ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xpsndisj GIF version

Theorem xpsndisj 5047
Description: Cross products with two different singletons are disjoint. (Contributed by NM, 28-Jul-2004.)
Assertion
Ref Expression
xpsndisj (𝐵𝐷 → ((𝐴 × {𝐵}) ∩ (𝐶 × {𝐷})) = ∅)

Proof of Theorem xpsndisj
StepHypRef Expression
1 disjsn2 3652 . 2 (𝐵𝐷 → ({𝐵} ∩ {𝐷}) = ∅)
2 xpdisj2 5046 . 2 (({𝐵} ∩ {𝐷}) = ∅ → ((𝐴 × {𝐵}) ∩ (𝐶 × {𝐷})) = ∅)
31, 2syl 14 1 (𝐵𝐷 → ((𝐴 × {𝐵}) ∩ (𝐶 × {𝐷})) = ∅)
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1353  wne 2345  cin 3126  c0 3420  {csn 3589   × cxp 4618
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1445  ax-7 1446  ax-gen 1447  ax-ie1 1491  ax-ie2 1492  ax-8 1502  ax-10 1503  ax-11 1504  ax-i12 1505  ax-bndl 1507  ax-4 1508  ax-17 1524  ax-i9 1528  ax-ial 1532  ax-i5r 1533  ax-14 2149  ax-ext 2157  ax-sep 4116  ax-pow 4169  ax-pr 4203
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1459  df-sb 1761  df-eu 2027  df-mo 2028  df-clab 2162  df-cleq 2168  df-clel 2171  df-nfc 2306  df-ne 2346  df-ral 2458  df-rex 2459  df-v 2737  df-dif 3129  df-un 3131  df-in 3133  df-ss 3140  df-nul 3421  df-pw 3574  df-sn 3595  df-pr 3596  df-op 3598  df-br 3999  df-opab 4060  df-xp 4626  df-rel 4627  df-cnv 4628
This theorem is referenced by:  xp01disj  6424
  Copyright terms: Public domain W3C validator