Step | Hyp | Ref
| Expression |
1 | | eqid 2165 |
. . . . . 6
⊢ ran
(𝑢 ∈ 𝑅, 𝑣 ∈ 𝑆 ↦ (𝑢 × 𝑣)) = ran (𝑢 ∈ 𝑅, 𝑣 ∈ 𝑆 ↦ (𝑢 × 𝑣)) |
2 | 1 | txbasex 12897 |
. . . . 5
⊢ ((𝑅 ∈ 𝑉 ∧ 𝑆 ∈ 𝑊) → ran (𝑢 ∈ 𝑅, 𝑣 ∈ 𝑆 ↦ (𝑢 × 𝑣)) ∈ V) |
3 | | bastg 12701 |
. . . . 5
⊢ (ran
(𝑢 ∈ 𝑅, 𝑣 ∈ 𝑆 ↦ (𝑢 × 𝑣)) ∈ V → ran (𝑢 ∈ 𝑅, 𝑣 ∈ 𝑆 ↦ (𝑢 × 𝑣)) ⊆ (topGen‘ran (𝑢 ∈ 𝑅, 𝑣 ∈ 𝑆 ↦ (𝑢 × 𝑣)))) |
4 | 2, 3 | syl 14 |
. . . 4
⊢ ((𝑅 ∈ 𝑉 ∧ 𝑆 ∈ 𝑊) → ran (𝑢 ∈ 𝑅, 𝑣 ∈ 𝑆 ↦ (𝑢 × 𝑣)) ⊆ (topGen‘ran (𝑢 ∈ 𝑅, 𝑣 ∈ 𝑆 ↦ (𝑢 × 𝑣)))) |
5 | 4 | adantr 274 |
. . 3
⊢ (((𝑅 ∈ 𝑉 ∧ 𝑆 ∈ 𝑊) ∧ (𝐴 ∈ 𝑅 ∧ 𝐵 ∈ 𝑆)) → ran (𝑢 ∈ 𝑅, 𝑣 ∈ 𝑆 ↦ (𝑢 × 𝑣)) ⊆ (topGen‘ran (𝑢 ∈ 𝑅, 𝑣 ∈ 𝑆 ↦ (𝑢 × 𝑣)))) |
6 | | eqid 2165 |
. . . . . 6
⊢ (𝐴 × 𝐵) = (𝐴 × 𝐵) |
7 | | xpeq1 4618 |
. . . . . . . 8
⊢ (𝑢 = 𝐴 → (𝑢 × 𝑣) = (𝐴 × 𝑣)) |
8 | 7 | eqeq2d 2177 |
. . . . . . 7
⊢ (𝑢 = 𝐴 → ((𝐴 × 𝐵) = (𝑢 × 𝑣) ↔ (𝐴 × 𝐵) = (𝐴 × 𝑣))) |
9 | | xpeq2 4619 |
. . . . . . . 8
⊢ (𝑣 = 𝐵 → (𝐴 × 𝑣) = (𝐴 × 𝐵)) |
10 | 9 | eqeq2d 2177 |
. . . . . . 7
⊢ (𝑣 = 𝐵 → ((𝐴 × 𝐵) = (𝐴 × 𝑣) ↔ (𝐴 × 𝐵) = (𝐴 × 𝐵))) |
11 | 8, 10 | rspc2ev 2845 |
. . . . . 6
⊢ ((𝐴 ∈ 𝑅 ∧ 𝐵 ∈ 𝑆 ∧ (𝐴 × 𝐵) = (𝐴 × 𝐵)) → ∃𝑢 ∈ 𝑅 ∃𝑣 ∈ 𝑆 (𝐴 × 𝐵) = (𝑢 × 𝑣)) |
12 | 6, 11 | mp3an3 1316 |
. . . . 5
⊢ ((𝐴 ∈ 𝑅 ∧ 𝐵 ∈ 𝑆) → ∃𝑢 ∈ 𝑅 ∃𝑣 ∈ 𝑆 (𝐴 × 𝐵) = (𝑢 × 𝑣)) |
13 | | xpexg 4718 |
. . . . . 6
⊢ ((𝐴 ∈ 𝑅 ∧ 𝐵 ∈ 𝑆) → (𝐴 × 𝐵) ∈ V) |
14 | | eqid 2165 |
. . . . . . 7
⊢ (𝑢 ∈ 𝑅, 𝑣 ∈ 𝑆 ↦ (𝑢 × 𝑣)) = (𝑢 ∈ 𝑅, 𝑣 ∈ 𝑆 ↦ (𝑢 × 𝑣)) |
15 | 14 | elrnmpog 5954 |
. . . . . 6
⊢ ((𝐴 × 𝐵) ∈ V → ((𝐴 × 𝐵) ∈ ran (𝑢 ∈ 𝑅, 𝑣 ∈ 𝑆 ↦ (𝑢 × 𝑣)) ↔ ∃𝑢 ∈ 𝑅 ∃𝑣 ∈ 𝑆 (𝐴 × 𝐵) = (𝑢 × 𝑣))) |
16 | 13, 15 | syl 14 |
. . . . 5
⊢ ((𝐴 ∈ 𝑅 ∧ 𝐵 ∈ 𝑆) → ((𝐴 × 𝐵) ∈ ran (𝑢 ∈ 𝑅, 𝑣 ∈ 𝑆 ↦ (𝑢 × 𝑣)) ↔ ∃𝑢 ∈ 𝑅 ∃𝑣 ∈ 𝑆 (𝐴 × 𝐵) = (𝑢 × 𝑣))) |
17 | 12, 16 | mpbird 166 |
. . . 4
⊢ ((𝐴 ∈ 𝑅 ∧ 𝐵 ∈ 𝑆) → (𝐴 × 𝐵) ∈ ran (𝑢 ∈ 𝑅, 𝑣 ∈ 𝑆 ↦ (𝑢 × 𝑣))) |
18 | 17 | adantl 275 |
. . 3
⊢ (((𝑅 ∈ 𝑉 ∧ 𝑆 ∈ 𝑊) ∧ (𝐴 ∈ 𝑅 ∧ 𝐵 ∈ 𝑆)) → (𝐴 × 𝐵) ∈ ran (𝑢 ∈ 𝑅, 𝑣 ∈ 𝑆 ↦ (𝑢 × 𝑣))) |
19 | 5, 18 | sseldd 3143 |
. 2
⊢ (((𝑅 ∈ 𝑉 ∧ 𝑆 ∈ 𝑊) ∧ (𝐴 ∈ 𝑅 ∧ 𝐵 ∈ 𝑆)) → (𝐴 × 𝐵) ∈ (topGen‘ran (𝑢 ∈ 𝑅, 𝑣 ∈ 𝑆 ↦ (𝑢 × 𝑣)))) |
20 | 1 | txval 12895 |
. . 3
⊢ ((𝑅 ∈ 𝑉 ∧ 𝑆 ∈ 𝑊) → (𝑅 ×t 𝑆) = (topGen‘ran (𝑢 ∈ 𝑅, 𝑣 ∈ 𝑆 ↦ (𝑢 × 𝑣)))) |
21 | 20 | adantr 274 |
. 2
⊢ (((𝑅 ∈ 𝑉 ∧ 𝑆 ∈ 𝑊) ∧ (𝐴 ∈ 𝑅 ∧ 𝐵 ∈ 𝑆)) → (𝑅 ×t 𝑆) = (topGen‘ran (𝑢 ∈ 𝑅, 𝑣 ∈ 𝑆 ↦ (𝑢 × 𝑣)))) |
22 | 19, 21 | eleqtrrd 2246 |
1
⊢ (((𝑅 ∈ 𝑉 ∧ 𝑆 ∈ 𝑊) ∧ (𝐴 ∈ 𝑅 ∧ 𝐵 ∈ 𝑆)) → (𝐴 × 𝐵) ∈ (𝑅 ×t 𝑆)) |