![]() |
Mathbox for Jim Kingdon |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > Mathboxes > supfz | GIF version |
Description: The supremum of a finite sequence of integers. (Contributed by Scott Fenton, 8-Aug-2013.) (Revised by Jim Kingdon, 15-Oct-2022.) |
Ref | Expression |
---|---|
supfz | ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → sup((𝑀...𝑁), ℤ, < ) = 𝑁) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simprl 499 | . . . 4 ⊢ ((𝑁 ∈ (ℤ≥‘𝑀) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → 𝑥 ∈ ℤ) | |
2 | 1 | zred 8967 | . . 3 ⊢ ((𝑁 ∈ (ℤ≥‘𝑀) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → 𝑥 ∈ ℝ) |
3 | simprr 500 | . . . 4 ⊢ ((𝑁 ∈ (ℤ≥‘𝑀) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → 𝑦 ∈ ℤ) | |
4 | 3 | zred 8967 | . . 3 ⊢ ((𝑁 ∈ (ℤ≥‘𝑀) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → 𝑦 ∈ ℝ) |
5 | 2, 4 | lttri3d 7696 | . 2 ⊢ ((𝑁 ∈ (ℤ≥‘𝑀) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → (𝑥 = 𝑦 ↔ (¬ 𝑥 < 𝑦 ∧ ¬ 𝑦 < 𝑥))) |
6 | eluzelz 9127 | . 2 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → 𝑁 ∈ ℤ) | |
7 | eluzfz2 9595 | . 2 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → 𝑁 ∈ (𝑀...𝑁)) | |
8 | elfzle2 9591 | . . . 4 ⊢ (𝑧 ∈ (𝑀...𝑁) → 𝑧 ≤ 𝑁) | |
9 | 8 | adantl 272 | . . 3 ⊢ ((𝑁 ∈ (ℤ≥‘𝑀) ∧ 𝑧 ∈ (𝑀...𝑁)) → 𝑧 ≤ 𝑁) |
10 | elfzelz 9589 | . . . . 5 ⊢ (𝑧 ∈ (𝑀...𝑁) → 𝑧 ∈ ℤ) | |
11 | 10 | zred 8967 | . . . 4 ⊢ (𝑧 ∈ (𝑀...𝑁) → 𝑧 ∈ ℝ) |
12 | 6 | zred 8967 | . . . 4 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → 𝑁 ∈ ℝ) |
13 | lenlt 7658 | . . . 4 ⊢ ((𝑧 ∈ ℝ ∧ 𝑁 ∈ ℝ) → (𝑧 ≤ 𝑁 ↔ ¬ 𝑁 < 𝑧)) | |
14 | 11, 12, 13 | syl2anr 285 | . . 3 ⊢ ((𝑁 ∈ (ℤ≥‘𝑀) ∧ 𝑧 ∈ (𝑀...𝑁)) → (𝑧 ≤ 𝑁 ↔ ¬ 𝑁 < 𝑧)) |
15 | 9, 14 | mpbid 146 | . 2 ⊢ ((𝑁 ∈ (ℤ≥‘𝑀) ∧ 𝑧 ∈ (𝑀...𝑁)) → ¬ 𝑁 < 𝑧) |
16 | 5, 6, 7, 15 | supmaxti 6779 | 1 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → sup((𝑀...𝑁), ℤ, < ) = 𝑁) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 103 ↔ wb 104 = wceq 1296 ∈ wcel 1445 class class class wbr 3867 ‘cfv 5049 (class class class)co 5690 supcsup 6757 ℝcr 7446 < clt 7619 ≤ cle 7620 ℤcz 8848 ℤ≥cuz 9118 ...cfz 9573 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 582 ax-in2 583 ax-io 668 ax-5 1388 ax-7 1389 ax-gen 1390 ax-ie1 1434 ax-ie2 1435 ax-8 1447 ax-10 1448 ax-11 1449 ax-i12 1450 ax-bndl 1451 ax-4 1452 ax-13 1456 ax-14 1457 ax-17 1471 ax-i9 1475 ax-ial 1479 ax-i5r 1480 ax-ext 2077 ax-sep 3978 ax-pow 4030 ax-pr 4060 ax-un 4284 ax-setind 4381 ax-cnex 7533 ax-resscn 7534 ax-pre-ltirr 7554 ax-pre-apti 7557 |
This theorem depends on definitions: df-bi 116 df-3or 928 df-3an 929 df-tru 1299 df-fal 1302 df-nf 1402 df-sb 1700 df-eu 1958 df-mo 1959 df-clab 2082 df-cleq 2088 df-clel 2091 df-nfc 2224 df-ne 2263 df-nel 2358 df-ral 2375 df-rex 2376 df-reu 2377 df-rmo 2378 df-rab 2379 df-v 2635 df-sbc 2855 df-dif 3015 df-un 3017 df-in 3019 df-ss 3026 df-pw 3451 df-sn 3472 df-pr 3473 df-op 3475 df-uni 3676 df-br 3868 df-opab 3922 df-mpt 3923 df-id 4144 df-xp 4473 df-rel 4474 df-cnv 4475 df-co 4476 df-dm 4477 df-rn 4478 df-res 4479 df-ima 4480 df-iota 5014 df-fun 5051 df-fn 5052 df-f 5053 df-fv 5057 df-riota 5646 df-ov 5693 df-oprab 5694 df-mpt2 5695 df-sup 6759 df-pnf 7621 df-mnf 7622 df-xr 7623 df-ltxr 7624 df-le 7625 df-neg 7753 df-z 8849 df-uz 9119 df-fz 9574 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |