ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  txopn GIF version

Theorem txopn 14852
Description: The product of two open sets is open in the product topology. (Contributed by Jeff Madsen, 2-Sep-2009.)
Assertion
Ref Expression
txopn (((𝑅𝑉𝑆𝑊) ∧ (𝐴𝑅𝐵𝑆)) → (𝐴 × 𝐵) ∈ (𝑅 ×t 𝑆))

Proof of Theorem txopn
Dummy variables 𝑢 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2207 . . . . . 6 ran (𝑢𝑅, 𝑣𝑆 ↦ (𝑢 × 𝑣)) = ran (𝑢𝑅, 𝑣𝑆 ↦ (𝑢 × 𝑣))
21txbasex 14844 . . . . 5 ((𝑅𝑉𝑆𝑊) → ran (𝑢𝑅, 𝑣𝑆 ↦ (𝑢 × 𝑣)) ∈ V)
3 bastg 14648 . . . . 5 (ran (𝑢𝑅, 𝑣𝑆 ↦ (𝑢 × 𝑣)) ∈ V → ran (𝑢𝑅, 𝑣𝑆 ↦ (𝑢 × 𝑣)) ⊆ (topGen‘ran (𝑢𝑅, 𝑣𝑆 ↦ (𝑢 × 𝑣))))
42, 3syl 14 . . . 4 ((𝑅𝑉𝑆𝑊) → ran (𝑢𝑅, 𝑣𝑆 ↦ (𝑢 × 𝑣)) ⊆ (topGen‘ran (𝑢𝑅, 𝑣𝑆 ↦ (𝑢 × 𝑣))))
54adantr 276 . . 3 (((𝑅𝑉𝑆𝑊) ∧ (𝐴𝑅𝐵𝑆)) → ran (𝑢𝑅, 𝑣𝑆 ↦ (𝑢 × 𝑣)) ⊆ (topGen‘ran (𝑢𝑅, 𝑣𝑆 ↦ (𝑢 × 𝑣))))
6 eqid 2207 . . . . . 6 (𝐴 × 𝐵) = (𝐴 × 𝐵)
7 xpeq1 4707 . . . . . . . 8 (𝑢 = 𝐴 → (𝑢 × 𝑣) = (𝐴 × 𝑣))
87eqeq2d 2219 . . . . . . 7 (𝑢 = 𝐴 → ((𝐴 × 𝐵) = (𝑢 × 𝑣) ↔ (𝐴 × 𝐵) = (𝐴 × 𝑣)))
9 xpeq2 4708 . . . . . . . 8 (𝑣 = 𝐵 → (𝐴 × 𝑣) = (𝐴 × 𝐵))
109eqeq2d 2219 . . . . . . 7 (𝑣 = 𝐵 → ((𝐴 × 𝐵) = (𝐴 × 𝑣) ↔ (𝐴 × 𝐵) = (𝐴 × 𝐵)))
118, 10rspc2ev 2899 . . . . . 6 ((𝐴𝑅𝐵𝑆 ∧ (𝐴 × 𝐵) = (𝐴 × 𝐵)) → ∃𝑢𝑅𝑣𝑆 (𝐴 × 𝐵) = (𝑢 × 𝑣))
126, 11mp3an3 1339 . . . . 5 ((𝐴𝑅𝐵𝑆) → ∃𝑢𝑅𝑣𝑆 (𝐴 × 𝐵) = (𝑢 × 𝑣))
13 xpexg 4807 . . . . . 6 ((𝐴𝑅𝐵𝑆) → (𝐴 × 𝐵) ∈ V)
14 eqid 2207 . . . . . . 7 (𝑢𝑅, 𝑣𝑆 ↦ (𝑢 × 𝑣)) = (𝑢𝑅, 𝑣𝑆 ↦ (𝑢 × 𝑣))
1514elrnmpog 6081 . . . . . 6 ((𝐴 × 𝐵) ∈ V → ((𝐴 × 𝐵) ∈ ran (𝑢𝑅, 𝑣𝑆 ↦ (𝑢 × 𝑣)) ↔ ∃𝑢𝑅𝑣𝑆 (𝐴 × 𝐵) = (𝑢 × 𝑣)))
1613, 15syl 14 . . . . 5 ((𝐴𝑅𝐵𝑆) → ((𝐴 × 𝐵) ∈ ran (𝑢𝑅, 𝑣𝑆 ↦ (𝑢 × 𝑣)) ↔ ∃𝑢𝑅𝑣𝑆 (𝐴 × 𝐵) = (𝑢 × 𝑣)))
1712, 16mpbird 167 . . . 4 ((𝐴𝑅𝐵𝑆) → (𝐴 × 𝐵) ∈ ran (𝑢𝑅, 𝑣𝑆 ↦ (𝑢 × 𝑣)))
1817adantl 277 . . 3 (((𝑅𝑉𝑆𝑊) ∧ (𝐴𝑅𝐵𝑆)) → (𝐴 × 𝐵) ∈ ran (𝑢𝑅, 𝑣𝑆 ↦ (𝑢 × 𝑣)))
195, 18sseldd 3202 . 2 (((𝑅𝑉𝑆𝑊) ∧ (𝐴𝑅𝐵𝑆)) → (𝐴 × 𝐵) ∈ (topGen‘ran (𝑢𝑅, 𝑣𝑆 ↦ (𝑢 × 𝑣))))
201txval 14842 . . 3 ((𝑅𝑉𝑆𝑊) → (𝑅 ×t 𝑆) = (topGen‘ran (𝑢𝑅, 𝑣𝑆 ↦ (𝑢 × 𝑣))))
2120adantr 276 . 2 (((𝑅𝑉𝑆𝑊) ∧ (𝐴𝑅𝐵𝑆)) → (𝑅 ×t 𝑆) = (topGen‘ran (𝑢𝑅, 𝑣𝑆 ↦ (𝑢 × 𝑣))))
2219, 21eleqtrrd 2287 1 (((𝑅𝑉𝑆𝑊) ∧ (𝐴𝑅𝐵𝑆)) → (𝐴 × 𝐵) ∈ (𝑅 ×t 𝑆))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1373  wcel 2178  wrex 2487  Vcvv 2776  wss 3174   × cxp 4691  ran crn 4694  cfv 5290  (class class class)co 5967  cmpo 5969  topGenctg 13201   ×t ctx 14839
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-coll 4175  ax-sep 4178  ax-pow 4234  ax-pr 4269  ax-un 4498  ax-setind 4603
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ne 2379  df-ral 2491  df-rex 2492  df-reu 2493  df-rab 2495  df-v 2778  df-sbc 3006  df-csb 3102  df-dif 3176  df-un 3178  df-in 3180  df-ss 3187  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-iun 3943  df-br 4060  df-opab 4122  df-mpt 4123  df-id 4358  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-rn 4704  df-res 4705  df-ima 4706  df-iota 5251  df-fun 5292  df-fn 5293  df-f 5294  df-f1 5295  df-fo 5296  df-f1o 5297  df-fv 5298  df-ov 5970  df-oprab 5971  df-mpo 5972  df-1st 6249  df-2nd 6250  df-topgen 13207  df-tx 14840
This theorem is referenced by:  txbasval  14854  neitx  14855  tx1cn  14856  tx2cn  14857  txlm  14866
  Copyright terms: Public domain W3C validator