| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 2ndci | Structured version Visualization version GIF version | ||
| Description: A countable basis generates a second-countable topology. (Contributed by Mario Carneiro, 21-Mar-2015.) |
| Ref | Expression |
|---|---|
| 2ndci | ⊢ ((𝐵 ∈ TopBases ∧ 𝐵 ≼ ω) → (topGen‘𝐵) ∈ 2ndω) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl 482 | . . 3 ⊢ ((𝐵 ∈ TopBases ∧ 𝐵 ≼ ω) → 𝐵 ∈ TopBases) | |
| 2 | simpr 484 | . . 3 ⊢ ((𝐵 ∈ TopBases ∧ 𝐵 ≼ ω) → 𝐵 ≼ ω) | |
| 3 | eqidd 2732 | . . 3 ⊢ ((𝐵 ∈ TopBases ∧ 𝐵 ≼ ω) → (topGen‘𝐵) = (topGen‘𝐵)) | |
| 4 | breq1 5094 | . . . . 5 ⊢ (𝑥 = 𝐵 → (𝑥 ≼ ω ↔ 𝐵 ≼ ω)) | |
| 5 | fveqeq2 6831 | . . . . 5 ⊢ (𝑥 = 𝐵 → ((topGen‘𝑥) = (topGen‘𝐵) ↔ (topGen‘𝐵) = (topGen‘𝐵))) | |
| 6 | 4, 5 | anbi12d 632 | . . . 4 ⊢ (𝑥 = 𝐵 → ((𝑥 ≼ ω ∧ (topGen‘𝑥) = (topGen‘𝐵)) ↔ (𝐵 ≼ ω ∧ (topGen‘𝐵) = (topGen‘𝐵)))) |
| 7 | 6 | rspcev 3577 | . . 3 ⊢ ((𝐵 ∈ TopBases ∧ (𝐵 ≼ ω ∧ (topGen‘𝐵) = (topGen‘𝐵))) → ∃𝑥 ∈ TopBases (𝑥 ≼ ω ∧ (topGen‘𝑥) = (topGen‘𝐵))) |
| 8 | 1, 2, 3, 7 | syl12anc 836 | . 2 ⊢ ((𝐵 ∈ TopBases ∧ 𝐵 ≼ ω) → ∃𝑥 ∈ TopBases (𝑥 ≼ ω ∧ (topGen‘𝑥) = (topGen‘𝐵))) |
| 9 | is2ndc 23359 | . 2 ⊢ ((topGen‘𝐵) ∈ 2ndω ↔ ∃𝑥 ∈ TopBases (𝑥 ≼ ω ∧ (topGen‘𝑥) = (topGen‘𝐵))) | |
| 10 | 8, 9 | sylibr 234 | 1 ⊢ ((𝐵 ∈ TopBases ∧ 𝐵 ≼ ω) → (topGen‘𝐵) ∈ 2ndω) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2111 ∃wrex 3056 class class class wbr 5091 ‘cfv 6481 ωcom 7796 ≼ cdom 8867 topGenctg 17338 TopBasesctb 22858 2ndωc2ndc 23351 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 ax-nul 5244 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3905 df-un 3907 df-ss 3919 df-nul 4284 df-if 4476 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-br 5092 df-iota 6437 df-fv 6489 df-2ndc 23353 |
| This theorem is referenced by: 2ndcrest 23367 2ndcomap 23371 dis2ndc 23373 dis1stc 23412 tx2ndc 23564 met2ndci 24435 re2ndc 24714 |
| Copyright terms: Public domain | W3C validator |