MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  2ndci Structured version   Visualization version   GIF version

Theorem 2ndci 23477
Description: A countable basis generates a second-countable topology. (Contributed by Mario Carneiro, 21-Mar-2015.)
Assertion
Ref Expression
2ndci ((𝐵 ∈ TopBases ∧ 𝐵 ≼ ω) → (topGen‘𝐵) ∈ 2ndω)

Proof of Theorem 2ndci
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 simpl 482 . . 3 ((𝐵 ∈ TopBases ∧ 𝐵 ≼ ω) → 𝐵 ∈ TopBases)
2 simpr 484 . . 3 ((𝐵 ∈ TopBases ∧ 𝐵 ≼ ω) → 𝐵 ≼ ω)
3 eqidd 2741 . . 3 ((𝐵 ∈ TopBases ∧ 𝐵 ≼ ω) → (topGen‘𝐵) = (topGen‘𝐵))
4 breq1 5169 . . . . 5 (𝑥 = 𝐵 → (𝑥 ≼ ω ↔ 𝐵 ≼ ω))
5 fveqeq2 6929 . . . . 5 (𝑥 = 𝐵 → ((topGen‘𝑥) = (topGen‘𝐵) ↔ (topGen‘𝐵) = (topGen‘𝐵)))
64, 5anbi12d 631 . . . 4 (𝑥 = 𝐵 → ((𝑥 ≼ ω ∧ (topGen‘𝑥) = (topGen‘𝐵)) ↔ (𝐵 ≼ ω ∧ (topGen‘𝐵) = (topGen‘𝐵))))
76rspcev 3635 . . 3 ((𝐵 ∈ TopBases ∧ (𝐵 ≼ ω ∧ (topGen‘𝐵) = (topGen‘𝐵))) → ∃𝑥 ∈ TopBases (𝑥 ≼ ω ∧ (topGen‘𝑥) = (topGen‘𝐵)))
81, 2, 3, 7syl12anc 836 . 2 ((𝐵 ∈ TopBases ∧ 𝐵 ≼ ω) → ∃𝑥 ∈ TopBases (𝑥 ≼ ω ∧ (topGen‘𝑥) = (topGen‘𝐵)))
9 is2ndc 23475 . 2 ((topGen‘𝐵) ∈ 2ndω ↔ ∃𝑥 ∈ TopBases (𝑥 ≼ ω ∧ (topGen‘𝑥) = (topGen‘𝐵)))
108, 9sylibr 234 1 ((𝐵 ∈ TopBases ∧ 𝐵 ≼ ω) → (topGen‘𝐵) ∈ 2ndω)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wcel 2108  wrex 3076   class class class wbr 5166  cfv 6573  ωcom 7903  cdom 9001  topGenctg 17497  TopBasesctb 22973  2ndωc2ndc 23467
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711  ax-nul 5324
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-ne 2947  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-iota 6525  df-fv 6581  df-2ndc 23469
This theorem is referenced by:  2ndcrest  23483  2ndcomap  23487  dis2ndc  23489  dis1stc  23528  tx2ndc  23680  met2ndci  24556  re2ndc  24842
  Copyright terms: Public domain W3C validator