Users' Mathboxes Mathbox for Jim Kingdon < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  supfz GIF version

Theorem supfz 13781
Description: The supremum of a finite sequence of integers. (Contributed by Scott Fenton, 8-Aug-2013.) (Revised by Jim Kingdon, 15-Oct-2022.)
Assertion
Ref Expression
supfz (𝑁 ∈ (ℤ𝑀) → sup((𝑀...𝑁), ℤ, < ) = 𝑁)

Proof of Theorem supfz
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simprl 521 . . . 4 ((𝑁 ∈ (ℤ𝑀) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → 𝑥 ∈ ℤ)
21zred 9304 . . 3 ((𝑁 ∈ (ℤ𝑀) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → 𝑥 ∈ ℝ)
3 simprr 522 . . . 4 ((𝑁 ∈ (ℤ𝑀) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → 𝑦 ∈ ℤ)
43zred 9304 . . 3 ((𝑁 ∈ (ℤ𝑀) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → 𝑦 ∈ ℝ)
52, 4lttri3d 8004 . 2 ((𝑁 ∈ (ℤ𝑀) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → (𝑥 = 𝑦 ↔ (¬ 𝑥 < 𝑦 ∧ ¬ 𝑦 < 𝑥)))
6 eluzelz 9466 . 2 (𝑁 ∈ (ℤ𝑀) → 𝑁 ∈ ℤ)
7 eluzfz2 9957 . 2 (𝑁 ∈ (ℤ𝑀) → 𝑁 ∈ (𝑀...𝑁))
8 elfzle2 9953 . . . 4 (𝑧 ∈ (𝑀...𝑁) → 𝑧𝑁)
98adantl 275 . . 3 ((𝑁 ∈ (ℤ𝑀) ∧ 𝑧 ∈ (𝑀...𝑁)) → 𝑧𝑁)
10 elfzelz 9951 . . . . 5 (𝑧 ∈ (𝑀...𝑁) → 𝑧 ∈ ℤ)
1110zred 9304 . . . 4 (𝑧 ∈ (𝑀...𝑁) → 𝑧 ∈ ℝ)
126zred 9304 . . . 4 (𝑁 ∈ (ℤ𝑀) → 𝑁 ∈ ℝ)
13 lenlt 7965 . . . 4 ((𝑧 ∈ ℝ ∧ 𝑁 ∈ ℝ) → (𝑧𝑁 ↔ ¬ 𝑁 < 𝑧))
1411, 12, 13syl2anr 288 . . 3 ((𝑁 ∈ (ℤ𝑀) ∧ 𝑧 ∈ (𝑀...𝑁)) → (𝑧𝑁 ↔ ¬ 𝑁 < 𝑧))
159, 14mpbid 146 . 2 ((𝑁 ∈ (ℤ𝑀) ∧ 𝑧 ∈ (𝑀...𝑁)) → ¬ 𝑁 < 𝑧)
165, 6, 7, 15supmaxti 6960 1 (𝑁 ∈ (ℤ𝑀) → sup((𝑀...𝑁), ℤ, < ) = 𝑁)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 103  wb 104   = wceq 1342  wcel 2135   class class class wbr 3976  cfv 5182  (class class class)co 5836  supcsup 6938  cr 7743   < clt 7924  cle 7925  cz 9182  cuz 9457  ...cfz 9935
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1434  ax-7 1435  ax-gen 1436  ax-ie1 1480  ax-ie2 1481  ax-8 1491  ax-10 1492  ax-11 1493  ax-i12 1494  ax-bndl 1496  ax-4 1497  ax-17 1513  ax-i9 1517  ax-ial 1521  ax-i5r 1522  ax-13 2137  ax-14 2138  ax-ext 2146  ax-sep 4094  ax-pow 4147  ax-pr 4181  ax-un 4405  ax-setind 4508  ax-cnex 7835  ax-resscn 7836  ax-pre-ltirr 7856  ax-pre-apti 7859
This theorem depends on definitions:  df-bi 116  df-3or 968  df-3an 969  df-tru 1345  df-fal 1348  df-nf 1448  df-sb 1750  df-eu 2016  df-mo 2017  df-clab 2151  df-cleq 2157  df-clel 2160  df-nfc 2295  df-ne 2335  df-nel 2430  df-ral 2447  df-rex 2448  df-reu 2449  df-rmo 2450  df-rab 2451  df-v 2723  df-sbc 2947  df-dif 3113  df-un 3115  df-in 3117  df-ss 3124  df-pw 3555  df-sn 3576  df-pr 3577  df-op 3579  df-uni 3784  df-br 3977  df-opab 4038  df-mpt 4039  df-id 4265  df-xp 4604  df-rel 4605  df-cnv 4606  df-co 4607  df-dm 4608  df-rn 4609  df-res 4610  df-ima 4611  df-iota 5147  df-fun 5184  df-fn 5185  df-f 5186  df-fv 5190  df-riota 5792  df-ov 5839  df-oprab 5840  df-mpo 5841  df-sup 6940  df-pnf 7926  df-mnf 7927  df-xr 7928  df-ltxr 7929  df-le 7930  df-neg 8063  df-z 9183  df-uz 9458  df-fz 9936
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator