MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tx2ndc Structured version   Visualization version   GIF version

Theorem tx2ndc 22802
Description: The topological product of two second-countable spaces is second-countable. (Contributed by Mario Carneiro, 21-Mar-2015.)
Assertion
Ref Expression
tx2ndc ((𝑅 ∈ 2ndω ∧ 𝑆 ∈ 2ndω) → (𝑅 ×t 𝑆) ∈ 2ndω)

Proof of Theorem tx2ndc
Dummy variables 𝑠 𝑟 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 is2ndc 22597 . 2 (𝑅 ∈ 2ndω ↔ ∃𝑟 ∈ TopBases (𝑟 ≼ ω ∧ (topGen‘𝑟) = 𝑅))
2 is2ndc 22597 . 2 (𝑆 ∈ 2ndω ↔ ∃𝑠 ∈ TopBases (𝑠 ≼ ω ∧ (topGen‘𝑠) = 𝑆))
3 reeanv 3294 . . 3 (∃𝑟 ∈ TopBases ∃𝑠 ∈ TopBases ((𝑟 ≼ ω ∧ (topGen‘𝑟) = 𝑅) ∧ (𝑠 ≼ ω ∧ (topGen‘𝑠) = 𝑆)) ↔ (∃𝑟 ∈ TopBases (𝑟 ≼ ω ∧ (topGen‘𝑟) = 𝑅) ∧ ∃𝑠 ∈ TopBases (𝑠 ≼ ω ∧ (topGen‘𝑠) = 𝑆)))
4 an4 653 . . . . 5 (((𝑟 ≼ ω ∧ (topGen‘𝑟) = 𝑅) ∧ (𝑠 ≼ ω ∧ (topGen‘𝑠) = 𝑆)) ↔ ((𝑟 ≼ ω ∧ 𝑠 ≼ ω) ∧ ((topGen‘𝑟) = 𝑅 ∧ (topGen‘𝑠) = 𝑆)))
5 txbasval 22757 . . . . . . . . . 10 ((𝑟 ∈ TopBases ∧ 𝑠 ∈ TopBases) → ((topGen‘𝑟) ×t (topGen‘𝑠)) = (𝑟 ×t 𝑠))
6 eqid 2738 . . . . . . . . . . 11 ran (𝑥𝑟, 𝑦𝑠 ↦ (𝑥 × 𝑦)) = ran (𝑥𝑟, 𝑦𝑠 ↦ (𝑥 × 𝑦))
76txval 22715 . . . . . . . . . 10 ((𝑟 ∈ TopBases ∧ 𝑠 ∈ TopBases) → (𝑟 ×t 𝑠) = (topGen‘ran (𝑥𝑟, 𝑦𝑠 ↦ (𝑥 × 𝑦))))
85, 7eqtrd 2778 . . . . . . . . 9 ((𝑟 ∈ TopBases ∧ 𝑠 ∈ TopBases) → ((topGen‘𝑟) ×t (topGen‘𝑠)) = (topGen‘ran (𝑥𝑟, 𝑦𝑠 ↦ (𝑥 × 𝑦))))
98adantr 481 . . . . . . . 8 (((𝑟 ∈ TopBases ∧ 𝑠 ∈ TopBases) ∧ (𝑟 ≼ ω ∧ 𝑠 ≼ ω)) → ((topGen‘𝑟) ×t (topGen‘𝑠)) = (topGen‘ran (𝑥𝑟, 𝑦𝑠 ↦ (𝑥 × 𝑦))))
106txbas 22718 . . . . . . . . . 10 ((𝑟 ∈ TopBases ∧ 𝑠 ∈ TopBases) → ran (𝑥𝑟, 𝑦𝑠 ↦ (𝑥 × 𝑦)) ∈ TopBases)
1110adantr 481 . . . . . . . . 9 (((𝑟 ∈ TopBases ∧ 𝑠 ∈ TopBases) ∧ (𝑟 ≼ ω ∧ 𝑠 ≼ ω)) → ran (𝑥𝑟, 𝑦𝑠 ↦ (𝑥 × 𝑦)) ∈ TopBases)
12 omelon 9404 . . . . . . . . . . . 12 ω ∈ On
13 vex 3436 . . . . . . . . . . . . . . . 16 𝑠 ∈ V
1413xpdom1 8858 . . . . . . . . . . . . . . 15 (𝑟 ≼ ω → (𝑟 × 𝑠) ≼ (ω × 𝑠))
15 omex 9401 . . . . . . . . . . . . . . . 16 ω ∈ V
1615xpdom2 8854 . . . . . . . . . . . . . . 15 (𝑠 ≼ ω → (ω × 𝑠) ≼ (ω × ω))
17 domtr 8793 . . . . . . . . . . . . . . 15 (((𝑟 × 𝑠) ≼ (ω × 𝑠) ∧ (ω × 𝑠) ≼ (ω × ω)) → (𝑟 × 𝑠) ≼ (ω × ω))
1814, 16, 17syl2an 596 . . . . . . . . . . . . . 14 ((𝑟 ≼ ω ∧ 𝑠 ≼ ω) → (𝑟 × 𝑠) ≼ (ω × ω))
1918adantl 482 . . . . . . . . . . . . 13 (((𝑟 ∈ TopBases ∧ 𝑠 ∈ TopBases) ∧ (𝑟 ≼ ω ∧ 𝑠 ≼ ω)) → (𝑟 × 𝑠) ≼ (ω × ω))
20 xpomen 9771 . . . . . . . . . . . . 13 (ω × ω) ≈ ω
21 domentr 8799 . . . . . . . . . . . . 13 (((𝑟 × 𝑠) ≼ (ω × ω) ∧ (ω × ω) ≈ ω) → (𝑟 × 𝑠) ≼ ω)
2219, 20, 21sylancl 586 . . . . . . . . . . . 12 (((𝑟 ∈ TopBases ∧ 𝑠 ∈ TopBases) ∧ (𝑟 ≼ ω ∧ 𝑠 ≼ ω)) → (𝑟 × 𝑠) ≼ ω)
23 ondomen 9793 . . . . . . . . . . . 12 ((ω ∈ On ∧ (𝑟 × 𝑠) ≼ ω) → (𝑟 × 𝑠) ∈ dom card)
2412, 22, 23sylancr 587 . . . . . . . . . . 11 (((𝑟 ∈ TopBases ∧ 𝑠 ∈ TopBases) ∧ (𝑟 ≼ ω ∧ 𝑠 ≼ ω)) → (𝑟 × 𝑠) ∈ dom card)
25 eqid 2738 . . . . . . . . . . . . . 14 (𝑥𝑟, 𝑦𝑠 ↦ (𝑥 × 𝑦)) = (𝑥𝑟, 𝑦𝑠 ↦ (𝑥 × 𝑦))
26 vex 3436 . . . . . . . . . . . . . . 15 𝑥 ∈ V
27 vex 3436 . . . . . . . . . . . . . . 15 𝑦 ∈ V
2826, 27xpex 7603 . . . . . . . . . . . . . 14 (𝑥 × 𝑦) ∈ V
2925, 28fnmpoi 7910 . . . . . . . . . . . . 13 (𝑥𝑟, 𝑦𝑠 ↦ (𝑥 × 𝑦)) Fn (𝑟 × 𝑠)
3029a1i 11 . . . . . . . . . . . 12 (((𝑟 ∈ TopBases ∧ 𝑠 ∈ TopBases) ∧ (𝑟 ≼ ω ∧ 𝑠 ≼ ω)) → (𝑥𝑟, 𝑦𝑠 ↦ (𝑥 × 𝑦)) Fn (𝑟 × 𝑠))
31 dffn4 6694 . . . . . . . . . . . 12 ((𝑥𝑟, 𝑦𝑠 ↦ (𝑥 × 𝑦)) Fn (𝑟 × 𝑠) ↔ (𝑥𝑟, 𝑦𝑠 ↦ (𝑥 × 𝑦)):(𝑟 × 𝑠)–onto→ran (𝑥𝑟, 𝑦𝑠 ↦ (𝑥 × 𝑦)))
3230, 31sylib 217 . . . . . . . . . . 11 (((𝑟 ∈ TopBases ∧ 𝑠 ∈ TopBases) ∧ (𝑟 ≼ ω ∧ 𝑠 ≼ ω)) → (𝑥𝑟, 𝑦𝑠 ↦ (𝑥 × 𝑦)):(𝑟 × 𝑠)–onto→ran (𝑥𝑟, 𝑦𝑠 ↦ (𝑥 × 𝑦)))
33 fodomnum 9813 . . . . . . . . . . 11 ((𝑟 × 𝑠) ∈ dom card → ((𝑥𝑟, 𝑦𝑠 ↦ (𝑥 × 𝑦)):(𝑟 × 𝑠)–onto→ran (𝑥𝑟, 𝑦𝑠 ↦ (𝑥 × 𝑦)) → ran (𝑥𝑟, 𝑦𝑠 ↦ (𝑥 × 𝑦)) ≼ (𝑟 × 𝑠)))
3424, 32, 33sylc 65 . . . . . . . . . 10 (((𝑟 ∈ TopBases ∧ 𝑠 ∈ TopBases) ∧ (𝑟 ≼ ω ∧ 𝑠 ≼ ω)) → ran (𝑥𝑟, 𝑦𝑠 ↦ (𝑥 × 𝑦)) ≼ (𝑟 × 𝑠))
35 domtr 8793 . . . . . . . . . 10 ((ran (𝑥𝑟, 𝑦𝑠 ↦ (𝑥 × 𝑦)) ≼ (𝑟 × 𝑠) ∧ (𝑟 × 𝑠) ≼ ω) → ran (𝑥𝑟, 𝑦𝑠 ↦ (𝑥 × 𝑦)) ≼ ω)
3634, 22, 35syl2anc 584 . . . . . . . . 9 (((𝑟 ∈ TopBases ∧ 𝑠 ∈ TopBases) ∧ (𝑟 ≼ ω ∧ 𝑠 ≼ ω)) → ran (𝑥𝑟, 𝑦𝑠 ↦ (𝑥 × 𝑦)) ≼ ω)
37 2ndci 22599 . . . . . . . . 9 ((ran (𝑥𝑟, 𝑦𝑠 ↦ (𝑥 × 𝑦)) ∈ TopBases ∧ ran (𝑥𝑟, 𝑦𝑠 ↦ (𝑥 × 𝑦)) ≼ ω) → (topGen‘ran (𝑥𝑟, 𝑦𝑠 ↦ (𝑥 × 𝑦))) ∈ 2ndω)
3811, 36, 37syl2anc 584 . . . . . . . 8 (((𝑟 ∈ TopBases ∧ 𝑠 ∈ TopBases) ∧ (𝑟 ≼ ω ∧ 𝑠 ≼ ω)) → (topGen‘ran (𝑥𝑟, 𝑦𝑠 ↦ (𝑥 × 𝑦))) ∈ 2ndω)
399, 38eqeltrd 2839 . . . . . . 7 (((𝑟 ∈ TopBases ∧ 𝑠 ∈ TopBases) ∧ (𝑟 ≼ ω ∧ 𝑠 ≼ ω)) → ((topGen‘𝑟) ×t (topGen‘𝑠)) ∈ 2ndω)
40 oveq12 7284 . . . . . . . 8 (((topGen‘𝑟) = 𝑅 ∧ (topGen‘𝑠) = 𝑆) → ((topGen‘𝑟) ×t (topGen‘𝑠)) = (𝑅 ×t 𝑆))
4140eleq1d 2823 . . . . . . 7 (((topGen‘𝑟) = 𝑅 ∧ (topGen‘𝑠) = 𝑆) → (((topGen‘𝑟) ×t (topGen‘𝑠)) ∈ 2ndω ↔ (𝑅 ×t 𝑆) ∈ 2ndω))
4239, 41syl5ibcom 244 . . . . . 6 (((𝑟 ∈ TopBases ∧ 𝑠 ∈ TopBases) ∧ (𝑟 ≼ ω ∧ 𝑠 ≼ ω)) → (((topGen‘𝑟) = 𝑅 ∧ (topGen‘𝑠) = 𝑆) → (𝑅 ×t 𝑆) ∈ 2ndω))
4342expimpd 454 . . . . 5 ((𝑟 ∈ TopBases ∧ 𝑠 ∈ TopBases) → (((𝑟 ≼ ω ∧ 𝑠 ≼ ω) ∧ ((topGen‘𝑟) = 𝑅 ∧ (topGen‘𝑠) = 𝑆)) → (𝑅 ×t 𝑆) ∈ 2ndω))
444, 43syl5bi 241 . . . 4 ((𝑟 ∈ TopBases ∧ 𝑠 ∈ TopBases) → (((𝑟 ≼ ω ∧ (topGen‘𝑟) = 𝑅) ∧ (𝑠 ≼ ω ∧ (topGen‘𝑠) = 𝑆)) → (𝑅 ×t 𝑆) ∈ 2ndω))
4544rexlimivv 3221 . . 3 (∃𝑟 ∈ TopBases ∃𝑠 ∈ TopBases ((𝑟 ≼ ω ∧ (topGen‘𝑟) = 𝑅) ∧ (𝑠 ≼ ω ∧ (topGen‘𝑠) = 𝑆)) → (𝑅 ×t 𝑆) ∈ 2ndω)
463, 45sylbir 234 . 2 ((∃𝑟 ∈ TopBases (𝑟 ≼ ω ∧ (topGen‘𝑟) = 𝑅) ∧ ∃𝑠 ∈ TopBases (𝑠 ≼ ω ∧ (topGen‘𝑠) = 𝑆)) → (𝑅 ×t 𝑆) ∈ 2ndω)
471, 2, 46syl2anb 598 1 ((𝑅 ∈ 2ndω ∧ 𝑆 ∈ 2ndω) → (𝑅 ×t 𝑆) ∈ 2ndω)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1539  wcel 2106  wrex 3065   class class class wbr 5074   × cxp 5587  dom cdm 5589  ran crn 5590  Oncon0 6266   Fn wfn 6428  ontowfo 6431  cfv 6433  (class class class)co 7275  cmpo 7277  ωcom 7712  cen 8730  cdom 8731  cardccrd 9693  topGenctg 17148  TopBasesctb 22095  2ndωc2ndc 22589   ×t ctx 22711
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-inf2 9399
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-se 5545  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-isom 6442  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1st 7831  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-er 8498  df-map 8617  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-oi 9269  df-card 9697  df-acn 9700  df-topgen 17154  df-bases 22096  df-2ndc 22591  df-tx 22713
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator