ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  topgrptsetd GIF version

Theorem topgrptsetd 12113
Description: The topology of a constructed topological group. (Contributed by Mario Carneiro, 29-Aug-2015.) (Revised by Jim Kingdon, 9-Feb-2023.)
Hypotheses
Ref Expression
topgrpfn.w 𝑊 = {⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), + ⟩, ⟨(TopSet‘ndx), 𝐽⟩}
topgrpfnd.b (𝜑𝐵𝑉)
topgrpfnd.p (𝜑+𝑊)
topgrpfnd.j (𝜑𝐽𝑋)
Assertion
Ref Expression
topgrptsetd (𝜑𝐽 = (TopSet‘𝑊))

Proof of Theorem topgrptsetd
StepHypRef Expression
1 tsetslid 12109 . 2 (TopSet = Slot (TopSet‘ndx) ∧ (TopSet‘ndx) ∈ ℕ)
2 topgrpfn.w . . 3 𝑊 = {⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), + ⟩, ⟨(TopSet‘ndx), 𝐽⟩}
3 topgrpfnd.b . . 3 (𝜑𝐵𝑉)
4 topgrpfnd.p . . 3 (𝜑+𝑊)
5 topgrpfnd.j . . 3 (𝜑𝐽𝑋)
62, 3, 4, 5topgrpstrd 12110 . 2 (𝜑𝑊 Struct ⟨1, 9⟩)
71simpri 112 . . . . 5 (TopSet‘ndx) ∈ ℕ
8 opexg 4150 . . . . 5 (((TopSet‘ndx) ∈ ℕ ∧ 𝐽𝑋) → ⟨(TopSet‘ndx), 𝐽⟩ ∈ V)
97, 5, 8sylancr 410 . . . 4 (𝜑 → ⟨(TopSet‘ndx), 𝐽⟩ ∈ V)
10 tpid3g 3638 . . . 4 (⟨(TopSet‘ndx), 𝐽⟩ ∈ V → ⟨(TopSet‘ndx), 𝐽⟩ ∈ {⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), + ⟩, ⟨(TopSet‘ndx), 𝐽⟩})
119, 10syl 14 . . 3 (𝜑 → ⟨(TopSet‘ndx), 𝐽⟩ ∈ {⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), + ⟩, ⟨(TopSet‘ndx), 𝐽⟩})
1211, 2eleqtrrdi 2233 . 2 (𝜑 → ⟨(TopSet‘ndx), 𝐽⟩ ∈ 𝑊)
131, 6, 5, 12opelstrsl 12055 1 (𝜑𝐽 = (TopSet‘𝑊))
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1331  wcel 1480  Vcvv 2686  {ctp 3529  cop 3530  cfv 5123  1c1 7621  cn 8720  9c9 8778  ndxcnx 11956  Slot cslot 11958  Basecbs 11959  +gcplusg 12021  TopSetcts 12027
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-sep 4046  ax-pow 4098  ax-pr 4131  ax-un 4355  ax-setind 4452  ax-cnex 7711  ax-resscn 7712  ax-1cn 7713  ax-1re 7714  ax-icn 7715  ax-addcl 7716  ax-addrcl 7717  ax-mulcl 7718  ax-addcom 7720  ax-addass 7722  ax-distr 7724  ax-i2m1 7725  ax-0lt1 7726  ax-0id 7728  ax-rnegex 7729  ax-cnre 7731  ax-pre-ltirr 7732  ax-pre-ltwlin 7733  ax-pre-lttrn 7734  ax-pre-apti 7735  ax-pre-ltadd 7736
This theorem depends on definitions:  df-bi 116  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-nel 2404  df-ral 2421  df-rex 2422  df-reu 2423  df-rab 2425  df-v 2688  df-sbc 2910  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-nul 3364  df-pw 3512  df-sn 3533  df-pr 3534  df-tp 3535  df-op 3536  df-uni 3737  df-int 3772  df-br 3930  df-opab 3990  df-mpt 3991  df-id 4215  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-rn 4550  df-res 4551  df-ima 4552  df-iota 5088  df-fun 5125  df-fn 5126  df-f 5127  df-fv 5131  df-riota 5730  df-ov 5777  df-oprab 5778  df-mpo 5779  df-pnf 7802  df-mnf 7803  df-xr 7804  df-ltxr 7805  df-le 7806  df-sub 7935  df-neg 7936  df-inn 8721  df-2 8779  df-3 8780  df-4 8781  df-5 8782  df-6 8783  df-7 8784  df-8 8785  df-9 8786  df-n0 8978  df-z 9055  df-uz 9327  df-fz 9791  df-struct 11961  df-ndx 11962  df-slot 11963  df-base 11965  df-plusg 12034  df-tset 12040
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator