| Mathbox for Jim Kingdon |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > Mathboxes > supfz | GIF version | ||
| Description: The supremum of a finite sequence of integers. (Contributed by Scott Fenton, 8-Aug-2013.) (Revised by Jim Kingdon, 15-Oct-2022.) |
| Ref | Expression |
|---|---|
| supfz | ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → sup((𝑀...𝑁), ℤ, < ) = 𝑁) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simprl 529 | . . . 4 ⊢ ((𝑁 ∈ (ℤ≥‘𝑀) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → 𝑥 ∈ ℤ) | |
| 2 | 1 | zred 9508 | . . 3 ⊢ ((𝑁 ∈ (ℤ≥‘𝑀) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → 𝑥 ∈ ℝ) |
| 3 | simprr 531 | . . . 4 ⊢ ((𝑁 ∈ (ℤ≥‘𝑀) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → 𝑦 ∈ ℤ) | |
| 4 | 3 | zred 9508 | . . 3 ⊢ ((𝑁 ∈ (ℤ≥‘𝑀) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → 𝑦 ∈ ℝ) |
| 5 | 2, 4 | lttri3d 8200 | . 2 ⊢ ((𝑁 ∈ (ℤ≥‘𝑀) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → (𝑥 = 𝑦 ↔ (¬ 𝑥 < 𝑦 ∧ ¬ 𝑦 < 𝑥))) |
| 6 | eluzelz 9670 | . 2 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → 𝑁 ∈ ℤ) | |
| 7 | eluzfz2 10167 | . 2 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → 𝑁 ∈ (𝑀...𝑁)) | |
| 8 | elfzle2 10163 | . . . 4 ⊢ (𝑧 ∈ (𝑀...𝑁) → 𝑧 ≤ 𝑁) | |
| 9 | 8 | adantl 277 | . . 3 ⊢ ((𝑁 ∈ (ℤ≥‘𝑀) ∧ 𝑧 ∈ (𝑀...𝑁)) → 𝑧 ≤ 𝑁) |
| 10 | elfzelz 10160 | . . . . 5 ⊢ (𝑧 ∈ (𝑀...𝑁) → 𝑧 ∈ ℤ) | |
| 11 | 10 | zred 9508 | . . . 4 ⊢ (𝑧 ∈ (𝑀...𝑁) → 𝑧 ∈ ℝ) |
| 12 | 6 | zred 9508 | . . . 4 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → 𝑁 ∈ ℝ) |
| 13 | lenlt 8161 | . . . 4 ⊢ ((𝑧 ∈ ℝ ∧ 𝑁 ∈ ℝ) → (𝑧 ≤ 𝑁 ↔ ¬ 𝑁 < 𝑧)) | |
| 14 | 11, 12, 13 | syl2anr 290 | . . 3 ⊢ ((𝑁 ∈ (ℤ≥‘𝑀) ∧ 𝑧 ∈ (𝑀...𝑁)) → (𝑧 ≤ 𝑁 ↔ ¬ 𝑁 < 𝑧)) |
| 15 | 9, 14 | mpbid 147 | . 2 ⊢ ((𝑁 ∈ (ℤ≥‘𝑀) ∧ 𝑧 ∈ (𝑀...𝑁)) → ¬ 𝑁 < 𝑧) |
| 16 | 5, 6, 7, 15 | supmaxti 7118 | 1 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → sup((𝑀...𝑁), ℤ, < ) = 𝑁) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 104 ↔ wb 105 = wceq 1373 ∈ wcel 2177 class class class wbr 4048 ‘cfv 5277 (class class class)co 5954 supcsup 7096 ℝcr 7937 < clt 8120 ≤ cle 8121 ℤcz 9385 ℤ≥cuz 9661 ...cfz 10143 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-sep 4167 ax-pow 4223 ax-pr 4258 ax-un 4485 ax-setind 4590 ax-cnex 8029 ax-resscn 8030 ax-pre-ltirr 8050 ax-pre-apti 8053 |
| This theorem depends on definitions: df-bi 117 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-nel 2473 df-ral 2490 df-rex 2491 df-reu 2492 df-rmo 2493 df-rab 2494 df-v 2775 df-sbc 3001 df-dif 3170 df-un 3172 df-in 3174 df-ss 3181 df-pw 3620 df-sn 3641 df-pr 3642 df-op 3644 df-uni 3854 df-br 4049 df-opab 4111 df-mpt 4112 df-id 4345 df-xp 4686 df-rel 4687 df-cnv 4688 df-co 4689 df-dm 4690 df-rn 4691 df-res 4692 df-ima 4693 df-iota 5238 df-fun 5279 df-fn 5280 df-f 5281 df-fv 5285 df-riota 5909 df-ov 5957 df-oprab 5958 df-mpo 5959 df-sup 7098 df-pnf 8122 df-mnf 8123 df-xr 8124 df-ltxr 8125 df-le 8126 df-neg 8259 df-z 9386 df-uz 9662 df-fz 10144 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |