MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  2ndci Structured version   Visualization version   GIF version

Theorem 2ndci 22580
Description: A countable basis generates a second-countable topology. (Contributed by Mario Carneiro, 21-Mar-2015.)
Assertion
Ref Expression
2ndci ((𝐵 ∈ TopBases ∧ 𝐵 ≼ ω) → (topGen‘𝐵) ∈ 2ndω)

Proof of Theorem 2ndci
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 simpl 482 . . 3 ((𝐵 ∈ TopBases ∧ 𝐵 ≼ ω) → 𝐵 ∈ TopBases)
2 simpr 484 . . 3 ((𝐵 ∈ TopBases ∧ 𝐵 ≼ ω) → 𝐵 ≼ ω)
3 eqidd 2740 . . 3 ((𝐵 ∈ TopBases ∧ 𝐵 ≼ ω) → (topGen‘𝐵) = (topGen‘𝐵))
4 breq1 5081 . . . . 5 (𝑥 = 𝐵 → (𝑥 ≼ ω ↔ 𝐵 ≼ ω))
5 fveqeq2 6777 . . . . 5 (𝑥 = 𝐵 → ((topGen‘𝑥) = (topGen‘𝐵) ↔ (topGen‘𝐵) = (topGen‘𝐵)))
64, 5anbi12d 630 . . . 4 (𝑥 = 𝐵 → ((𝑥 ≼ ω ∧ (topGen‘𝑥) = (topGen‘𝐵)) ↔ (𝐵 ≼ ω ∧ (topGen‘𝐵) = (topGen‘𝐵))))
76rspcev 3560 . . 3 ((𝐵 ∈ TopBases ∧ (𝐵 ≼ ω ∧ (topGen‘𝐵) = (topGen‘𝐵))) → ∃𝑥 ∈ TopBases (𝑥 ≼ ω ∧ (topGen‘𝑥) = (topGen‘𝐵)))
81, 2, 3, 7syl12anc 833 . 2 ((𝐵 ∈ TopBases ∧ 𝐵 ≼ ω) → ∃𝑥 ∈ TopBases (𝑥 ≼ ω ∧ (topGen‘𝑥) = (topGen‘𝐵)))
9 is2ndc 22578 . 2 ((topGen‘𝐵) ∈ 2ndω ↔ ∃𝑥 ∈ TopBases (𝑥 ≼ ω ∧ (topGen‘𝑥) = (topGen‘𝐵)))
108, 9sylibr 233 1 ((𝐵 ∈ TopBases ∧ 𝐵 ≼ ω) → (topGen‘𝐵) ∈ 2ndω)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2109  wrex 3066   class class class wbr 5078  cfv 6430  ωcom 7700  cdom 8705  topGenctg 17129  TopBasesctb 22076  2ndωc2ndc 22570
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1801  ax-4 1815  ax-5 1916  ax-6 1974  ax-7 2014  ax-8 2111  ax-9 2119  ax-10 2140  ax-11 2157  ax-12 2174  ax-ext 2710  ax-nul 5233
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1544  df-fal 1554  df-ex 1786  df-nf 1790  df-sb 2071  df-mo 2541  df-eu 2570  df-clab 2717  df-cleq 2731  df-clel 2817  df-ral 3070  df-rex 3071  df-rab 3074  df-v 3432  df-dif 3894  df-un 3896  df-in 3898  df-ss 3908  df-nul 4262  df-if 4465  df-sn 4567  df-pr 4569  df-op 4573  df-uni 4845  df-br 5079  df-iota 6388  df-fv 6438  df-2ndc 22572
This theorem is referenced by:  2ndcrest  22586  2ndcomap  22590  dis2ndc  22592  dis1stc  22631  tx2ndc  22783  met2ndci  23659  re2ndc  23945
  Copyright terms: Public domain W3C validator