Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > lmodscad | GIF version |
Description: The set of scalars of a constructed left vector space. (Contributed by Mario Carneiro, 2-Oct-2013.) (Revised by Jim Kingdon, 6-Feb-2023.) |
Ref | Expression |
---|---|
lvecfn.w | ⊢ 𝑊 = ({〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), + 〉, 〈(Scalar‘ndx), 𝐹〉} ∪ {〈( ·𝑠 ‘ndx), · 〉}) |
lmodstr.b | ⊢ (𝜑 → 𝐵 ∈ 𝑉) |
lmodstr.g | ⊢ (𝜑 → + ∈ 𝑋) |
lmodstr.s | ⊢ (𝜑 → 𝐹 ∈ 𝑌) |
lmodstr.m | ⊢ (𝜑 → · ∈ 𝑍) |
Ref | Expression |
---|---|
lmodscad | ⊢ (𝜑 → 𝐹 = (Scalar‘𝑊)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | scaslid 12524 | . 2 ⊢ (Scalar = Slot (Scalar‘ndx) ∧ (Scalar‘ndx) ∈ ℕ) | |
2 | lvecfn.w | . . 3 ⊢ 𝑊 = ({〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), + 〉, 〈(Scalar‘ndx), 𝐹〉} ∪ {〈( ·𝑠 ‘ndx), · 〉}) | |
3 | lmodstr.b | . . 3 ⊢ (𝜑 → 𝐵 ∈ 𝑉) | |
4 | lmodstr.g | . . 3 ⊢ (𝜑 → + ∈ 𝑋) | |
5 | lmodstr.s | . . 3 ⊢ (𝜑 → 𝐹 ∈ 𝑌) | |
6 | lmodstr.m | . . 3 ⊢ (𝜑 → · ∈ 𝑍) | |
7 | 2, 3, 4, 5, 6 | lmodstrd 12528 | . 2 ⊢ (𝜑 → 𝑊 Struct 〈1, 6〉) |
8 | 1 | simpri 112 | . . . . 5 ⊢ (Scalar‘ndx) ∈ ℕ |
9 | opexg 4206 | . . . . 5 ⊢ (((Scalar‘ndx) ∈ ℕ ∧ 𝐹 ∈ 𝑌) → 〈(Scalar‘ndx), 𝐹〉 ∈ V) | |
10 | 8, 5, 9 | sylancr 411 | . . . 4 ⊢ (𝜑 → 〈(Scalar‘ndx), 𝐹〉 ∈ V) |
11 | tpid3g 3691 | . . . 4 ⊢ (〈(Scalar‘ndx), 𝐹〉 ∈ V → 〈(Scalar‘ndx), 𝐹〉 ∈ {〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), + 〉, 〈(Scalar‘ndx), 𝐹〉}) | |
12 | elun1 3289 | . . . 4 ⊢ (〈(Scalar‘ndx), 𝐹〉 ∈ {〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), + 〉, 〈(Scalar‘ndx), 𝐹〉} → 〈(Scalar‘ndx), 𝐹〉 ∈ ({〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), + 〉, 〈(Scalar‘ndx), 𝐹〉} ∪ {〈( ·𝑠 ‘ndx), · 〉})) | |
13 | 10, 11, 12 | 3syl 17 | . . 3 ⊢ (𝜑 → 〈(Scalar‘ndx), 𝐹〉 ∈ ({〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), + 〉, 〈(Scalar‘ndx), 𝐹〉} ∪ {〈( ·𝑠 ‘ndx), · 〉})) |
14 | 13, 2 | eleqtrrdi 2260 | . 2 ⊢ (𝜑 → 〈(Scalar‘ndx), 𝐹〉 ∈ 𝑊) |
15 | 1, 7, 5, 14 | opelstrsl 12491 | 1 ⊢ (𝜑 → 𝐹 = (Scalar‘𝑊)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1343 ∈ wcel 2136 Vcvv 2726 ∪ cun 3114 {csn 3576 {ctp 3578 〈cop 3579 ‘cfv 5188 1c1 7754 ℕcn 8857 6c6 8912 ndxcnx 12391 Slot cslot 12393 Basecbs 12394 +gcplusg 12457 Scalarcsca 12460 ·𝑠 cvsca 12461 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pow 4153 ax-pr 4187 ax-un 4411 ax-setind 4514 ax-cnex 7844 ax-resscn 7845 ax-1cn 7846 ax-1re 7847 ax-icn 7848 ax-addcl 7849 ax-addrcl 7850 ax-mulcl 7851 ax-addcom 7853 ax-addass 7855 ax-distr 7857 ax-i2m1 7858 ax-0lt1 7859 ax-0id 7861 ax-rnegex 7862 ax-cnre 7864 ax-pre-ltirr 7865 ax-pre-ltwlin 7866 ax-pre-lttrn 7867 ax-pre-apti 7868 ax-pre-ltadd 7869 |
This theorem depends on definitions: df-bi 116 df-3or 969 df-3an 970 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ne 2337 df-nel 2432 df-ral 2449 df-rex 2450 df-reu 2451 df-rab 2453 df-v 2728 df-sbc 2952 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-nul 3410 df-pw 3561 df-sn 3582 df-pr 3583 df-tp 3584 df-op 3585 df-uni 3790 df-int 3825 df-br 3983 df-opab 4044 df-mpt 4045 df-id 4271 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-rn 4615 df-res 4616 df-ima 4617 df-iota 5153 df-fun 5190 df-fn 5191 df-f 5192 df-fv 5196 df-riota 5798 df-ov 5845 df-oprab 5846 df-mpo 5847 df-pnf 7935 df-mnf 7936 df-xr 7937 df-ltxr 7938 df-le 7939 df-sub 8071 df-neg 8072 df-inn 8858 df-2 8916 df-3 8917 df-4 8918 df-5 8919 df-6 8920 df-n0 9115 df-z 9192 df-uz 9467 df-fz 9945 df-struct 12396 df-ndx 12397 df-slot 12398 df-base 12400 df-plusg 12470 df-sca 12473 df-vsca 12474 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |