| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > xpindir | GIF version | ||
| Description: Distributive law for cross product over intersection. Similar to Theorem 102 of [Suppes] p. 52. (Contributed by NM, 26-Sep-2004.) |
| Ref | Expression |
|---|---|
| xpindir | ⊢ ((𝐴 ∩ 𝐵) × 𝐶) = ((𝐴 × 𝐶) ∩ (𝐵 × 𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | inxp 4830 | . 2 ⊢ ((𝐴 × 𝐶) ∩ (𝐵 × 𝐶)) = ((𝐴 ∩ 𝐵) × (𝐶 ∩ 𝐶)) | |
| 2 | inidm 3390 | . . 3 ⊢ (𝐶 ∩ 𝐶) = 𝐶 | |
| 3 | 2 | xpeq2i 4714 | . 2 ⊢ ((𝐴 ∩ 𝐵) × (𝐶 ∩ 𝐶)) = ((𝐴 ∩ 𝐵) × 𝐶) |
| 4 | 1, 3 | eqtr2i 2229 | 1 ⊢ ((𝐴 ∩ 𝐵) × 𝐶) = ((𝐴 × 𝐶) ∩ (𝐵 × 𝐶)) |
| Colors of variables: wff set class |
| Syntax hints: = wceq 1373 ∩ cin 3173 × cxp 4691 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-14 2181 ax-ext 2189 ax-sep 4178 ax-pow 4234 ax-pr 4269 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ral 2491 df-rex 2492 df-v 2778 df-un 3178 df-in 3180 df-ss 3187 df-pw 3628 df-sn 3649 df-pr 3650 df-op 3652 df-opab 4122 df-xp 4699 df-rel 4700 |
| This theorem is referenced by: resres 4990 resindi 4993 imainrect 5147 resdmres 5193 |
| Copyright terms: Public domain | W3C validator |