Users' Mathboxes Mathbox for Jim Kingdon < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  supfz GIF version

Theorem supfz 16125
Description: The supremum of a finite sequence of integers. (Contributed by Scott Fenton, 8-Aug-2013.) (Revised by Jim Kingdon, 15-Oct-2022.)
Assertion
Ref Expression
supfz (𝑁 ∈ (ℤ𝑀) → sup((𝑀...𝑁), ℤ, < ) = 𝑁)

Proof of Theorem supfz
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simprl 529 . . . 4 ((𝑁 ∈ (ℤ𝑀) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → 𝑥 ∈ ℤ)
21zred 9508 . . 3 ((𝑁 ∈ (ℤ𝑀) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → 𝑥 ∈ ℝ)
3 simprr 531 . . . 4 ((𝑁 ∈ (ℤ𝑀) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → 𝑦 ∈ ℤ)
43zred 9508 . . 3 ((𝑁 ∈ (ℤ𝑀) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → 𝑦 ∈ ℝ)
52, 4lttri3d 8200 . 2 ((𝑁 ∈ (ℤ𝑀) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → (𝑥 = 𝑦 ↔ (¬ 𝑥 < 𝑦 ∧ ¬ 𝑦 < 𝑥)))
6 eluzelz 9670 . 2 (𝑁 ∈ (ℤ𝑀) → 𝑁 ∈ ℤ)
7 eluzfz2 10167 . 2 (𝑁 ∈ (ℤ𝑀) → 𝑁 ∈ (𝑀...𝑁))
8 elfzle2 10163 . . . 4 (𝑧 ∈ (𝑀...𝑁) → 𝑧𝑁)
98adantl 277 . . 3 ((𝑁 ∈ (ℤ𝑀) ∧ 𝑧 ∈ (𝑀...𝑁)) → 𝑧𝑁)
10 elfzelz 10160 . . . . 5 (𝑧 ∈ (𝑀...𝑁) → 𝑧 ∈ ℤ)
1110zred 9508 . . . 4 (𝑧 ∈ (𝑀...𝑁) → 𝑧 ∈ ℝ)
126zred 9508 . . . 4 (𝑁 ∈ (ℤ𝑀) → 𝑁 ∈ ℝ)
13 lenlt 8161 . . . 4 ((𝑧 ∈ ℝ ∧ 𝑁 ∈ ℝ) → (𝑧𝑁 ↔ ¬ 𝑁 < 𝑧))
1411, 12, 13syl2anr 290 . . 3 ((𝑁 ∈ (ℤ𝑀) ∧ 𝑧 ∈ (𝑀...𝑁)) → (𝑧𝑁 ↔ ¬ 𝑁 < 𝑧))
159, 14mpbid 147 . 2 ((𝑁 ∈ (ℤ𝑀) ∧ 𝑧 ∈ (𝑀...𝑁)) → ¬ 𝑁 < 𝑧)
165, 6, 7, 15supmaxti 7118 1 (𝑁 ∈ (ℤ𝑀) → sup((𝑀...𝑁), ℤ, < ) = 𝑁)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wb 105   = wceq 1373  wcel 2177   class class class wbr 4048  cfv 5277  (class class class)co 5954  supcsup 7096  cr 7937   < clt 8120  cle 8121  cz 9385  cuz 9661  ...cfz 10143
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-sep 4167  ax-pow 4223  ax-pr 4258  ax-un 4485  ax-setind 4590  ax-cnex 8029  ax-resscn 8030  ax-pre-ltirr 8050  ax-pre-apti 8053
This theorem depends on definitions:  df-bi 117  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-nel 2473  df-ral 2490  df-rex 2491  df-reu 2492  df-rmo 2493  df-rab 2494  df-v 2775  df-sbc 3001  df-dif 3170  df-un 3172  df-in 3174  df-ss 3181  df-pw 3620  df-sn 3641  df-pr 3642  df-op 3644  df-uni 3854  df-br 4049  df-opab 4111  df-mpt 4112  df-id 4345  df-xp 4686  df-rel 4687  df-cnv 4688  df-co 4689  df-dm 4690  df-rn 4691  df-res 4692  df-ima 4693  df-iota 5238  df-fun 5279  df-fn 5280  df-f 5281  df-fv 5285  df-riota 5909  df-ov 5957  df-oprab 5958  df-mpo 5959  df-sup 7098  df-pnf 8122  df-mnf 8123  df-xr 8124  df-ltxr 8125  df-le 8126  df-neg 8259  df-z 9386  df-uz 9662  df-fz 10144
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator