| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ipsmulrd | GIF version | ||
| Description: The multiplicative operation of a constructed inner product space. (Contributed by Stefan O'Rear, 27-Nov-2014.) (Revised by Jim Kingdon, 7-Feb-2023.) |
| Ref | Expression |
|---|---|
| ipspart.a | ⊢ 𝐴 = ({〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), + 〉, 〈(.r‘ndx), × 〉} ∪ {〈(Scalar‘ndx), 𝑆〉, 〈( ·𝑠 ‘ndx), · 〉, 〈(·𝑖‘ndx), 𝐼〉}) |
| ipsstrd.b | ⊢ (𝜑 → 𝐵 ∈ 𝑉) |
| ipsstrd.p | ⊢ (𝜑 → + ∈ 𝑊) |
| ipsstrd.r | ⊢ (𝜑 → × ∈ 𝑋) |
| ipsstrd.s | ⊢ (𝜑 → 𝑆 ∈ 𝑌) |
| ipsstrd.x | ⊢ (𝜑 → · ∈ 𝑄) |
| ipsstrd.i | ⊢ (𝜑 → 𝐼 ∈ 𝑍) |
| Ref | Expression |
|---|---|
| ipsmulrd | ⊢ (𝜑 → × = (.r‘𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mulrslid 13160 | . 2 ⊢ (.r = Slot (.r‘ndx) ∧ (.r‘ndx) ∈ ℕ) | |
| 2 | ipspart.a | . . 3 ⊢ 𝐴 = ({〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), + 〉, 〈(.r‘ndx), × 〉} ∪ {〈(Scalar‘ndx), 𝑆〉, 〈( ·𝑠 ‘ndx), · 〉, 〈(·𝑖‘ndx), 𝐼〉}) | |
| 3 | ipsstrd.b | . . 3 ⊢ (𝜑 → 𝐵 ∈ 𝑉) | |
| 4 | ipsstrd.p | . . 3 ⊢ (𝜑 → + ∈ 𝑊) | |
| 5 | ipsstrd.r | . . 3 ⊢ (𝜑 → × ∈ 𝑋) | |
| 6 | ipsstrd.s | . . 3 ⊢ (𝜑 → 𝑆 ∈ 𝑌) | |
| 7 | ipsstrd.x | . . 3 ⊢ (𝜑 → · ∈ 𝑄) | |
| 8 | ipsstrd.i | . . 3 ⊢ (𝜑 → 𝐼 ∈ 𝑍) | |
| 9 | 2, 3, 4, 5, 6, 7, 8 | ipsstrd 13204 | . 2 ⊢ (𝜑 → 𝐴 Struct 〈1, 8〉) |
| 10 | 1 | simpri 113 | . . . . 5 ⊢ (.r‘ndx) ∈ ℕ |
| 11 | opexg 4313 | . . . . 5 ⊢ (((.r‘ndx) ∈ ℕ ∧ × ∈ 𝑋) → 〈(.r‘ndx), × 〉 ∈ V) | |
| 12 | 10, 5, 11 | sylancr 414 | . . . 4 ⊢ (𝜑 → 〈(.r‘ndx), × 〉 ∈ V) |
| 13 | tpid3g 3781 | . . . 4 ⊢ (〈(.r‘ndx), × 〉 ∈ V → 〈(.r‘ndx), × 〉 ∈ {〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), + 〉, 〈(.r‘ndx), × 〉}) | |
| 14 | elun1 3371 | . . . 4 ⊢ (〈(.r‘ndx), × 〉 ∈ {〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), + 〉, 〈(.r‘ndx), × 〉} → 〈(.r‘ndx), × 〉 ∈ ({〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), + 〉, 〈(.r‘ndx), × 〉} ∪ {〈(Scalar‘ndx), 𝑆〉, 〈( ·𝑠 ‘ndx), · 〉, 〈(·𝑖‘ndx), 𝐼〉})) | |
| 15 | 12, 13, 14 | 3syl 17 | . . 3 ⊢ (𝜑 → 〈(.r‘ndx), × 〉 ∈ ({〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), + 〉, 〈(.r‘ndx), × 〉} ∪ {〈(Scalar‘ndx), 𝑆〉, 〈( ·𝑠 ‘ndx), · 〉, 〈(·𝑖‘ndx), 𝐼〉})) |
| 16 | 15, 2 | eleqtrrdi 2323 | . 2 ⊢ (𝜑 → 〈(.r‘ndx), × 〉 ∈ 𝐴) |
| 17 | 1, 9, 5, 16 | opelstrsl 13142 | 1 ⊢ (𝜑 → × = (.r‘𝐴)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1395 ∈ wcel 2200 Vcvv 2799 ∪ cun 3195 {ctp 3668 〈cop 3669 ‘cfv 5317 1c1 7996 ℕcn 9106 8c8 9163 ndxcnx 13024 Slot cslot 13026 Basecbs 13027 +gcplusg 13105 .rcmulr 13106 Scalarcsca 13108 ·𝑠 cvsca 13109 ·𝑖cip 13110 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4201 ax-pow 4257 ax-pr 4292 ax-un 4523 ax-setind 4628 ax-cnex 8086 ax-resscn 8087 ax-1cn 8088 ax-1re 8089 ax-icn 8090 ax-addcl 8091 ax-addrcl 8092 ax-mulcl 8093 ax-addcom 8095 ax-addass 8097 ax-distr 8099 ax-i2m1 8100 ax-0lt1 8101 ax-0id 8103 ax-rnegex 8104 ax-cnre 8106 ax-pre-ltirr 8107 ax-pre-ltwlin 8108 ax-pre-lttrn 8109 ax-pre-apti 8110 ax-pre-ltadd 8111 |
| This theorem depends on definitions: df-bi 117 df-3or 1003 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-nel 2496 df-ral 2513 df-rex 2514 df-reu 2515 df-rab 2517 df-v 2801 df-sbc 3029 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-pw 3651 df-sn 3672 df-pr 3673 df-tp 3674 df-op 3675 df-uni 3888 df-int 3923 df-br 4083 df-opab 4145 df-mpt 4146 df-id 4383 df-xp 4724 df-rel 4725 df-cnv 4726 df-co 4727 df-dm 4728 df-rn 4729 df-res 4730 df-ima 4731 df-iota 5277 df-fun 5319 df-fn 5320 df-f 5321 df-fv 5325 df-riota 5953 df-ov 6003 df-oprab 6004 df-mpo 6005 df-pnf 8179 df-mnf 8180 df-xr 8181 df-ltxr 8182 df-le 8183 df-sub 8315 df-neg 8316 df-inn 9107 df-2 9165 df-3 9166 df-4 9167 df-5 9168 df-6 9169 df-7 9170 df-8 9171 df-n0 9366 df-z 9443 df-uz 9719 df-fz 10201 df-struct 13029 df-ndx 13030 df-slot 13031 df-base 13033 df-plusg 13118 df-mulr 13119 df-sca 13121 df-vsca 13122 df-ip 13123 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |