| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > xpindir | GIF version | ||
| Description: Distributive law for cross product over intersection. Similar to Theorem 102 of [Suppes] p. 52. (Contributed by NM, 26-Sep-2004.) |
| Ref | Expression |
|---|---|
| xpindir | ⊢ ((𝐴 ∩ 𝐵) × 𝐶) = ((𝐴 × 𝐶) ∩ (𝐵 × 𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | inxp 4812 | . 2 ⊢ ((𝐴 × 𝐶) ∩ (𝐵 × 𝐶)) = ((𝐴 ∩ 𝐵) × (𝐶 ∩ 𝐶)) | |
| 2 | inidm 3382 | . . 3 ⊢ (𝐶 ∩ 𝐶) = 𝐶 | |
| 3 | 2 | xpeq2i 4696 | . 2 ⊢ ((𝐴 ∩ 𝐵) × (𝐶 ∩ 𝐶)) = ((𝐴 ∩ 𝐵) × 𝐶) |
| 4 | 1, 3 | eqtr2i 2227 | 1 ⊢ ((𝐴 ∩ 𝐵) × 𝐶) = ((𝐴 × 𝐶) ∩ (𝐵 × 𝐶)) |
| Colors of variables: wff set class |
| Syntax hints: = wceq 1373 ∩ cin 3165 × cxp 4673 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-14 2179 ax-ext 2187 ax-sep 4162 ax-pow 4218 ax-pr 4253 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ral 2489 df-rex 2490 df-v 2774 df-un 3170 df-in 3172 df-ss 3179 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-opab 4106 df-xp 4681 df-rel 4682 |
| This theorem is referenced by: resres 4971 resindi 4974 imainrect 5128 resdmres 5174 |
| Copyright terms: Public domain | W3C validator |