Users' Mathboxes Mathbox for Jim Kingdon < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  supfz GIF version

Theorem supfz 15173
Description: The supremum of a finite sequence of integers. (Contributed by Scott Fenton, 8-Aug-2013.) (Revised by Jim Kingdon, 15-Oct-2022.)
Assertion
Ref Expression
supfz (𝑁 ∈ (ℤ𝑀) → sup((𝑀...𝑁), ℤ, < ) = 𝑁)

Proof of Theorem supfz
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simprl 529 . . . 4 ((𝑁 ∈ (ℤ𝑀) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → 𝑥 ∈ ℤ)
21zred 9389 . . 3 ((𝑁 ∈ (ℤ𝑀) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → 𝑥 ∈ ℝ)
3 simprr 531 . . . 4 ((𝑁 ∈ (ℤ𝑀) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → 𝑦 ∈ ℤ)
43zred 9389 . . 3 ((𝑁 ∈ (ℤ𝑀) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → 𝑦 ∈ ℝ)
52, 4lttri3d 8086 . 2 ((𝑁 ∈ (ℤ𝑀) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → (𝑥 = 𝑦 ↔ (¬ 𝑥 < 𝑦 ∧ ¬ 𝑦 < 𝑥)))
6 eluzelz 9551 . 2 (𝑁 ∈ (ℤ𝑀) → 𝑁 ∈ ℤ)
7 eluzfz2 10046 . 2 (𝑁 ∈ (ℤ𝑀) → 𝑁 ∈ (𝑀...𝑁))
8 elfzle2 10042 . . . 4 (𝑧 ∈ (𝑀...𝑁) → 𝑧𝑁)
98adantl 277 . . 3 ((𝑁 ∈ (ℤ𝑀) ∧ 𝑧 ∈ (𝑀...𝑁)) → 𝑧𝑁)
10 elfzelz 10039 . . . . 5 (𝑧 ∈ (𝑀...𝑁) → 𝑧 ∈ ℤ)
1110zred 9389 . . . 4 (𝑧 ∈ (𝑀...𝑁) → 𝑧 ∈ ℝ)
126zred 9389 . . . 4 (𝑁 ∈ (ℤ𝑀) → 𝑁 ∈ ℝ)
13 lenlt 8047 . . . 4 ((𝑧 ∈ ℝ ∧ 𝑁 ∈ ℝ) → (𝑧𝑁 ↔ ¬ 𝑁 < 𝑧))
1411, 12, 13syl2anr 290 . . 3 ((𝑁 ∈ (ℤ𝑀) ∧ 𝑧 ∈ (𝑀...𝑁)) → (𝑧𝑁 ↔ ¬ 𝑁 < 𝑧))
159, 14mpbid 147 . 2 ((𝑁 ∈ (ℤ𝑀) ∧ 𝑧 ∈ (𝑀...𝑁)) → ¬ 𝑁 < 𝑧)
165, 6, 7, 15supmaxti 7017 1 (𝑁 ∈ (ℤ𝑀) → sup((𝑀...𝑁), ℤ, < ) = 𝑁)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wb 105   = wceq 1363  wcel 2158   class class class wbr 4015  cfv 5228  (class class class)co 5888  supcsup 6995  cr 7824   < clt 8006  cle 8007  cz 9267  cuz 9542  ...cfz 10022
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1457  ax-7 1458  ax-gen 1459  ax-ie1 1503  ax-ie2 1504  ax-8 1514  ax-10 1515  ax-11 1516  ax-i12 1517  ax-bndl 1519  ax-4 1520  ax-17 1536  ax-i9 1540  ax-ial 1544  ax-i5r 1545  ax-13 2160  ax-14 2161  ax-ext 2169  ax-sep 4133  ax-pow 4186  ax-pr 4221  ax-un 4445  ax-setind 4548  ax-cnex 7916  ax-resscn 7917  ax-pre-ltirr 7937  ax-pre-apti 7940
This theorem depends on definitions:  df-bi 117  df-3or 980  df-3an 981  df-tru 1366  df-fal 1369  df-nf 1471  df-sb 1773  df-eu 2039  df-mo 2040  df-clab 2174  df-cleq 2180  df-clel 2183  df-nfc 2318  df-ne 2358  df-nel 2453  df-ral 2470  df-rex 2471  df-reu 2472  df-rmo 2473  df-rab 2474  df-v 2751  df-sbc 2975  df-dif 3143  df-un 3145  df-in 3147  df-ss 3154  df-pw 3589  df-sn 3610  df-pr 3611  df-op 3613  df-uni 3822  df-br 4016  df-opab 4077  df-mpt 4078  df-id 4305  df-xp 4644  df-rel 4645  df-cnv 4646  df-co 4647  df-dm 4648  df-rn 4649  df-res 4650  df-ima 4651  df-iota 5190  df-fun 5230  df-fn 5231  df-f 5232  df-fv 5236  df-riota 5844  df-ov 5891  df-oprab 5892  df-mpo 5893  df-sup 6997  df-pnf 8008  df-mnf 8009  df-xr 8010  df-ltxr 8011  df-le 8012  df-neg 8145  df-z 9268  df-uz 9543  df-fz 10023
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator