![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > ipsipd | GIF version |
Description: The multiplicative operation of a constructed inner product space. (Contributed by Stefan O'Rear, 27-Nov-2014.) (Revised by Jim Kingdon, 8-Feb-2023.) |
Ref | Expression |
---|---|
ipspart.a | β’ π΄ = ({β¨(Baseβndx), π΅β©, β¨(+gβndx), + β©, β¨(.rβndx), Γ β©} βͺ {β¨(Scalarβndx), πβ©, β¨( Β·π βndx), Β· β©, β¨(Β·πβndx), πΌβ©}) |
ipsstrd.b | β’ (π β π΅ β π) |
ipsstrd.p | β’ (π β + β π) |
ipsstrd.r | β’ (π β Γ β π) |
ipsstrd.s | β’ (π β π β π) |
ipsstrd.x | β’ (π β Β· β π) |
ipsstrd.i | β’ (π β πΌ β π) |
Ref | Expression |
---|---|
ipsipd | β’ (π β πΌ = (Β·πβπ΄)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ipslid 12631 | . 2 β’ (Β·π = Slot (Β·πβndx) β§ (Β·πβndx) β β) | |
2 | ipspart.a | . . 3 β’ π΄ = ({β¨(Baseβndx), π΅β©, β¨(+gβndx), + β©, β¨(.rβndx), Γ β©} βͺ {β¨(Scalarβndx), πβ©, β¨( Β·π βndx), Β· β©, β¨(Β·πβndx), πΌβ©}) | |
3 | ipsstrd.b | . . 3 β’ (π β π΅ β π) | |
4 | ipsstrd.p | . . 3 β’ (π β + β π) | |
5 | ipsstrd.r | . . 3 β’ (π β Γ β π) | |
6 | ipsstrd.s | . . 3 β’ (π β π β π) | |
7 | ipsstrd.x | . . 3 β’ (π β Β· β π) | |
8 | ipsstrd.i | . . 3 β’ (π β πΌ β π) | |
9 | 2, 3, 4, 5, 6, 7, 8 | ipsstrd 12636 | . 2 β’ (π β π΄ Struct β¨1, 8β©) |
10 | 1 | simpri 113 | . . . . 5 β’ (Β·πβndx) β β |
11 | opexg 4230 | . . . . 5 β’ (((Β·πβndx) β β β§ πΌ β π) β β¨(Β·πβndx), πΌβ© β V) | |
12 | 10, 8, 11 | sylancr 414 | . . . 4 β’ (π β β¨(Β·πβndx), πΌβ© β V) |
13 | tpid3g 3709 | . . . 4 β’ (β¨(Β·πβndx), πΌβ© β V β β¨(Β·πβndx), πΌβ© β {β¨(Scalarβndx), πβ©, β¨( Β·π βndx), Β· β©, β¨(Β·πβndx), πΌβ©}) | |
14 | elun2 3305 | . . . 4 β’ (β¨(Β·πβndx), πΌβ© β {β¨(Scalarβndx), πβ©, β¨( Β·π βndx), Β· β©, β¨(Β·πβndx), πΌβ©} β β¨(Β·πβndx), πΌβ© β ({β¨(Baseβndx), π΅β©, β¨(+gβndx), + β©, β¨(.rβndx), Γ β©} βͺ {β¨(Scalarβndx), πβ©, β¨( Β·π βndx), Β· β©, β¨(Β·πβndx), πΌβ©})) | |
15 | 12, 13, 14 | 3syl 17 | . . 3 β’ (π β β¨(Β·πβndx), πΌβ© β ({β¨(Baseβndx), π΅β©, β¨(+gβndx), + β©, β¨(.rβndx), Γ β©} βͺ {β¨(Scalarβndx), πβ©, β¨( Β·π βndx), Β· β©, β¨(Β·πβndx), πΌβ©})) |
16 | 15, 2 | eleqtrrdi 2271 | . 2 β’ (π β β¨(Β·πβndx), πΌβ© β π΄) |
17 | 1, 9, 8, 16 | opelstrsl 12575 | 1 β’ (π β πΌ = (Β·πβπ΄)) |
Colors of variables: wff set class |
Syntax hints: β wi 4 = wceq 1353 β wcel 2148 Vcvv 2739 βͺ cun 3129 {ctp 3596 β¨cop 3597 βcfv 5218 1c1 7814 βcn 8921 8c8 8978 ndxcnx 12461 Slot cslot 12463 Basecbs 12464 +gcplusg 12538 .rcmulr 12539 Scalarcsca 12541 Β·π cvsca 12542 Β·πcip 12543 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-13 2150 ax-14 2151 ax-ext 2159 ax-sep 4123 ax-pow 4176 ax-pr 4211 ax-un 4435 ax-setind 4538 ax-cnex 7904 ax-resscn 7905 ax-1cn 7906 ax-1re 7907 ax-icn 7908 ax-addcl 7909 ax-addrcl 7910 ax-mulcl 7911 ax-addcom 7913 ax-addass 7915 ax-distr 7917 ax-i2m1 7918 ax-0lt1 7919 ax-0id 7921 ax-rnegex 7922 ax-cnre 7924 ax-pre-ltirr 7925 ax-pre-ltwlin 7926 ax-pre-lttrn 7927 ax-pre-apti 7928 ax-pre-ltadd 7929 |
This theorem depends on definitions: df-bi 117 df-3or 979 df-3an 980 df-tru 1356 df-fal 1359 df-nf 1461 df-sb 1763 df-eu 2029 df-mo 2030 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ne 2348 df-nel 2443 df-ral 2460 df-rex 2461 df-reu 2462 df-rab 2464 df-v 2741 df-sbc 2965 df-dif 3133 df-un 3135 df-in 3137 df-ss 3144 df-nul 3425 df-pw 3579 df-sn 3600 df-pr 3601 df-tp 3602 df-op 3603 df-uni 3812 df-int 3847 df-br 4006 df-opab 4067 df-mpt 4068 df-id 4295 df-xp 4634 df-rel 4635 df-cnv 4636 df-co 4637 df-dm 4638 df-rn 4639 df-res 4640 df-ima 4641 df-iota 5180 df-fun 5220 df-fn 5221 df-f 5222 df-fv 5226 df-riota 5833 df-ov 5880 df-oprab 5881 df-mpo 5882 df-pnf 7996 df-mnf 7997 df-xr 7998 df-ltxr 7999 df-le 8000 df-sub 8132 df-neg 8133 df-inn 8922 df-2 8980 df-3 8981 df-4 8982 df-5 8983 df-6 8984 df-7 8985 df-8 8986 df-n0 9179 df-z 9256 df-uz 9531 df-fz 10011 df-struct 12466 df-ndx 12467 df-slot 12468 df-base 12470 df-plusg 12551 df-mulr 12552 df-sca 12554 df-vsca 12555 df-ip 12556 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |