|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > 2ndci | Structured version Visualization version GIF version | ||
| Description: A countable basis generates a second-countable topology. (Contributed by Mario Carneiro, 21-Mar-2015.) | 
| Ref | Expression | 
|---|---|
| 2ndci | ⊢ ((𝐵 ∈ TopBases ∧ 𝐵 ≼ ω) → (topGen‘𝐵) ∈ 2ndω) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | simpl 482 | . . 3 ⊢ ((𝐵 ∈ TopBases ∧ 𝐵 ≼ ω) → 𝐵 ∈ TopBases) | |
| 2 | simpr 484 | . . 3 ⊢ ((𝐵 ∈ TopBases ∧ 𝐵 ≼ ω) → 𝐵 ≼ ω) | |
| 3 | eqidd 2737 | . . 3 ⊢ ((𝐵 ∈ TopBases ∧ 𝐵 ≼ ω) → (topGen‘𝐵) = (topGen‘𝐵)) | |
| 4 | breq1 5145 | . . . . 5 ⊢ (𝑥 = 𝐵 → (𝑥 ≼ ω ↔ 𝐵 ≼ ω)) | |
| 5 | fveqeq2 6914 | . . . . 5 ⊢ (𝑥 = 𝐵 → ((topGen‘𝑥) = (topGen‘𝐵) ↔ (topGen‘𝐵) = (topGen‘𝐵))) | |
| 6 | 4, 5 | anbi12d 632 | . . . 4 ⊢ (𝑥 = 𝐵 → ((𝑥 ≼ ω ∧ (topGen‘𝑥) = (topGen‘𝐵)) ↔ (𝐵 ≼ ω ∧ (topGen‘𝐵) = (topGen‘𝐵)))) | 
| 7 | 6 | rspcev 3621 | . . 3 ⊢ ((𝐵 ∈ TopBases ∧ (𝐵 ≼ ω ∧ (topGen‘𝐵) = (topGen‘𝐵))) → ∃𝑥 ∈ TopBases (𝑥 ≼ ω ∧ (topGen‘𝑥) = (topGen‘𝐵))) | 
| 8 | 1, 2, 3, 7 | syl12anc 836 | . 2 ⊢ ((𝐵 ∈ TopBases ∧ 𝐵 ≼ ω) → ∃𝑥 ∈ TopBases (𝑥 ≼ ω ∧ (topGen‘𝑥) = (topGen‘𝐵))) | 
| 9 | is2ndc 23455 | . 2 ⊢ ((topGen‘𝐵) ∈ 2ndω ↔ ∃𝑥 ∈ TopBases (𝑥 ≼ ω ∧ (topGen‘𝑥) = (topGen‘𝐵))) | |
| 10 | 8, 9 | sylibr 234 | 1 ⊢ ((𝐵 ∈ TopBases ∧ 𝐵 ≼ ω) → (topGen‘𝐵) ∈ 2ndω) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2107 ∃wrex 3069 class class class wbr 5142 ‘cfv 6560 ωcom 7888 ≼ cdom 8984 topGenctg 17483 TopBasesctb 22953 2ndωc2ndc 23447 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-ext 2707 ax-nul 5305 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-sb 2064 df-clab 2714 df-cleq 2728 df-clel 2815 df-ne 2940 df-ral 3061 df-rex 3070 df-rab 3436 df-v 3481 df-dif 3953 df-un 3955 df-ss 3967 df-nul 4333 df-if 4525 df-sn 4626 df-pr 4628 df-op 4632 df-uni 4907 df-br 5143 df-iota 6513 df-fv 6568 df-2ndc 23449 | 
| This theorem is referenced by: 2ndcrest 23463 2ndcomap 23467 dis2ndc 23469 dis1stc 23508 tx2ndc 23660 met2ndci 24536 re2ndc 24823 | 
| Copyright terms: Public domain | W3C validator |