Mathbox for Jim Kingdon |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > Mathboxes > supfz | GIF version |
Description: The supremum of a finite sequence of integers. (Contributed by Scott Fenton, 8-Aug-2013.) (Revised by Jim Kingdon, 15-Oct-2022.) |
Ref | Expression |
---|---|
supfz | ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → sup((𝑀...𝑁), ℤ, < ) = 𝑁) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simprl 526 | . . . 4 ⊢ ((𝑁 ∈ (ℤ≥‘𝑀) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → 𝑥 ∈ ℤ) | |
2 | 1 | zred 9327 | . . 3 ⊢ ((𝑁 ∈ (ℤ≥‘𝑀) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → 𝑥 ∈ ℝ) |
3 | simprr 527 | . . . 4 ⊢ ((𝑁 ∈ (ℤ≥‘𝑀) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → 𝑦 ∈ ℤ) | |
4 | 3 | zred 9327 | . . 3 ⊢ ((𝑁 ∈ (ℤ≥‘𝑀) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → 𝑦 ∈ ℝ) |
5 | 2, 4 | lttri3d 8027 | . 2 ⊢ ((𝑁 ∈ (ℤ≥‘𝑀) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → (𝑥 = 𝑦 ↔ (¬ 𝑥 < 𝑦 ∧ ¬ 𝑦 < 𝑥))) |
6 | eluzelz 9489 | . 2 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → 𝑁 ∈ ℤ) | |
7 | eluzfz2 9981 | . 2 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → 𝑁 ∈ (𝑀...𝑁)) | |
8 | elfzle2 9977 | . . . 4 ⊢ (𝑧 ∈ (𝑀...𝑁) → 𝑧 ≤ 𝑁) | |
9 | 8 | adantl 275 | . . 3 ⊢ ((𝑁 ∈ (ℤ≥‘𝑀) ∧ 𝑧 ∈ (𝑀...𝑁)) → 𝑧 ≤ 𝑁) |
10 | elfzelz 9974 | . . . . 5 ⊢ (𝑧 ∈ (𝑀...𝑁) → 𝑧 ∈ ℤ) | |
11 | 10 | zred 9327 | . . . 4 ⊢ (𝑧 ∈ (𝑀...𝑁) → 𝑧 ∈ ℝ) |
12 | 6 | zred 9327 | . . . 4 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → 𝑁 ∈ ℝ) |
13 | lenlt 7988 | . . . 4 ⊢ ((𝑧 ∈ ℝ ∧ 𝑁 ∈ ℝ) → (𝑧 ≤ 𝑁 ↔ ¬ 𝑁 < 𝑧)) | |
14 | 11, 12, 13 | syl2anr 288 | . . 3 ⊢ ((𝑁 ∈ (ℤ≥‘𝑀) ∧ 𝑧 ∈ (𝑀...𝑁)) → (𝑧 ≤ 𝑁 ↔ ¬ 𝑁 < 𝑧)) |
15 | 9, 14 | mpbid 146 | . 2 ⊢ ((𝑁 ∈ (ℤ≥‘𝑀) ∧ 𝑧 ∈ (𝑀...𝑁)) → ¬ 𝑁 < 𝑧) |
16 | 5, 6, 7, 15 | supmaxti 6979 | 1 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → sup((𝑀...𝑁), ℤ, < ) = 𝑁) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 103 ↔ wb 104 = wceq 1348 ∈ wcel 2141 class class class wbr 3987 ‘cfv 5196 (class class class)co 5851 supcsup 6957 ℝcr 7766 < clt 7947 ≤ cle 7948 ℤcz 9205 ℤ≥cuz 9480 ...cfz 9958 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-sep 4105 ax-pow 4158 ax-pr 4192 ax-un 4416 ax-setind 4519 ax-cnex 7858 ax-resscn 7859 ax-pre-ltirr 7879 ax-pre-apti 7882 |
This theorem depends on definitions: df-bi 116 df-3or 974 df-3an 975 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-nel 2436 df-ral 2453 df-rex 2454 df-reu 2455 df-rmo 2456 df-rab 2457 df-v 2732 df-sbc 2956 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-pw 3566 df-sn 3587 df-pr 3588 df-op 3590 df-uni 3795 df-br 3988 df-opab 4049 df-mpt 4050 df-id 4276 df-xp 4615 df-rel 4616 df-cnv 4617 df-co 4618 df-dm 4619 df-rn 4620 df-res 4621 df-ima 4622 df-iota 5158 df-fun 5198 df-fn 5199 df-f 5200 df-fv 5204 df-riota 5807 df-ov 5854 df-oprab 5855 df-mpo 5856 df-sup 6959 df-pnf 7949 df-mnf 7950 df-xr 7951 df-ltxr 7952 df-le 7953 df-neg 8086 df-z 9206 df-uz 9481 df-fz 9959 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |