![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > xpsndisj | GIF version |
Description: Cross products with two different singletons are disjoint. (Contributed by NM, 28-Jul-2004.) |
Ref | Expression |
---|---|
xpsndisj | ⊢ (𝐵 ≠ 𝐷 → ((𝐴 × {𝐵}) ∩ (𝐶 × {𝐷})) = ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | disjsn2 3652 | . 2 ⊢ (𝐵 ≠ 𝐷 → ({𝐵} ∩ {𝐷}) = ∅) | |
2 | xpdisj2 5046 | . 2 ⊢ (({𝐵} ∩ {𝐷}) = ∅ → ((𝐴 × {𝐵}) ∩ (𝐶 × {𝐷})) = ∅) | |
3 | 1, 2 | syl 14 | 1 ⊢ (𝐵 ≠ 𝐷 → ((𝐴 × {𝐵}) ∩ (𝐶 × {𝐷})) = ∅) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1353 ≠ wne 2345 ∩ cin 3126 ∅c0 3420 {csn 3589 × cxp 4618 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1445 ax-7 1446 ax-gen 1447 ax-ie1 1491 ax-ie2 1492 ax-8 1502 ax-10 1503 ax-11 1504 ax-i12 1505 ax-bndl 1507 ax-4 1508 ax-17 1524 ax-i9 1528 ax-ial 1532 ax-i5r 1533 ax-14 2149 ax-ext 2157 ax-sep 4116 ax-pow 4169 ax-pr 4203 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-fal 1359 df-nf 1459 df-sb 1761 df-eu 2027 df-mo 2028 df-clab 2162 df-cleq 2168 df-clel 2171 df-nfc 2306 df-ne 2346 df-ral 2458 df-rex 2459 df-v 2737 df-dif 3129 df-un 3131 df-in 3133 df-ss 3140 df-nul 3421 df-pw 3574 df-sn 3595 df-pr 3596 df-op 3598 df-br 3999 df-opab 4060 df-xp 4626 df-rel 4627 df-cnv 4628 |
This theorem is referenced by: xp01disj 6424 |
Copyright terms: Public domain | W3C validator |