Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 2ndci | Structured version Visualization version GIF version |
Description: A countable basis generates a second-countable topology. (Contributed by Mario Carneiro, 21-Mar-2015.) |
Ref | Expression |
---|---|
2ndci | ⊢ ((𝐵 ∈ TopBases ∧ 𝐵 ≼ ω) → (topGen‘𝐵) ∈ 2ndω) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl 482 | . . 3 ⊢ ((𝐵 ∈ TopBases ∧ 𝐵 ≼ ω) → 𝐵 ∈ TopBases) | |
2 | simpr 484 | . . 3 ⊢ ((𝐵 ∈ TopBases ∧ 𝐵 ≼ ω) → 𝐵 ≼ ω) | |
3 | eqidd 2740 | . . 3 ⊢ ((𝐵 ∈ TopBases ∧ 𝐵 ≼ ω) → (topGen‘𝐵) = (topGen‘𝐵)) | |
4 | breq1 5081 | . . . . 5 ⊢ (𝑥 = 𝐵 → (𝑥 ≼ ω ↔ 𝐵 ≼ ω)) | |
5 | fveqeq2 6777 | . . . . 5 ⊢ (𝑥 = 𝐵 → ((topGen‘𝑥) = (topGen‘𝐵) ↔ (topGen‘𝐵) = (topGen‘𝐵))) | |
6 | 4, 5 | anbi12d 630 | . . . 4 ⊢ (𝑥 = 𝐵 → ((𝑥 ≼ ω ∧ (topGen‘𝑥) = (topGen‘𝐵)) ↔ (𝐵 ≼ ω ∧ (topGen‘𝐵) = (topGen‘𝐵)))) |
7 | 6 | rspcev 3560 | . . 3 ⊢ ((𝐵 ∈ TopBases ∧ (𝐵 ≼ ω ∧ (topGen‘𝐵) = (topGen‘𝐵))) → ∃𝑥 ∈ TopBases (𝑥 ≼ ω ∧ (topGen‘𝑥) = (topGen‘𝐵))) |
8 | 1, 2, 3, 7 | syl12anc 833 | . 2 ⊢ ((𝐵 ∈ TopBases ∧ 𝐵 ≼ ω) → ∃𝑥 ∈ TopBases (𝑥 ≼ ω ∧ (topGen‘𝑥) = (topGen‘𝐵))) |
9 | is2ndc 22578 | . 2 ⊢ ((topGen‘𝐵) ∈ 2ndω ↔ ∃𝑥 ∈ TopBases (𝑥 ≼ ω ∧ (topGen‘𝑥) = (topGen‘𝐵))) | |
10 | 8, 9 | sylibr 233 | 1 ⊢ ((𝐵 ∈ TopBases ∧ 𝐵 ≼ ω) → (topGen‘𝐵) ∈ 2ndω) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2109 ∃wrex 3066 class class class wbr 5078 ‘cfv 6430 ωcom 7700 ≼ cdom 8705 topGenctg 17129 TopBasesctb 22076 2ndωc2ndc 22570 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-10 2140 ax-11 2157 ax-12 2174 ax-ext 2710 ax-nul 5233 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1544 df-fal 1554 df-ex 1786 df-nf 1790 df-sb 2071 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2817 df-ral 3070 df-rex 3071 df-rab 3074 df-v 3432 df-dif 3894 df-un 3896 df-in 3898 df-ss 3908 df-nul 4262 df-if 4465 df-sn 4567 df-pr 4569 df-op 4573 df-uni 4845 df-br 5079 df-iota 6388 df-fv 6438 df-2ndc 22572 |
This theorem is referenced by: 2ndcrest 22586 2ndcomap 22590 dis2ndc 22592 dis1stc 22631 tx2ndc 22783 met2ndci 23659 re2ndc 23945 |
Copyright terms: Public domain | W3C validator |