ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ipsipd GIF version

Theorem ipsipd 13064
Description: The multiplicative operation of a constructed inner product space. (Contributed by Stefan O'Rear, 27-Nov-2014.) (Revised by Jim Kingdon, 8-Feb-2023.)
Hypotheses
Ref Expression
ipspart.a 𝐴 = ({⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), + ⟩, ⟨(.r‘ndx), × ⟩} ∪ {⟨(Scalar‘ndx), 𝑆⟩, ⟨( ·𝑠 ‘ndx), · ⟩, ⟨(·𝑖‘ndx), 𝐼⟩})
ipsstrd.b (𝜑𝐵𝑉)
ipsstrd.p (𝜑+𝑊)
ipsstrd.r (𝜑×𝑋)
ipsstrd.s (𝜑𝑆𝑌)
ipsstrd.x (𝜑·𝑄)
ipsstrd.i (𝜑𝐼𝑍)
Assertion
Ref Expression
ipsipd (𝜑𝐼 = (·𝑖𝐴))

Proof of Theorem ipsipd
StepHypRef Expression
1 ipslid 13053 . 2 (·𝑖 = Slot (·𝑖‘ndx) ∧ (·𝑖‘ndx) ∈ ℕ)
2 ipspart.a . . 3 𝐴 = ({⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), + ⟩, ⟨(.r‘ndx), × ⟩} ∪ {⟨(Scalar‘ndx), 𝑆⟩, ⟨( ·𝑠 ‘ndx), · ⟩, ⟨(·𝑖‘ndx), 𝐼⟩})
3 ipsstrd.b . . 3 (𝜑𝐵𝑉)
4 ipsstrd.p . . 3 (𝜑+𝑊)
5 ipsstrd.r . . 3 (𝜑×𝑋)
6 ipsstrd.s . . 3 (𝜑𝑆𝑌)
7 ipsstrd.x . . 3 (𝜑·𝑄)
8 ipsstrd.i . . 3 (𝜑𝐼𝑍)
92, 3, 4, 5, 6, 7, 8ipsstrd 13058 . 2 (𝜑𝐴 Struct ⟨1, 8⟩)
101simpri 113 . . . . 5 (·𝑖‘ndx) ∈ ℕ
11 opexg 4277 . . . . 5 (((·𝑖‘ndx) ∈ ℕ ∧ 𝐼𝑍) → ⟨(·𝑖‘ndx), 𝐼⟩ ∈ V)
1210, 8, 11sylancr 414 . . . 4 (𝜑 → ⟨(·𝑖‘ndx), 𝐼⟩ ∈ V)
13 tpid3g 3750 . . . 4 (⟨(·𝑖‘ndx), 𝐼⟩ ∈ V → ⟨(·𝑖‘ndx), 𝐼⟩ ∈ {⟨(Scalar‘ndx), 𝑆⟩, ⟨( ·𝑠 ‘ndx), · ⟩, ⟨(·𝑖‘ndx), 𝐼⟩})
14 elun2 3343 . . . 4 (⟨(·𝑖‘ndx), 𝐼⟩ ∈ {⟨(Scalar‘ndx), 𝑆⟩, ⟨( ·𝑠 ‘ndx), · ⟩, ⟨(·𝑖‘ndx), 𝐼⟩} → ⟨(·𝑖‘ndx), 𝐼⟩ ∈ ({⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), + ⟩, ⟨(.r‘ndx), × ⟩} ∪ {⟨(Scalar‘ndx), 𝑆⟩, ⟨( ·𝑠 ‘ndx), · ⟩, ⟨(·𝑖‘ndx), 𝐼⟩}))
1512, 13, 143syl 17 . . 3 (𝜑 → ⟨(·𝑖‘ndx), 𝐼⟩ ∈ ({⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), + ⟩, ⟨(.r‘ndx), × ⟩} ∪ {⟨(Scalar‘ndx), 𝑆⟩, ⟨( ·𝑠 ‘ndx), · ⟩, ⟨(·𝑖‘ndx), 𝐼⟩}))
1615, 2eleqtrrdi 2300 . 2 (𝜑 → ⟨(·𝑖‘ndx), 𝐼⟩ ∈ 𝐴)
171, 9, 8, 16opelstrsl 12996 1 (𝜑𝐼 = (·𝑖𝐴))
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1373  wcel 2177  Vcvv 2773  cun 3166  {ctp 3637  cop 3638  cfv 5277  1c1 7939  cn 9049  8c8 9106  ndxcnx 12879  Slot cslot 12881  Basecbs 12882  +gcplusg 12959  .rcmulr 12960  Scalarcsca 12962   ·𝑠 cvsca 12963  ·𝑖cip 12964
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-sep 4167  ax-pow 4223  ax-pr 4258  ax-un 4485  ax-setind 4590  ax-cnex 8029  ax-resscn 8030  ax-1cn 8031  ax-1re 8032  ax-icn 8033  ax-addcl 8034  ax-addrcl 8035  ax-mulcl 8036  ax-addcom 8038  ax-addass 8040  ax-distr 8042  ax-i2m1 8043  ax-0lt1 8044  ax-0id 8046  ax-rnegex 8047  ax-cnre 8049  ax-pre-ltirr 8050  ax-pre-ltwlin 8051  ax-pre-lttrn 8052  ax-pre-apti 8053  ax-pre-ltadd 8054
This theorem depends on definitions:  df-bi 117  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-nel 2473  df-ral 2490  df-rex 2491  df-reu 2492  df-rab 2494  df-v 2775  df-sbc 3001  df-dif 3170  df-un 3172  df-in 3174  df-ss 3181  df-nul 3463  df-pw 3620  df-sn 3641  df-pr 3642  df-tp 3643  df-op 3644  df-uni 3854  df-int 3889  df-br 4049  df-opab 4111  df-mpt 4112  df-id 4345  df-xp 4686  df-rel 4687  df-cnv 4688  df-co 4689  df-dm 4690  df-rn 4691  df-res 4692  df-ima 4693  df-iota 5238  df-fun 5279  df-fn 5280  df-f 5281  df-fv 5285  df-riota 5909  df-ov 5957  df-oprab 5958  df-mpo 5959  df-pnf 8122  df-mnf 8123  df-xr 8124  df-ltxr 8125  df-le 8126  df-sub 8258  df-neg 8259  df-inn 9050  df-2 9108  df-3 9109  df-4 9110  df-5 9111  df-6 9112  df-7 9113  df-8 9114  df-n0 9309  df-z 9386  df-uz 9662  df-fz 10144  df-struct 12884  df-ndx 12885  df-slot 12886  df-base 12888  df-plusg 12972  df-mulr 12973  df-sca 12975  df-vsca 12976  df-ip 12977
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator