ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rngmulrg GIF version

Theorem rngmulrg 12912
Description: The multiplicative operation of a constructed ring. (Contributed by Mario Carneiro, 2-Oct-2013.) (Revised by Mario Carneiro, 30-Apr-2015.)
Hypothesis
Ref Expression
rngfn.r 𝑅 = {⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), + ⟩, ⟨(.r‘ndx), · ⟩}
Assertion
Ref Expression
rngmulrg ((𝐵𝑉+𝑊·𝑋) → · = (.r𝑅))

Proof of Theorem rngmulrg
StepHypRef Expression
1 mulrslid 12906 . 2 (.r = Slot (.r‘ndx) ∧ (.r‘ndx) ∈ ℕ)
2 rngfn.r . . 3 𝑅 = {⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), + ⟩, ⟨(.r‘ndx), · ⟩}
32rngstrg 12909 . 2 ((𝐵𝑉+𝑊·𝑋) → 𝑅 Struct ⟨1, 3⟩)
4 simp3 1001 . 2 ((𝐵𝑉+𝑊·𝑋) → ·𝑋)
51simpri 113 . . . . 5 (.r‘ndx) ∈ ℕ
6 opexg 4271 . . . . 5 (((.r‘ndx) ∈ ℕ ∧ ·𝑋) → ⟨(.r‘ndx), · ⟩ ∈ V)
75, 4, 6sylancr 414 . . . 4 ((𝐵𝑉+𝑊·𝑋) → ⟨(.r‘ndx), · ⟩ ∈ V)
8 tpid3g 3747 . . . 4 (⟨(.r‘ndx), · ⟩ ∈ V → ⟨(.r‘ndx), · ⟩ ∈ {⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), + ⟩, ⟨(.r‘ndx), · ⟩})
97, 8syl 14 . . 3 ((𝐵𝑉+𝑊·𝑋) → ⟨(.r‘ndx), · ⟩ ∈ {⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), + ⟩, ⟨(.r‘ndx), · ⟩})
109, 2eleqtrrdi 2298 . 2 ((𝐵𝑉+𝑊·𝑋) → ⟨(.r‘ndx), · ⟩ ∈ 𝑅)
111, 3, 4, 10opelstrsl 12888 1 ((𝐵𝑉+𝑊·𝑋) → · = (.r𝑅))
Colors of variables: wff set class
Syntax hints:  wi 4  w3a 980   = wceq 1372  wcel 2175  Vcvv 2771  {ctp 3634  cop 3635  cfv 5270  1c1 7925  cn 9035  3c3 9087  ndxcnx 12771  Slot cslot 12773  Basecbs 12774  +gcplusg 12851  .rcmulr 12852
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-13 2177  ax-14 2178  ax-ext 2186  ax-sep 4161  ax-pow 4217  ax-pr 4252  ax-un 4479  ax-setind 4584  ax-cnex 8015  ax-resscn 8016  ax-1cn 8017  ax-1re 8018  ax-icn 8019  ax-addcl 8020  ax-addrcl 8021  ax-mulcl 8022  ax-addcom 8024  ax-addass 8026  ax-distr 8028  ax-i2m1 8029  ax-0lt1 8030  ax-0id 8032  ax-rnegex 8033  ax-cnre 8035  ax-pre-ltirr 8036  ax-pre-ltwlin 8037  ax-pre-lttrn 8038  ax-pre-apti 8039  ax-pre-ltadd 8040
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1375  df-fal 1378  df-nf 1483  df-sb 1785  df-eu 2056  df-mo 2057  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ne 2376  df-nel 2471  df-ral 2488  df-rex 2489  df-reu 2490  df-rab 2492  df-v 2773  df-sbc 2998  df-dif 3167  df-un 3169  df-in 3171  df-ss 3178  df-nul 3460  df-pw 3617  df-sn 3638  df-pr 3639  df-tp 3640  df-op 3641  df-uni 3850  df-int 3885  df-br 4044  df-opab 4105  df-mpt 4106  df-id 4339  df-xp 4680  df-rel 4681  df-cnv 4682  df-co 4683  df-dm 4684  df-rn 4685  df-res 4686  df-ima 4687  df-iota 5231  df-fun 5272  df-fn 5273  df-f 5274  df-fv 5278  df-riota 5898  df-ov 5946  df-oprab 5947  df-mpo 5948  df-pnf 8108  df-mnf 8109  df-xr 8110  df-ltxr 8111  df-le 8112  df-sub 8244  df-neg 8245  df-inn 9036  df-2 9094  df-3 9095  df-n0 9295  df-z 9372  df-uz 9648  df-fz 10130  df-struct 12776  df-ndx 12777  df-slot 12778  df-base 12780  df-plusg 12864  df-mulr 12865
This theorem is referenced by:  ring1  13763
  Copyright terms: Public domain W3C validator