ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  lmodscad GIF version

Theorem lmodscad 12134
Description: The set of scalars of a constructed left vector space. (Contributed by Mario Carneiro, 2-Oct-2013.) (Revised by Jim Kingdon, 6-Feb-2023.)
Hypotheses
Ref Expression
lvecfn.w 𝑊 = ({⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), + ⟩, ⟨(Scalar‘ndx), 𝐹⟩} ∪ {⟨( ·𝑠 ‘ndx), · ⟩})
lmodstr.b (𝜑𝐵𝑉)
lmodstr.g (𝜑+𝑋)
lmodstr.s (𝜑𝐹𝑌)
lmodstr.m (𝜑·𝑍)
Assertion
Ref Expression
lmodscad (𝜑𝐹 = (Scalar‘𝑊))

Proof of Theorem lmodscad
StepHypRef Expression
1 scaslid 12127 . 2 (Scalar = Slot (Scalar‘ndx) ∧ (Scalar‘ndx) ∈ ℕ)
2 lvecfn.w . . 3 𝑊 = ({⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), + ⟩, ⟨(Scalar‘ndx), 𝐹⟩} ∪ {⟨( ·𝑠 ‘ndx), · ⟩})
3 lmodstr.b . . 3 (𝜑𝐵𝑉)
4 lmodstr.g . . 3 (𝜑+𝑋)
5 lmodstr.s . . 3 (𝜑𝐹𝑌)
6 lmodstr.m . . 3 (𝜑·𝑍)
72, 3, 4, 5, 6lmodstrd 12131 . 2 (𝜑𝑊 Struct ⟨1, 6⟩)
81simpri 112 . . . . 5 (Scalar‘ndx) ∈ ℕ
9 opexg 4158 . . . . 5 (((Scalar‘ndx) ∈ ℕ ∧ 𝐹𝑌) → ⟨(Scalar‘ndx), 𝐹⟩ ∈ V)
108, 5, 9sylancr 411 . . . 4 (𝜑 → ⟨(Scalar‘ndx), 𝐹⟩ ∈ V)
11 tpid3g 3646 . . . 4 (⟨(Scalar‘ndx), 𝐹⟩ ∈ V → ⟨(Scalar‘ndx), 𝐹⟩ ∈ {⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), + ⟩, ⟨(Scalar‘ndx), 𝐹⟩})
12 elun1 3248 . . . 4 (⟨(Scalar‘ndx), 𝐹⟩ ∈ {⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), + ⟩, ⟨(Scalar‘ndx), 𝐹⟩} → ⟨(Scalar‘ndx), 𝐹⟩ ∈ ({⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), + ⟩, ⟨(Scalar‘ndx), 𝐹⟩} ∪ {⟨( ·𝑠 ‘ndx), · ⟩}))
1310, 11, 123syl 17 . . 3 (𝜑 → ⟨(Scalar‘ndx), 𝐹⟩ ∈ ({⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), + ⟩, ⟨(Scalar‘ndx), 𝐹⟩} ∪ {⟨( ·𝑠 ‘ndx), · ⟩}))
1413, 2eleqtrrdi 2234 . 2 (𝜑 → ⟨(Scalar‘ndx), 𝐹⟩ ∈ 𝑊)
151, 7, 5, 14opelstrsl 12094 1 (𝜑𝐹 = (Scalar‘𝑊))
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1332  wcel 1481  Vcvv 2689  cun 3074  {csn 3532  {ctp 3534  cop 3535  cfv 5131  1c1 7645  cn 8744  6c6 8799  ndxcnx 11995  Slot cslot 11997  Basecbs 11998  +gcplusg 12060  Scalarcsca 12063   ·𝑠 cvsca 12064
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-13 1492  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-sep 4054  ax-pow 4106  ax-pr 4139  ax-un 4363  ax-setind 4460  ax-cnex 7735  ax-resscn 7736  ax-1cn 7737  ax-1re 7738  ax-icn 7739  ax-addcl 7740  ax-addrcl 7741  ax-mulcl 7742  ax-addcom 7744  ax-addass 7746  ax-distr 7748  ax-i2m1 7749  ax-0lt1 7750  ax-0id 7752  ax-rnegex 7753  ax-cnre 7755  ax-pre-ltirr 7756  ax-pre-ltwlin 7757  ax-pre-lttrn 7758  ax-pre-apti 7759  ax-pre-ltadd 7760
This theorem depends on definitions:  df-bi 116  df-3or 964  df-3an 965  df-tru 1335  df-fal 1338  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ne 2310  df-nel 2405  df-ral 2422  df-rex 2423  df-reu 2424  df-rab 2426  df-v 2691  df-sbc 2914  df-dif 3078  df-un 3080  df-in 3082  df-ss 3089  df-nul 3369  df-pw 3517  df-sn 3538  df-pr 3539  df-tp 3540  df-op 3541  df-uni 3745  df-int 3780  df-br 3938  df-opab 3998  df-mpt 3999  df-id 4223  df-xp 4553  df-rel 4554  df-cnv 4555  df-co 4556  df-dm 4557  df-rn 4558  df-res 4559  df-ima 4560  df-iota 5096  df-fun 5133  df-fn 5134  df-f 5135  df-fv 5139  df-riota 5738  df-ov 5785  df-oprab 5786  df-mpo 5787  df-pnf 7826  df-mnf 7827  df-xr 7828  df-ltxr 7829  df-le 7830  df-sub 7959  df-neg 7960  df-inn 8745  df-2 8803  df-3 8804  df-4 8805  df-5 8806  df-6 8807  df-n0 9002  df-z 9079  df-uz 9351  df-fz 9822  df-struct 12000  df-ndx 12001  df-slot 12002  df-base 12004  df-plusg 12073  df-sca 12076  df-vsca 12077
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator