ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xpcomeng GIF version

Theorem xpcomeng 6722
Description: Commutative law for equinumerosity of Cartesian product. Proposition 4.22(d) of [Mendelson] p. 254. (Contributed by NM, 27-Mar-2006.)
Assertion
Ref Expression
xpcomeng ((𝐴𝑉𝐵𝑊) → (𝐴 × 𝐵) ≈ (𝐵 × 𝐴))

Proof of Theorem xpcomeng
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 xpeq1 4553 . . 3 (𝑥 = 𝐴 → (𝑥 × 𝑦) = (𝐴 × 𝑦))
2 xpeq2 4554 . . 3 (𝑥 = 𝐴 → (𝑦 × 𝑥) = (𝑦 × 𝐴))
31, 2breq12d 3942 . 2 (𝑥 = 𝐴 → ((𝑥 × 𝑦) ≈ (𝑦 × 𝑥) ↔ (𝐴 × 𝑦) ≈ (𝑦 × 𝐴)))
4 xpeq2 4554 . . 3 (𝑦 = 𝐵 → (𝐴 × 𝑦) = (𝐴 × 𝐵))
5 xpeq1 4553 . . 3 (𝑦 = 𝐵 → (𝑦 × 𝐴) = (𝐵 × 𝐴))
64, 5breq12d 3942 . 2 (𝑦 = 𝐵 → ((𝐴 × 𝑦) ≈ (𝑦 × 𝐴) ↔ (𝐴 × 𝐵) ≈ (𝐵 × 𝐴)))
7 vex 2689 . . 3 𝑥 ∈ V
8 vex 2689 . . 3 𝑦 ∈ V
97, 8xpcomen 6721 . 2 (𝑥 × 𝑦) ≈ (𝑦 × 𝑥)
103, 6, 9vtocl2g 2750 1 ((𝐴𝑉𝐵𝑊) → (𝐴 × 𝐵) ≈ (𝐵 × 𝐴))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103   = wceq 1331  wcel 1480   class class class wbr 3929   × cxp 4537  cen 6632
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-sep 4046  ax-pow 4098  ax-pr 4131  ax-un 4355
This theorem depends on definitions:  df-bi 116  df-3an 964  df-tru 1334  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ral 2421  df-rex 2422  df-v 2688  df-sbc 2910  df-un 3075  df-in 3077  df-ss 3084  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-br 3930  df-opab 3990  df-mpt 3991  df-id 4215  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-rn 4550  df-iota 5088  df-fun 5125  df-fn 5126  df-f 5127  df-f1 5128  df-fo 5129  df-f1o 5130  df-fv 5131  df-1st 6038  df-2nd 6039  df-en 6635
This theorem is referenced by:  xpsnen2g  6723  xpdom1g  6727  hashxp  10584
  Copyright terms: Public domain W3C validator