻) = ((+g𝐺) ↾ (𝑆 × 𝑆)))) → (𝑆𝐵 ∧ (+g𝐻) = ((+g𝐺) ↾ (𝑆 × 𝑆))))
1918ad2antrr 488 . . . . . . 7 (((((𝐺 ∈ Grp ∧ 𝐻 ∈ Grp) ∧ (𝑆𝐵 ∧ (+g𝐻) = ((+g𝐺) ↾ (𝑆 × 𝑆)))) ∧ 𝑎𝑆) ∧ 𝑏𝑆) → (𝑆𝐵 ∧ (+g𝐻) = ((+g𝐺) ↾ (𝑆 × 𝑆))))
20 simpr 110 . . . . . . . 8 ((((𝐺 ∈ Grp ∧ 𝐻 ∈ Grp) ∧ (𝑆𝐵 ∧ (+g𝐻) = ((+g𝐺) ↾ (𝑆 × 𝑆)))) ∧ 𝑎𝑆) → 𝑎𝑆)
2120anim1i 340 . . . . . . 7 (((((𝐺 ∈ Grp ∧ 𝐻 ∈ Grp) ∧ (𝑆𝐵 ∧ (+g𝐻) = ((+g𝐺) ↾ (𝑆 × 𝑆)))) ∧ 𝑎𝑆) ∧ 𝑏𝑆) → (𝑎𝑆𝑏𝑆))
22 grpissubg.b . . . . . . . 8 𝐵 = (Base‘𝐺)
2322, 3mgmsscl 13065 . . . . . . 7 (((𝐺 ∈ Mgm ∧ 𝐻 ∈ Mgm) ∧ (𝑆𝐵 ∧ (+g𝐻) = ((+g𝐺) ↾ (𝑆 × 𝑆))) ∧ (𝑎𝑆𝑏𝑆)) → (𝑎(+g𝐺)𝑏) ∈ 𝑆)
2417, 19, 21, 23syl3anc 1249 . . . . . 6 (((((𝐺 ∈ Grp ∧ 𝐻 ∈ Grp) ∧ (𝑆𝐵 ∧ (+g𝐻) = ((+g𝐺) ↾ (𝑆 × 𝑆)))) ∧ 𝑎𝑆) ∧ 𝑏𝑆) → (𝑎(+g𝐺)𝑏) ∈ 𝑆)
2524ralrimiva 2570 . . . . 5 ((((𝐺 ∈ Grp ∧ 𝐻 ∈ Grp) ∧ (𝑆𝐵 ∧ (+g𝐻) = ((+g𝐺) ↾ (𝑆 × 𝑆)))) ∧ 𝑎𝑆) → ∀𝑏𝑆 (𝑎(+g𝐺)𝑏) ∈ 𝑆)
26 simpl 109 . . . . . . . . 9 ((𝐺 ∈ Grp ∧ 𝐻 ∈ Grp) → 𝐺 ∈ Grp)
2726adantr 276 . . . . . . . 8 (((𝐺 ∈ Grp ∧ 𝐻 ∈ Grp) ∧ (𝑆𝐵 ∧ (+g𝐻) = ((+g𝐺) ↾ (𝑆 × 𝑆)))) → 𝐺 ∈ Grp)
28 simplr 528 . . . . . . . 8 (((𝐺 ∈ Grp ∧ 𝐻 ∈ Grp) ∧ (𝑆𝐵 ∧ (+g𝐻) = ((+g𝐺) ↾ (𝑆 × 𝑆)))) → 𝐻 ∈ Grp)
2922sseq2i 3211 . . . . . . . . . . 11 (𝑆𝐵𝑆 ⊆ (Base‘𝐺))
3029biimpi 120 . . . . . . . . . 10 (𝑆𝐵𝑆 ⊆ (Base‘𝐺))
3130adantr 276 . . . . . . . . 9 ((𝑆𝐵 ∧ (+g𝐻) = ((+g𝐺) ↾ (𝑆 × 𝑆))) → 𝑆 ⊆ (Base‘𝐺))
3231adantl 277 . . . . . . . 8 (((𝐺 ∈ Grp ∧ 𝐻 ∈ Grp) ∧ (𝑆𝐵 ∧ (+g𝐻) = ((+g𝐺) ↾ (𝑆 × 𝑆)))) → 𝑆 ⊆ (Base‘𝐺))
33 ovres 6067 . . . . . . . . . . 11 ((𝑥𝑆𝑦𝑆) → (𝑥((+g𝐺) ↾ (𝑆 × 𝑆))𝑦) = (𝑥(+g𝐺)𝑦))
3433adantl 277 . . . . . . . . . 10 ((((𝐺 ∈ Grp ∧ 𝐻 ∈ Grp) ∧ (𝑆𝐵 ∧ (+g𝐻) = ((+g𝐺) ↾ (𝑆 × 𝑆)))) ∧ (𝑥𝑆𝑦𝑆)) → (𝑥((+g𝐺) ↾ (𝑆 × 𝑆))𝑦) = (𝑥(+g𝐺)𝑦))
35 oveq 5931 . . . . . . . . . . . . 13 ((+g𝐻) = ((+g𝐺) ↾ (𝑆 × 𝑆)) → (𝑥(+g𝐻)𝑦) = (𝑥((+g𝐺) ↾ (𝑆 × 𝑆))𝑦))
3635adantl 277 . . . . . . . . . . . 12 ((𝑆𝐵 ∧ (+g𝐻) = ((+g𝐺) ↾ (𝑆 × 𝑆))) → (𝑥(+g𝐻)𝑦) = (𝑥((+g𝐺) ↾ (𝑆 × 𝑆))𝑦))
3736eqcomd 2202 . . . . . . . . . . 11 ((𝑆𝐵 ∧ (+g𝐻) = ((+g𝐺) ↾ (𝑆 × 𝑆))) → (𝑥((+g𝐺) ↾ (𝑆 × 𝑆))𝑦) = (𝑥(+g𝐻)𝑦))
3837ad2antlr 489 . . . . . . . . . 10 ((((𝐺 ∈ Grp ∧ 𝐻 ∈ Grp) ∧ (𝑆𝐵 ∧ (+g𝐻) = ((+g𝐺) ↾ (𝑆 × 𝑆)))) ∧ (𝑥𝑆𝑦𝑆)) → (𝑥((+g𝐺) ↾ (𝑆 × 𝑆))𝑦) = (𝑥(+g𝐻)𝑦))
3934, 38eqtr3d 2231 . . . . . . . . 9 ((((𝐺 ∈ Grp ∧ 𝐻 ∈ Grp) ∧ (𝑆𝐵 ∧ (+g𝐻) = ((+g𝐺) ↾ (𝑆 × 𝑆)))) ∧ (𝑥𝑆𝑦𝑆)) → (𝑥(+g𝐺)𝑦) = (𝑥(+g𝐻)𝑦))
4039ralrimivva 2579 . . . . . . . 8 (((𝐺 ∈ Grp ∧ 𝐻 ∈ Grp) ∧ (𝑆𝐵 ∧ (+g𝐻) = ((+g𝐺) ↾ (𝑆 × 𝑆)))) → ∀𝑥𝑆𝑦𝑆 (𝑥(+g𝐺)𝑦) = (𝑥(+g𝐻)𝑦))
4127, 28, 3, 32, 40grpinvssd 13281 . . . . . . 7 (((𝐺 ∈ Grp ∧ 𝐻 ∈ Grp) ∧ (𝑆𝐵 ∧ (+g𝐻) = ((+g𝐺) ↾ (𝑆 × 𝑆)))) → (𝑎𝑆 → ((invg𝐻)‘𝑎) = ((invg𝐺)‘𝑎)))
4241imp 124 . . . . . 6 ((((𝐺 ∈ Grp ∧ 𝐻 ∈ Grp) ∧ (𝑆𝐵 ∧ (+g𝐻) = ((+g𝐺) ↾ (𝑆 × 𝑆)))) ∧ 𝑎𝑆) → ((invg𝐻)‘𝑎) = ((invg𝐺)‘𝑎))
43 eqid 2196 . . . . . . . 8 (invg𝐻) = (invg𝐻)
443, 43grpinvcl 13252 . . . . . . 7 ((𝐻 ∈ Grp ∧ 𝑎𝑆) → ((invg𝐻)‘𝑎) ∈ 𝑆)
4544ad4ant24 516 . . . . . 6 ((((𝐺 ∈ Grp ∧ 𝐻 ∈ Grp) ∧ (𝑆𝐵 ∧ (+g𝐻) = ((+g𝐺) ↾ (𝑆 × 𝑆)))) ∧ 𝑎𝑆) → ((invg𝐻)‘𝑎) ∈ 𝑆)
4642, 45eqeltrrd 2274 . . . . 5 ((((𝐺 ∈ Grp ∧ 𝐻 ∈ Grp) ∧ (𝑆𝐵 ∧ (+g𝐻) = ((+g𝐺) ↾ (𝑆 × 𝑆)))) ∧ 𝑎𝑆) → ((invg𝐺)‘𝑎) ∈ 𝑆)
4725, 46jca 306 . . . 4 ((((𝐺 ∈ Grp ∧ 𝐻 ∈ Grp) ∧ (𝑆𝐵 ∧ (+g𝐻) = ((+g𝐺) ↾ (𝑆 × 𝑆)))) ∧ 𝑎𝑆) → (∀𝑏𝑆 (𝑎(+g𝐺)𝑏) ∈ 𝑆 ∧ ((invg𝐺)‘𝑎) ∈ 𝑆))
4847ralrimiva 2570 . . 3 (((𝐺 ∈ Grp ∧ 𝐻 ∈ Grp) ∧ (𝑆𝐵 ∧ (+g𝐻) = ((+g𝐺) ↾ (𝑆 × 𝑆)))) → ∀𝑎𝑆 (∀𝑏𝑆 (𝑎(+g𝐺)𝑏) ∈ 𝑆 ∧ ((invg𝐺)‘𝑎) ∈ 𝑆))
49 eqid 2196 . . . . 5 (+g𝐺) = (+g𝐺)
50 eqid 2196 . . . . 5 (invg𝐺) = (invg𝐺)
5122, 49, 50issubg2m 13397 . . . 4 (𝐺 ∈ Grp → (𝑆 ∈ (SubGrp‘𝐺) ↔ (𝑆𝐵 ∧ ∃𝑤 𝑤𝑆 ∧ ∀𝑎𝑆 (∀𝑏𝑆 (𝑎(+g𝐺)𝑏) ∈ 𝑆 ∧ ((invg𝐺)‘𝑎) ∈ 𝑆))))
5251ad2antrr 488 . . 3 (((𝐺 ∈ Grp ∧ 𝐻 ∈ Grp) ∧ (𝑆𝐵 ∧ (+g𝐻) = ((+g𝐺) ↾ (𝑆 × 𝑆)))) → (𝑆 ∈ (SubGrp‘𝐺) ↔ (𝑆𝐵 ∧ ∃𝑤 𝑤𝑆 ∧ ∀𝑎𝑆 (∀𝑏𝑆 (𝑎(+g𝐺)𝑏) ∈ 𝑆 ∧ ((invg𝐺)‘𝑎) ∈ 𝑆))))
532, 8, 48, 52mpbir3and 1182 . 2 (((𝐺 ∈ Grp ∧ 𝐻 ∈ Grp) ∧ (𝑆𝐵 ∧ (+g𝐻) = ((+g𝐺) ↾ (𝑆 × 𝑆)))) → 𝑆 ∈ (SubGrp‘𝐺))
5453ex 115 1 ((𝐺 ∈ Grp ∧ 𝐻 ∈ Grp) → ((𝑆𝐵 ∧ (+g𝐻) = ((+g𝐺) ↾ (𝑆 × 𝑆))) → 𝑆 ∈ (SubGrp‘𝐺)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  w3a 980   = wceq 1364  wex 1506  wcel 2167  wral 2475  wss 3157   × cxp 4662  cres 4666  cfv 5259  (class class class)co 5925  Basecbs 12705  +gcplusg 12782  0gc0g 12960  Mgmcmgm 13058  Mndcmnd 13120  Grpcgrp 13204  invgcminusg 13205  SubGrpcsubg 13375
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4149  ax-sep 4152  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-cnex 7989  ax-resscn 7990  ax-1cn 7991  ax-1re 7992  ax-icn 7993  ax-addcl 7994  ax-addrcl 7995  ax-mulcl 7996  ax-addcom 7998  ax-addass 8000  ax-i2m1 8003  ax-0lt1 8004  ax-0id 8006  ax-rnegex 8007  ax-pre-ltirr 8010  ax-pre-ltadd 8014
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3452  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-iun 3919  df-br 4035  df-opab 4096  df-mpt 4097  df-id 4329  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-f1 5264  df-fo 5265  df-f1o 5266  df-fv 5267  df-riota 5880  df-ov 5928  df-oprab 5929  df-mpo 5930  df-pnf 8082  df-mnf 8083  df-ltxr 8085  df-inn 9010  df-2 9068  df-ndx 12708  df-slot 12709  df-base 12711  df-sets 12712  df-iress 12713  df-plusg 12795  df-0g 12962  df-mgm 13060  df-sgrp 13106  df-mnd 13121  df-grp 13207  df-minusg 13208  df-subg 13378
This theorem is referenced by:  resgrpisgrp  13403
  Copyright terms: Public domain W3C validator