ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  txopn GIF version

Theorem txopn 14939
Description: The product of two open sets is open in the product topology. (Contributed by Jeff Madsen, 2-Sep-2009.)
Assertion
Ref Expression
txopn (((𝑅𝑉𝑆𝑊) ∧ (𝐴𝑅𝐵𝑆)) → (𝐴 × 𝐵) ∈ (𝑅 ×t 𝑆))

Proof of Theorem txopn
Dummy variables 𝑢 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2229 . . . . . 6 ran (𝑢𝑅, 𝑣𝑆 ↦ (𝑢 × 𝑣)) = ran (𝑢𝑅, 𝑣𝑆 ↦ (𝑢 × 𝑣))
21txbasex 14931 . . . . 5 ((𝑅𝑉𝑆𝑊) → ran (𝑢𝑅, 𝑣𝑆 ↦ (𝑢 × 𝑣)) ∈ V)
3 bastg 14735 . . . . 5 (ran (𝑢𝑅, 𝑣𝑆 ↦ (𝑢 × 𝑣)) ∈ V → ran (𝑢𝑅, 𝑣𝑆 ↦ (𝑢 × 𝑣)) ⊆ (topGen‘ran (𝑢𝑅, 𝑣𝑆 ↦ (𝑢 × 𝑣))))
42, 3syl 14 . . . 4 ((𝑅𝑉𝑆𝑊) → ran (𝑢𝑅, 𝑣𝑆 ↦ (𝑢 × 𝑣)) ⊆ (topGen‘ran (𝑢𝑅, 𝑣𝑆 ↦ (𝑢 × 𝑣))))
54adantr 276 . . 3 (((𝑅𝑉𝑆𝑊) ∧ (𝐴𝑅𝐵𝑆)) → ran (𝑢𝑅, 𝑣𝑆 ↦ (𝑢 × 𝑣)) ⊆ (topGen‘ran (𝑢𝑅, 𝑣𝑆 ↦ (𝑢 × 𝑣))))
6 eqid 2229 . . . . . 6 (𝐴 × 𝐵) = (𝐴 × 𝐵)
7 xpeq1 4733 . . . . . . . 8 (𝑢 = 𝐴 → (𝑢 × 𝑣) = (𝐴 × 𝑣))
87eqeq2d 2241 . . . . . . 7 (𝑢 = 𝐴 → ((𝐴 × 𝐵) = (𝑢 × 𝑣) ↔ (𝐴 × 𝐵) = (𝐴 × 𝑣)))
9 xpeq2 4734 . . . . . . . 8 (𝑣 = 𝐵 → (𝐴 × 𝑣) = (𝐴 × 𝐵))
109eqeq2d 2241 . . . . . . 7 (𝑣 = 𝐵 → ((𝐴 × 𝐵) = (𝐴 × 𝑣) ↔ (𝐴 × 𝐵) = (𝐴 × 𝐵)))
118, 10rspc2ev 2922 . . . . . 6 ((𝐴𝑅𝐵𝑆 ∧ (𝐴 × 𝐵) = (𝐴 × 𝐵)) → ∃𝑢𝑅𝑣𝑆 (𝐴 × 𝐵) = (𝑢 × 𝑣))
126, 11mp3an3 1360 . . . . 5 ((𝐴𝑅𝐵𝑆) → ∃𝑢𝑅𝑣𝑆 (𝐴 × 𝐵) = (𝑢 × 𝑣))
13 xpexg 4833 . . . . . 6 ((𝐴𝑅𝐵𝑆) → (𝐴 × 𝐵) ∈ V)
14 eqid 2229 . . . . . . 7 (𝑢𝑅, 𝑣𝑆 ↦ (𝑢 × 𝑣)) = (𝑢𝑅, 𝑣𝑆 ↦ (𝑢 × 𝑣))
1514elrnmpog 6117 . . . . . 6 ((𝐴 × 𝐵) ∈ V → ((𝐴 × 𝐵) ∈ ran (𝑢𝑅, 𝑣𝑆 ↦ (𝑢 × 𝑣)) ↔ ∃𝑢𝑅𝑣𝑆 (𝐴 × 𝐵) = (𝑢 × 𝑣)))
1613, 15syl 14 . . . . 5 ((𝐴𝑅𝐵𝑆) → ((𝐴 × 𝐵) ∈ ran (𝑢𝑅, 𝑣𝑆 ↦ (𝑢 × 𝑣)) ↔ ∃𝑢𝑅𝑣𝑆 (𝐴 × 𝐵) = (𝑢 × 𝑣)))
1712, 16mpbird 167 . . . 4 ((𝐴𝑅𝐵𝑆) → (𝐴 × 𝐵) ∈ ran (𝑢𝑅, 𝑣𝑆 ↦ (𝑢 × 𝑣)))
1817adantl 277 . . 3 (((𝑅𝑉𝑆𝑊) ∧ (𝐴𝑅𝐵𝑆)) → (𝐴 × 𝐵) ∈ ran (𝑢𝑅, 𝑣𝑆 ↦ (𝑢 × 𝑣)))
195, 18sseldd 3225 . 2 (((𝑅𝑉𝑆𝑊) ∧ (𝐴𝑅𝐵𝑆)) → (𝐴 × 𝐵) ∈ (topGen‘ran (𝑢𝑅, 𝑣𝑆 ↦ (𝑢 × 𝑣))))
201txval 14929 . . 3 ((𝑅𝑉𝑆𝑊) → (𝑅 ×t 𝑆) = (topGen‘ran (𝑢𝑅, 𝑣𝑆 ↦ (𝑢 × 𝑣))))
2120adantr 276 . 2 (((𝑅𝑉𝑆𝑊) ∧ (𝐴𝑅𝐵𝑆)) → (𝑅 ×t 𝑆) = (topGen‘ran (𝑢𝑅, 𝑣𝑆 ↦ (𝑢 × 𝑣))))
2219, 21eleqtrrd 2309 1 (((𝑅𝑉𝑆𝑊) ∧ (𝐴𝑅𝐵𝑆)) → (𝐴 × 𝐵) ∈ (𝑅 ×t 𝑆))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1395  wcel 2200  wrex 2509  Vcvv 2799  wss 3197   × cxp 4717  ran crn 4720  cfv 5318  (class class class)co 6001  cmpo 6003  topGenctg 13287   ×t ctx 14926
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4199  ax-sep 4202  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-iun 3967  df-br 4084  df-opab 4146  df-mpt 4147  df-id 4384  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-f1 5323  df-fo 5324  df-f1o 5325  df-fv 5326  df-ov 6004  df-oprab 6005  df-mpo 6006  df-1st 6286  df-2nd 6287  df-topgen 13293  df-tx 14927
This theorem is referenced by:  txbasval  14941  neitx  14942  tx1cn  14943  tx2cn  14944  txlm  14953
  Copyright terms: Public domain W3C validator