| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > rspc2va | GIF version | ||
| Description: 2-variable restricted specialization, using implicit substitution. (Contributed by NM, 18-Jun-2014.) |
| Ref | Expression |
|---|---|
| rspc2v.1 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜒)) |
| rspc2v.2 | ⊢ (𝑦 = 𝐵 → (𝜒 ↔ 𝜓)) |
| Ref | Expression |
|---|---|
| rspc2va | ⊢ (((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) ∧ ∀𝑥 ∈ 𝐶 ∀𝑦 ∈ 𝐷 𝜑) → 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rspc2v.1 | . . 3 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜒)) | |
| 2 | rspc2v.2 | . . 3 ⊢ (𝑦 = 𝐵 → (𝜒 ↔ 𝜓)) | |
| 3 | 1, 2 | rspc2v 2889 | . 2 ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → (∀𝑥 ∈ 𝐶 ∀𝑦 ∈ 𝐷 𝜑 → 𝜓)) |
| 4 | 3 | imp 124 | 1 ⊢ (((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) ∧ ∀𝑥 ∈ 𝐶 ∀𝑦 ∈ 𝐷 𝜑) → 𝜓) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 = wceq 1372 ∈ wcel 2175 ∀wral 2483 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-ext 2186 |
| This theorem depends on definitions: df-bi 117 df-tru 1375 df-nf 1483 df-sb 1785 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-ral 2488 df-v 2773 |
| This theorem is referenced by: swopo 4352 ordtri2orexmid 4570 onsucelsucexmid 4577 ordsucunielexmid 4578 ordtri2or2exmid 4618 ontri2orexmidim 4619 isocnv 5879 isotr 5884 ovrspc2v 5969 off 6170 caofrss 6189 oprssdmm 6256 tridc 6995 tpfidceq 7026 fidcenumlemrks 7054 seq3caopr2 10636 seqcaopr2g 10637 seq3distr 10675 isprm6 12440 mhmpropd 13269 grpidssd 13379 grpinvssd 13380 dfgrp3mlem 13401 isnsg3 13514 domneq0 14005 comet 14942 mulcncf 15051 trilpo 15944 neapmkv 15969 |
| Copyright terms: Public domain | W3C validator |