| Step | Hyp | Ref
 | Expression | 
| 1 |   | eqid 2196 | 
. . . . . 6
⊢ ran
(𝑢 ∈ 𝑅, 𝑣 ∈ 𝑆 ↦ (𝑢 × 𝑣)) = ran (𝑢 ∈ 𝑅, 𝑣 ∈ 𝑆 ↦ (𝑢 × 𝑣)) | 
| 2 | 1 | txbasex 14493 | 
. . . . 5
⊢ ((𝑅 ∈ 𝑉 ∧ 𝑆 ∈ 𝑊) → ran (𝑢 ∈ 𝑅, 𝑣 ∈ 𝑆 ↦ (𝑢 × 𝑣)) ∈ V) | 
| 3 |   | bastg 14297 | 
. . . . 5
⊢ (ran
(𝑢 ∈ 𝑅, 𝑣 ∈ 𝑆 ↦ (𝑢 × 𝑣)) ∈ V → ran (𝑢 ∈ 𝑅, 𝑣 ∈ 𝑆 ↦ (𝑢 × 𝑣)) ⊆ (topGen‘ran (𝑢 ∈ 𝑅, 𝑣 ∈ 𝑆 ↦ (𝑢 × 𝑣)))) | 
| 4 | 2, 3 | syl 14 | 
. . . 4
⊢ ((𝑅 ∈ 𝑉 ∧ 𝑆 ∈ 𝑊) → ran (𝑢 ∈ 𝑅, 𝑣 ∈ 𝑆 ↦ (𝑢 × 𝑣)) ⊆ (topGen‘ran (𝑢 ∈ 𝑅, 𝑣 ∈ 𝑆 ↦ (𝑢 × 𝑣)))) | 
| 5 | 4 | adantr 276 | 
. . 3
⊢ (((𝑅 ∈ 𝑉 ∧ 𝑆 ∈ 𝑊) ∧ (𝐴 ∈ 𝑅 ∧ 𝐵 ∈ 𝑆)) → ran (𝑢 ∈ 𝑅, 𝑣 ∈ 𝑆 ↦ (𝑢 × 𝑣)) ⊆ (topGen‘ran (𝑢 ∈ 𝑅, 𝑣 ∈ 𝑆 ↦ (𝑢 × 𝑣)))) | 
| 6 |   | eqid 2196 | 
. . . . . 6
⊢ (𝐴 × 𝐵) = (𝐴 × 𝐵) | 
| 7 |   | xpeq1 4677 | 
. . . . . . . 8
⊢ (𝑢 = 𝐴 → (𝑢 × 𝑣) = (𝐴 × 𝑣)) | 
| 8 | 7 | eqeq2d 2208 | 
. . . . . . 7
⊢ (𝑢 = 𝐴 → ((𝐴 × 𝐵) = (𝑢 × 𝑣) ↔ (𝐴 × 𝐵) = (𝐴 × 𝑣))) | 
| 9 |   | xpeq2 4678 | 
. . . . . . . 8
⊢ (𝑣 = 𝐵 → (𝐴 × 𝑣) = (𝐴 × 𝐵)) | 
| 10 | 9 | eqeq2d 2208 | 
. . . . . . 7
⊢ (𝑣 = 𝐵 → ((𝐴 × 𝐵) = (𝐴 × 𝑣) ↔ (𝐴 × 𝐵) = (𝐴 × 𝐵))) | 
| 11 | 8, 10 | rspc2ev 2883 | 
. . . . . 6
⊢ ((𝐴 ∈ 𝑅 ∧ 𝐵 ∈ 𝑆 ∧ (𝐴 × 𝐵) = (𝐴 × 𝐵)) → ∃𝑢 ∈ 𝑅 ∃𝑣 ∈ 𝑆 (𝐴 × 𝐵) = (𝑢 × 𝑣)) | 
| 12 | 6, 11 | mp3an3 1337 | 
. . . . 5
⊢ ((𝐴 ∈ 𝑅 ∧ 𝐵 ∈ 𝑆) → ∃𝑢 ∈ 𝑅 ∃𝑣 ∈ 𝑆 (𝐴 × 𝐵) = (𝑢 × 𝑣)) | 
| 13 |   | xpexg 4777 | 
. . . . . 6
⊢ ((𝐴 ∈ 𝑅 ∧ 𝐵 ∈ 𝑆) → (𝐴 × 𝐵) ∈ V) | 
| 14 |   | eqid 2196 | 
. . . . . . 7
⊢ (𝑢 ∈ 𝑅, 𝑣 ∈ 𝑆 ↦ (𝑢 × 𝑣)) = (𝑢 ∈ 𝑅, 𝑣 ∈ 𝑆 ↦ (𝑢 × 𝑣)) | 
| 15 | 14 | elrnmpog 6035 | 
. . . . . 6
⊢ ((𝐴 × 𝐵) ∈ V → ((𝐴 × 𝐵) ∈ ran (𝑢 ∈ 𝑅, 𝑣 ∈ 𝑆 ↦ (𝑢 × 𝑣)) ↔ ∃𝑢 ∈ 𝑅 ∃𝑣 ∈ 𝑆 (𝐴 × 𝐵) = (𝑢 × 𝑣))) | 
| 16 | 13, 15 | syl 14 | 
. . . . 5
⊢ ((𝐴 ∈ 𝑅 ∧ 𝐵 ∈ 𝑆) → ((𝐴 × 𝐵) ∈ ran (𝑢 ∈ 𝑅, 𝑣 ∈ 𝑆 ↦ (𝑢 × 𝑣)) ↔ ∃𝑢 ∈ 𝑅 ∃𝑣 ∈ 𝑆 (𝐴 × 𝐵) = (𝑢 × 𝑣))) | 
| 17 | 12, 16 | mpbird 167 | 
. . . 4
⊢ ((𝐴 ∈ 𝑅 ∧ 𝐵 ∈ 𝑆) → (𝐴 × 𝐵) ∈ ran (𝑢 ∈ 𝑅, 𝑣 ∈ 𝑆 ↦ (𝑢 × 𝑣))) | 
| 18 | 17 | adantl 277 | 
. . 3
⊢ (((𝑅 ∈ 𝑉 ∧ 𝑆 ∈ 𝑊) ∧ (𝐴 ∈ 𝑅 ∧ 𝐵 ∈ 𝑆)) → (𝐴 × 𝐵) ∈ ran (𝑢 ∈ 𝑅, 𝑣 ∈ 𝑆 ↦ (𝑢 × 𝑣))) | 
| 19 | 5, 18 | sseldd 3184 | 
. 2
⊢ (((𝑅 ∈ 𝑉 ∧ 𝑆 ∈ 𝑊) ∧ (𝐴 ∈ 𝑅 ∧ 𝐵 ∈ 𝑆)) → (𝐴 × 𝐵) ∈ (topGen‘ran (𝑢 ∈ 𝑅, 𝑣 ∈ 𝑆 ↦ (𝑢 × 𝑣)))) | 
| 20 | 1 | txval 14491 | 
. . 3
⊢ ((𝑅 ∈ 𝑉 ∧ 𝑆 ∈ 𝑊) → (𝑅 ×t 𝑆) = (topGen‘ran (𝑢 ∈ 𝑅, 𝑣 ∈ 𝑆 ↦ (𝑢 × 𝑣)))) | 
| 21 | 20 | adantr 276 | 
. 2
⊢ (((𝑅 ∈ 𝑉 ∧ 𝑆 ∈ 𝑊) ∧ (𝐴 ∈ 𝑅 ∧ 𝐵 ∈ 𝑆)) → (𝑅 ×t 𝑆) = (topGen‘ran (𝑢 ∈ 𝑅, 𝑣 ∈ 𝑆 ↦ (𝑢 × 𝑣)))) | 
| 22 | 19, 21 | eleqtrrd 2276 | 
1
⊢ (((𝑅 ∈ 𝑉 ∧ 𝑆 ∈ 𝑊) ∧ (𝐴 ∈ 𝑅 ∧ 𝐵 ∈ 𝑆)) → (𝐴 × 𝐵) ∈ (𝑅 ×t 𝑆)) |