| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > srngmulrd | GIF version | ||
| Description: The multiplication operation of a constructed star ring. (Contributed by Mario Carneiro, 20-Jun-2015.) |
| Ref | Expression |
|---|---|
| srngstr.r | ⊢ 𝑅 = ({〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), + 〉, 〈(.r‘ndx), · 〉} ∪ {〈(*𝑟‘ndx), ∗ 〉}) |
| srngstrd.b | ⊢ (𝜑 → 𝐵 ∈ 𝑉) |
| srngstrd.p | ⊢ (𝜑 → + ∈ 𝑊) |
| srngstrd.m | ⊢ (𝜑 → · ∈ 𝑋) |
| srngstrd.s | ⊢ (𝜑 → ∗ ∈ 𝑌) |
| Ref | Expression |
|---|---|
| srngmulrd | ⊢ (𝜑 → · = (.r‘𝑅)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mulrslid 12906 | . 2 ⊢ (.r = Slot (.r‘ndx) ∧ (.r‘ndx) ∈ ℕ) | |
| 2 | srngstr.r | . . 3 ⊢ 𝑅 = ({〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), + 〉, 〈(.r‘ndx), · 〉} ∪ {〈(*𝑟‘ndx), ∗ 〉}) | |
| 3 | srngstrd.b | . . 3 ⊢ (𝜑 → 𝐵 ∈ 𝑉) | |
| 4 | srngstrd.p | . . 3 ⊢ (𝜑 → + ∈ 𝑊) | |
| 5 | srngstrd.m | . . 3 ⊢ (𝜑 → · ∈ 𝑋) | |
| 6 | srngstrd.s | . . 3 ⊢ (𝜑 → ∗ ∈ 𝑌) | |
| 7 | 2, 3, 4, 5, 6 | srngstrd 12920 | . 2 ⊢ (𝜑 → 𝑅 Struct 〈1, 4〉) |
| 8 | 1 | simpri 113 | . . . . 5 ⊢ (.r‘ndx) ∈ ℕ |
| 9 | opexg 4271 | . . . . 5 ⊢ (((.r‘ndx) ∈ ℕ ∧ · ∈ 𝑋) → 〈(.r‘ndx), · 〉 ∈ V) | |
| 10 | 8, 5, 9 | sylancr 414 | . . . 4 ⊢ (𝜑 → 〈(.r‘ndx), · 〉 ∈ V) |
| 11 | tpid3g 3747 | . . . 4 ⊢ (〈(.r‘ndx), · 〉 ∈ V → 〈(.r‘ndx), · 〉 ∈ {〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), + 〉, 〈(.r‘ndx), · 〉}) | |
| 12 | elun1 3339 | . . . 4 ⊢ (〈(.r‘ndx), · 〉 ∈ {〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), + 〉, 〈(.r‘ndx), · 〉} → 〈(.r‘ndx), · 〉 ∈ ({〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), + 〉, 〈(.r‘ndx), · 〉} ∪ {〈(*𝑟‘ndx), ∗ 〉})) | |
| 13 | 10, 11, 12 | 3syl 17 | . . 3 ⊢ (𝜑 → 〈(.r‘ndx), · 〉 ∈ ({〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), + 〉, 〈(.r‘ndx), · 〉} ∪ {〈(*𝑟‘ndx), ∗ 〉})) |
| 14 | 13, 2 | eleqtrrdi 2298 | . 2 ⊢ (𝜑 → 〈(.r‘ndx), · 〉 ∈ 𝑅) |
| 15 | 1, 7, 5, 14 | opelstrsl 12888 | 1 ⊢ (𝜑 → · = (.r‘𝑅)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1372 ∈ wcel 2175 Vcvv 2771 ∪ cun 3163 {csn 3632 {ctp 3634 〈cop 3635 ‘cfv 5270 1c1 7925 ℕcn 9035 4c4 9088 ndxcnx 12771 Slot cslot 12773 Basecbs 12774 +gcplusg 12851 .rcmulr 12852 *𝑟cstv 12853 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-13 2177 ax-14 2178 ax-ext 2186 ax-sep 4161 ax-pow 4217 ax-pr 4252 ax-un 4479 ax-setind 4584 ax-cnex 8015 ax-resscn 8016 ax-1cn 8017 ax-1re 8018 ax-icn 8019 ax-addcl 8020 ax-addrcl 8021 ax-mulcl 8022 ax-addcom 8024 ax-addass 8026 ax-distr 8028 ax-i2m1 8029 ax-0lt1 8030 ax-0id 8032 ax-rnegex 8033 ax-cnre 8035 ax-pre-ltirr 8036 ax-pre-ltwlin 8037 ax-pre-lttrn 8038 ax-pre-apti 8039 ax-pre-ltadd 8040 |
| This theorem depends on definitions: df-bi 117 df-3or 981 df-3an 982 df-tru 1375 df-fal 1378 df-nf 1483 df-sb 1785 df-eu 2056 df-mo 2057 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-ne 2376 df-nel 2471 df-ral 2488 df-rex 2489 df-reu 2490 df-rab 2492 df-v 2773 df-sbc 2998 df-dif 3167 df-un 3169 df-in 3171 df-ss 3178 df-nul 3460 df-pw 3617 df-sn 3638 df-pr 3639 df-tp 3640 df-op 3641 df-uni 3850 df-int 3885 df-br 4044 df-opab 4105 df-mpt 4106 df-id 4339 df-xp 4680 df-rel 4681 df-cnv 4682 df-co 4683 df-dm 4684 df-rn 4685 df-res 4686 df-ima 4687 df-iota 5231 df-fun 5272 df-fn 5273 df-f 5274 df-fv 5278 df-riota 5898 df-ov 5946 df-oprab 5947 df-mpo 5948 df-pnf 8108 df-mnf 8109 df-xr 8110 df-ltxr 8111 df-le 8112 df-sub 8244 df-neg 8245 df-inn 9036 df-2 9094 df-3 9095 df-4 9096 df-n0 9295 df-z 9372 df-uz 9648 df-fz 10130 df-struct 12776 df-ndx 12777 df-slot 12778 df-base 12780 df-plusg 12864 df-mulr 12865 df-starv 12866 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |