ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  txopn GIF version

Theorem txopn 14501
Description: The product of two open sets is open in the product topology. (Contributed by Jeff Madsen, 2-Sep-2009.)
Assertion
Ref Expression
txopn (((𝑅𝑉𝑆𝑊) ∧ (𝐴𝑅𝐵𝑆)) → (𝐴 × 𝐵) ∈ (𝑅 ×t 𝑆))

Proof of Theorem txopn
Dummy variables 𝑢 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2196 . . . . . 6 ran (𝑢𝑅, 𝑣𝑆 ↦ (𝑢 × 𝑣)) = ran (𝑢𝑅, 𝑣𝑆 ↦ (𝑢 × 𝑣))
21txbasex 14493 . . . . 5 ((𝑅𝑉𝑆𝑊) → ran (𝑢𝑅, 𝑣𝑆 ↦ (𝑢 × 𝑣)) ∈ V)
3 bastg 14297 . . . . 5 (ran (𝑢𝑅, 𝑣𝑆 ↦ (𝑢 × 𝑣)) ∈ V → ran (𝑢𝑅, 𝑣𝑆 ↦ (𝑢 × 𝑣)) ⊆ (topGen‘ran (𝑢𝑅, 𝑣𝑆 ↦ (𝑢 × 𝑣))))
42, 3syl 14 . . . 4 ((𝑅𝑉𝑆𝑊) → ran (𝑢𝑅, 𝑣𝑆 ↦ (𝑢 × 𝑣)) ⊆ (topGen‘ran (𝑢𝑅, 𝑣𝑆 ↦ (𝑢 × 𝑣))))
54adantr 276 . . 3 (((𝑅𝑉𝑆𝑊) ∧ (𝐴𝑅𝐵𝑆)) → ran (𝑢𝑅, 𝑣𝑆 ↦ (𝑢 × 𝑣)) ⊆ (topGen‘ran (𝑢𝑅, 𝑣𝑆 ↦ (𝑢 × 𝑣))))
6 eqid 2196 . . . . . 6 (𝐴 × 𝐵) = (𝐴 × 𝐵)
7 xpeq1 4677 . . . . . . . 8 (𝑢 = 𝐴 → (𝑢 × 𝑣) = (𝐴 × 𝑣))
87eqeq2d 2208 . . . . . . 7 (𝑢 = 𝐴 → ((𝐴 × 𝐵) = (𝑢 × 𝑣) ↔ (𝐴 × 𝐵) = (𝐴 × 𝑣)))
9 xpeq2 4678 . . . . . . . 8 (𝑣 = 𝐵 → (𝐴 × 𝑣) = (𝐴 × 𝐵))
109eqeq2d 2208 . . . . . . 7 (𝑣 = 𝐵 → ((𝐴 × 𝐵) = (𝐴 × 𝑣) ↔ (𝐴 × 𝐵) = (𝐴 × 𝐵)))
118, 10rspc2ev 2883 . . . . . 6 ((𝐴𝑅𝐵𝑆 ∧ (𝐴 × 𝐵) = (𝐴 × 𝐵)) → ∃𝑢𝑅𝑣𝑆 (𝐴 × 𝐵) = (𝑢 × 𝑣))
126, 11mp3an3 1337 . . . . 5 ((𝐴𝑅𝐵𝑆) → ∃𝑢𝑅𝑣𝑆 (𝐴 × 𝐵) = (𝑢 × 𝑣))
13 xpexg 4777 . . . . . 6 ((𝐴𝑅𝐵𝑆) → (𝐴 × 𝐵) ∈ V)
14 eqid 2196 . . . . . . 7 (𝑢𝑅, 𝑣𝑆 ↦ (𝑢 × 𝑣)) = (𝑢𝑅, 𝑣𝑆 ↦ (𝑢 × 𝑣))
1514elrnmpog 6035 . . . . . 6 ((𝐴 × 𝐵) ∈ V → ((𝐴 × 𝐵) ∈ ran (𝑢𝑅, 𝑣𝑆 ↦ (𝑢 × 𝑣)) ↔ ∃𝑢𝑅𝑣𝑆 (𝐴 × 𝐵) = (𝑢 × 𝑣)))
1613, 15syl 14 . . . . 5 ((𝐴𝑅𝐵𝑆) → ((𝐴 × 𝐵) ∈ ran (𝑢𝑅, 𝑣𝑆 ↦ (𝑢 × 𝑣)) ↔ ∃𝑢𝑅𝑣𝑆 (𝐴 × 𝐵) = (𝑢 × 𝑣)))
1712, 16mpbird 167 . . . 4 ((𝐴𝑅𝐵𝑆) → (𝐴 × 𝐵) ∈ ran (𝑢𝑅, 𝑣𝑆 ↦ (𝑢 × 𝑣)))
1817adantl 277 . . 3 (((𝑅𝑉𝑆𝑊) ∧ (𝐴𝑅𝐵𝑆)) → (𝐴 × 𝐵) ∈ ran (𝑢𝑅, 𝑣𝑆 ↦ (𝑢 × 𝑣)))
195, 18sseldd 3184 . 2 (((𝑅𝑉𝑆𝑊) ∧ (𝐴𝑅𝐵𝑆)) → (𝐴 × 𝐵) ∈ (topGen‘ran (𝑢𝑅, 𝑣𝑆 ↦ (𝑢 × 𝑣))))
201txval 14491 . . 3 ((𝑅𝑉𝑆𝑊) → (𝑅 ×t 𝑆) = (topGen‘ran (𝑢𝑅, 𝑣𝑆 ↦ (𝑢 × 𝑣))))
2120adantr 276 . 2 (((𝑅𝑉𝑆𝑊) ∧ (𝐴𝑅𝐵𝑆)) → (𝑅 ×t 𝑆) = (topGen‘ran (𝑢𝑅, 𝑣𝑆 ↦ (𝑢 × 𝑣))))
2219, 21eleqtrrd 2276 1 (((𝑅𝑉𝑆𝑊) ∧ (𝐴𝑅𝐵𝑆)) → (𝐴 × 𝐵) ∈ (𝑅 ×t 𝑆))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1364  wcel 2167  wrex 2476  Vcvv 2763  wss 3157   × cxp 4661  ran crn 4664  cfv 5258  (class class class)co 5922  cmpo 5924  topGenctg 12925   ×t ctx 14488
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4148  ax-sep 4151  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-ral 2480  df-rex 2481  df-reu 2482  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-iun 3918  df-br 4034  df-opab 4095  df-mpt 4096  df-id 4328  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-f1 5263  df-fo 5264  df-f1o 5265  df-fv 5266  df-ov 5925  df-oprab 5926  df-mpo 5927  df-1st 6198  df-2nd 6199  df-topgen 12931  df-tx 14489
This theorem is referenced by:  txbasval  14503  neitx  14504  tx1cn  14505  tx2cn  14506  txlm  14515
  Copyright terms: Public domain W3C validator