| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > lmodscad | GIF version | ||
| Description: The set of scalars of a constructed left vector space. (Contributed by Mario Carneiro, 2-Oct-2013.) (Revised by Jim Kingdon, 6-Feb-2023.) |
| Ref | Expression |
|---|---|
| lvecfn.w | ⊢ 𝑊 = ({〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), + 〉, 〈(Scalar‘ndx), 𝐹〉} ∪ {〈( ·𝑠 ‘ndx), · 〉}) |
| lmodstr.b | ⊢ (𝜑 → 𝐵 ∈ 𝑉) |
| lmodstr.g | ⊢ (𝜑 → + ∈ 𝑋) |
| lmodstr.s | ⊢ (𝜑 → 𝐹 ∈ 𝑌) |
| lmodstr.m | ⊢ (𝜑 → · ∈ 𝑍) |
| Ref | Expression |
|---|---|
| lmodscad | ⊢ (𝜑 → 𝐹 = (Scalar‘𝑊)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | scaslid 12855 | . 2 ⊢ (Scalar = Slot (Scalar‘ndx) ∧ (Scalar‘ndx) ∈ ℕ) | |
| 2 | lvecfn.w | . . 3 ⊢ 𝑊 = ({〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), + 〉, 〈(Scalar‘ndx), 𝐹〉} ∪ {〈( ·𝑠 ‘ndx), · 〉}) | |
| 3 | lmodstr.b | . . 3 ⊢ (𝜑 → 𝐵 ∈ 𝑉) | |
| 4 | lmodstr.g | . . 3 ⊢ (𝜑 → + ∈ 𝑋) | |
| 5 | lmodstr.s | . . 3 ⊢ (𝜑 → 𝐹 ∈ 𝑌) | |
| 6 | lmodstr.m | . . 3 ⊢ (𝜑 → · ∈ 𝑍) | |
| 7 | 2, 3, 4, 5, 6 | lmodstrd 12866 | . 2 ⊢ (𝜑 → 𝑊 Struct 〈1, 6〉) |
| 8 | 1 | simpri 113 | . . . . 5 ⊢ (Scalar‘ndx) ∈ ℕ |
| 9 | opexg 4262 | . . . . 5 ⊢ (((Scalar‘ndx) ∈ ℕ ∧ 𝐹 ∈ 𝑌) → 〈(Scalar‘ndx), 𝐹〉 ∈ V) | |
| 10 | 8, 5, 9 | sylancr 414 | . . . 4 ⊢ (𝜑 → 〈(Scalar‘ndx), 𝐹〉 ∈ V) |
| 11 | tpid3g 3738 | . . . 4 ⊢ (〈(Scalar‘ndx), 𝐹〉 ∈ V → 〈(Scalar‘ndx), 𝐹〉 ∈ {〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), + 〉, 〈(Scalar‘ndx), 𝐹〉}) | |
| 12 | elun1 3331 | . . . 4 ⊢ (〈(Scalar‘ndx), 𝐹〉 ∈ {〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), + 〉, 〈(Scalar‘ndx), 𝐹〉} → 〈(Scalar‘ndx), 𝐹〉 ∈ ({〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), + 〉, 〈(Scalar‘ndx), 𝐹〉} ∪ {〈( ·𝑠 ‘ndx), · 〉})) | |
| 13 | 10, 11, 12 | 3syl 17 | . . 3 ⊢ (𝜑 → 〈(Scalar‘ndx), 𝐹〉 ∈ ({〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), + 〉, 〈(Scalar‘ndx), 𝐹〉} ∪ {〈( ·𝑠 ‘ndx), · 〉})) |
| 14 | 13, 2 | eleqtrrdi 2290 | . 2 ⊢ (𝜑 → 〈(Scalar‘ndx), 𝐹〉 ∈ 𝑊) |
| 15 | 1, 7, 5, 14 | opelstrsl 12817 | 1 ⊢ (𝜑 → 𝐹 = (Scalar‘𝑊)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1364 ∈ wcel 2167 Vcvv 2763 ∪ cun 3155 {csn 3623 {ctp 3625 〈cop 3626 ‘cfv 5259 1c1 7897 ℕcn 9007 6c6 9062 ndxcnx 12700 Slot cslot 12702 Basecbs 12703 +gcplusg 12780 Scalarcsca 12783 ·𝑠 cvsca 12784 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4152 ax-pow 4208 ax-pr 4243 ax-un 4469 ax-setind 4574 ax-cnex 7987 ax-resscn 7988 ax-1cn 7989 ax-1re 7990 ax-icn 7991 ax-addcl 7992 ax-addrcl 7993 ax-mulcl 7994 ax-addcom 7996 ax-addass 7998 ax-distr 8000 ax-i2m1 8001 ax-0lt1 8002 ax-0id 8004 ax-rnegex 8005 ax-cnre 8007 ax-pre-ltirr 8008 ax-pre-ltwlin 8009 ax-pre-lttrn 8010 ax-pre-apti 8011 ax-pre-ltadd 8012 |
| This theorem depends on definitions: df-bi 117 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-reu 2482 df-rab 2484 df-v 2765 df-sbc 2990 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3452 df-pw 3608 df-sn 3629 df-pr 3630 df-tp 3631 df-op 3632 df-uni 3841 df-int 3876 df-br 4035 df-opab 4096 df-mpt 4097 df-id 4329 df-xp 4670 df-rel 4671 df-cnv 4672 df-co 4673 df-dm 4674 df-rn 4675 df-res 4676 df-ima 4677 df-iota 5220 df-fun 5261 df-fn 5262 df-f 5263 df-fv 5267 df-riota 5880 df-ov 5928 df-oprab 5929 df-mpo 5930 df-pnf 8080 df-mnf 8081 df-xr 8082 df-ltxr 8083 df-le 8084 df-sub 8216 df-neg 8217 df-inn 9008 df-2 9066 df-3 9067 df-4 9068 df-5 9069 df-6 9070 df-n0 9267 df-z 9344 df-uz 9619 df-fz 10101 df-struct 12705 df-ndx 12706 df-slot 12707 df-base 12709 df-plusg 12793 df-sca 12796 df-vsca 12797 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |