MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tx2ndc Structured version   Visualization version   GIF version

Theorem tx2ndc 23545
Description: The topological product of two second-countable spaces is second-countable. (Contributed by Mario Carneiro, 21-Mar-2015.)
Assertion
Ref Expression
tx2ndc ((𝑅 ∈ 2ndω ∧ 𝑆 ∈ 2ndω) → (𝑅 ×t 𝑆) ∈ 2ndω)

Proof of Theorem tx2ndc
Dummy variables 𝑠 𝑟 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 is2ndc 23340 . 2 (𝑅 ∈ 2ndω ↔ ∃𝑟 ∈ TopBases (𝑟 ≼ ω ∧ (topGen‘𝑟) = 𝑅))
2 is2ndc 23340 . 2 (𝑆 ∈ 2ndω ↔ ∃𝑠 ∈ TopBases (𝑠 ≼ ω ∧ (topGen‘𝑠) = 𝑆))
3 reeanv 3210 . . 3 (∃𝑟 ∈ TopBases ∃𝑠 ∈ TopBases ((𝑟 ≼ ω ∧ (topGen‘𝑟) = 𝑅) ∧ (𝑠 ≼ ω ∧ (topGen‘𝑠) = 𝑆)) ↔ (∃𝑟 ∈ TopBases (𝑟 ≼ ω ∧ (topGen‘𝑟) = 𝑅) ∧ ∃𝑠 ∈ TopBases (𝑠 ≼ ω ∧ (topGen‘𝑠) = 𝑆)))
4 an4 656 . . . . 5 (((𝑟 ≼ ω ∧ (topGen‘𝑟) = 𝑅) ∧ (𝑠 ≼ ω ∧ (topGen‘𝑠) = 𝑆)) ↔ ((𝑟 ≼ ω ∧ 𝑠 ≼ ω) ∧ ((topGen‘𝑟) = 𝑅 ∧ (topGen‘𝑠) = 𝑆)))
5 txbasval 23500 . . . . . . . . . 10 ((𝑟 ∈ TopBases ∧ 𝑠 ∈ TopBases) → ((topGen‘𝑟) ×t (topGen‘𝑠)) = (𝑟 ×t 𝑠))
6 eqid 2730 . . . . . . . . . . 11 ran (𝑥𝑟, 𝑦𝑠 ↦ (𝑥 × 𝑦)) = ran (𝑥𝑟, 𝑦𝑠 ↦ (𝑥 × 𝑦))
76txval 23458 . . . . . . . . . 10 ((𝑟 ∈ TopBases ∧ 𝑠 ∈ TopBases) → (𝑟 ×t 𝑠) = (topGen‘ran (𝑥𝑟, 𝑦𝑠 ↦ (𝑥 × 𝑦))))
85, 7eqtrd 2765 . . . . . . . . 9 ((𝑟 ∈ TopBases ∧ 𝑠 ∈ TopBases) → ((topGen‘𝑟) ×t (topGen‘𝑠)) = (topGen‘ran (𝑥𝑟, 𝑦𝑠 ↦ (𝑥 × 𝑦))))
98adantr 480 . . . . . . . 8 (((𝑟 ∈ TopBases ∧ 𝑠 ∈ TopBases) ∧ (𝑟 ≼ ω ∧ 𝑠 ≼ ω)) → ((topGen‘𝑟) ×t (topGen‘𝑠)) = (topGen‘ran (𝑥𝑟, 𝑦𝑠 ↦ (𝑥 × 𝑦))))
106txbas 23461 . . . . . . . . . 10 ((𝑟 ∈ TopBases ∧ 𝑠 ∈ TopBases) → ran (𝑥𝑟, 𝑦𝑠 ↦ (𝑥 × 𝑦)) ∈ TopBases)
1110adantr 480 . . . . . . . . 9 (((𝑟 ∈ TopBases ∧ 𝑠 ∈ TopBases) ∧ (𝑟 ≼ ω ∧ 𝑠 ≼ ω)) → ran (𝑥𝑟, 𝑦𝑠 ↦ (𝑥 × 𝑦)) ∈ TopBases)
12 omelon 9606 . . . . . . . . . . . 12 ω ∈ On
13 vex 3454 . . . . . . . . . . . . . . . 16 𝑠 ∈ V
1413xpdom1 9045 . . . . . . . . . . . . . . 15 (𝑟 ≼ ω → (𝑟 × 𝑠) ≼ (ω × 𝑠))
15 omex 9603 . . . . . . . . . . . . . . . 16 ω ∈ V
1615xpdom2 9041 . . . . . . . . . . . . . . 15 (𝑠 ≼ ω → (ω × 𝑠) ≼ (ω × ω))
17 domtr 8981 . . . . . . . . . . . . . . 15 (((𝑟 × 𝑠) ≼ (ω × 𝑠) ∧ (ω × 𝑠) ≼ (ω × ω)) → (𝑟 × 𝑠) ≼ (ω × ω))
1814, 16, 17syl2an 596 . . . . . . . . . . . . . 14 ((𝑟 ≼ ω ∧ 𝑠 ≼ ω) → (𝑟 × 𝑠) ≼ (ω × ω))
1918adantl 481 . . . . . . . . . . . . 13 (((𝑟 ∈ TopBases ∧ 𝑠 ∈ TopBases) ∧ (𝑟 ≼ ω ∧ 𝑠 ≼ ω)) → (𝑟 × 𝑠) ≼ (ω × ω))
20 xpomen 9975 . . . . . . . . . . . . 13 (ω × ω) ≈ ω
21 domentr 8987 . . . . . . . . . . . . 13 (((𝑟 × 𝑠) ≼ (ω × ω) ∧ (ω × ω) ≈ ω) → (𝑟 × 𝑠) ≼ ω)
2219, 20, 21sylancl 586 . . . . . . . . . . . 12 (((𝑟 ∈ TopBases ∧ 𝑠 ∈ TopBases) ∧ (𝑟 ≼ ω ∧ 𝑠 ≼ ω)) → (𝑟 × 𝑠) ≼ ω)
23 ondomen 9997 . . . . . . . . . . . 12 ((ω ∈ On ∧ (𝑟 × 𝑠) ≼ ω) → (𝑟 × 𝑠) ∈ dom card)
2412, 22, 23sylancr 587 . . . . . . . . . . 11 (((𝑟 ∈ TopBases ∧ 𝑠 ∈ TopBases) ∧ (𝑟 ≼ ω ∧ 𝑠 ≼ ω)) → (𝑟 × 𝑠) ∈ dom card)
25 eqid 2730 . . . . . . . . . . . . . 14 (𝑥𝑟, 𝑦𝑠 ↦ (𝑥 × 𝑦)) = (𝑥𝑟, 𝑦𝑠 ↦ (𝑥 × 𝑦))
26 vex 3454 . . . . . . . . . . . . . . 15 𝑥 ∈ V
27 vex 3454 . . . . . . . . . . . . . . 15 𝑦 ∈ V
2826, 27xpex 7732 . . . . . . . . . . . . . 14 (𝑥 × 𝑦) ∈ V
2925, 28fnmpoi 8052 . . . . . . . . . . . . 13 (𝑥𝑟, 𝑦𝑠 ↦ (𝑥 × 𝑦)) Fn (𝑟 × 𝑠)
3029a1i 11 . . . . . . . . . . . 12 (((𝑟 ∈ TopBases ∧ 𝑠 ∈ TopBases) ∧ (𝑟 ≼ ω ∧ 𝑠 ≼ ω)) → (𝑥𝑟, 𝑦𝑠 ↦ (𝑥 × 𝑦)) Fn (𝑟 × 𝑠))
31 dffn4 6781 . . . . . . . . . . . 12 ((𝑥𝑟, 𝑦𝑠 ↦ (𝑥 × 𝑦)) Fn (𝑟 × 𝑠) ↔ (𝑥𝑟, 𝑦𝑠 ↦ (𝑥 × 𝑦)):(𝑟 × 𝑠)–onto→ran (𝑥𝑟, 𝑦𝑠 ↦ (𝑥 × 𝑦)))
3230, 31sylib 218 . . . . . . . . . . 11 (((𝑟 ∈ TopBases ∧ 𝑠 ∈ TopBases) ∧ (𝑟 ≼ ω ∧ 𝑠 ≼ ω)) → (𝑥𝑟, 𝑦𝑠 ↦ (𝑥 × 𝑦)):(𝑟 × 𝑠)–onto→ran (𝑥𝑟, 𝑦𝑠 ↦ (𝑥 × 𝑦)))
33 fodomnum 10017 . . . . . . . . . . 11 ((𝑟 × 𝑠) ∈ dom card → ((𝑥𝑟, 𝑦𝑠 ↦ (𝑥 × 𝑦)):(𝑟 × 𝑠)–onto→ran (𝑥𝑟, 𝑦𝑠 ↦ (𝑥 × 𝑦)) → ran (𝑥𝑟, 𝑦𝑠 ↦ (𝑥 × 𝑦)) ≼ (𝑟 × 𝑠)))
3424, 32, 33sylc 65 . . . . . . . . . 10 (((𝑟 ∈ TopBases ∧ 𝑠 ∈ TopBases) ∧ (𝑟 ≼ ω ∧ 𝑠 ≼ ω)) → ran (𝑥𝑟, 𝑦𝑠 ↦ (𝑥 × 𝑦)) ≼ (𝑟 × 𝑠))
35 domtr 8981 . . . . . . . . . 10 ((ran (𝑥𝑟, 𝑦𝑠 ↦ (𝑥 × 𝑦)) ≼ (𝑟 × 𝑠) ∧ (𝑟 × 𝑠) ≼ ω) → ran (𝑥𝑟, 𝑦𝑠 ↦ (𝑥 × 𝑦)) ≼ ω)
3634, 22, 35syl2anc 584 . . . . . . . . 9 (((𝑟 ∈ TopBases ∧ 𝑠 ∈ TopBases) ∧ (𝑟 ≼ ω ∧ 𝑠 ≼ ω)) → ran (𝑥𝑟, 𝑦𝑠 ↦ (𝑥 × 𝑦)) ≼ ω)
37 2ndci 23342 . . . . . . . . 9 ((ran (𝑥𝑟, 𝑦𝑠 ↦ (𝑥 × 𝑦)) ∈ TopBases ∧ ran (𝑥𝑟, 𝑦𝑠 ↦ (𝑥 × 𝑦)) ≼ ω) → (topGen‘ran (𝑥𝑟, 𝑦𝑠 ↦ (𝑥 × 𝑦))) ∈ 2ndω)
3811, 36, 37syl2anc 584 . . . . . . . 8 (((𝑟 ∈ TopBases ∧ 𝑠 ∈ TopBases) ∧ (𝑟 ≼ ω ∧ 𝑠 ≼ ω)) → (topGen‘ran (𝑥𝑟, 𝑦𝑠 ↦ (𝑥 × 𝑦))) ∈ 2ndω)
399, 38eqeltrd 2829 . . . . . . 7 (((𝑟 ∈ TopBases ∧ 𝑠 ∈ TopBases) ∧ (𝑟 ≼ ω ∧ 𝑠 ≼ ω)) → ((topGen‘𝑟) ×t (topGen‘𝑠)) ∈ 2ndω)
40 oveq12 7399 . . . . . . . 8 (((topGen‘𝑟) = 𝑅 ∧ (topGen‘𝑠) = 𝑆) → ((topGen‘𝑟) ×t (topGen‘𝑠)) = (𝑅 ×t 𝑆))
4140eleq1d 2814 . . . . . . 7 (((topGen‘𝑟) = 𝑅 ∧ (topGen‘𝑠) = 𝑆) → (((topGen‘𝑟) ×t (topGen‘𝑠)) ∈ 2ndω ↔ (𝑅 ×t 𝑆) ∈ 2ndω))
4239, 41syl5ibcom 245 . . . . . 6 (((𝑟 ∈ TopBases ∧ 𝑠 ∈ TopBases) ∧ (𝑟 ≼ ω ∧ 𝑠 ≼ ω)) → (((topGen‘𝑟) = 𝑅 ∧ (topGen‘𝑠) = 𝑆) → (𝑅 ×t 𝑆) ∈ 2ndω))
4342expimpd 453 . . . . 5 ((𝑟 ∈ TopBases ∧ 𝑠 ∈ TopBases) → (((𝑟 ≼ ω ∧ 𝑠 ≼ ω) ∧ ((topGen‘𝑟) = 𝑅 ∧ (topGen‘𝑠) = 𝑆)) → (𝑅 ×t 𝑆) ∈ 2ndω))
444, 43biimtrid 242 . . . 4 ((𝑟 ∈ TopBases ∧ 𝑠 ∈ TopBases) → (((𝑟 ≼ ω ∧ (topGen‘𝑟) = 𝑅) ∧ (𝑠 ≼ ω ∧ (topGen‘𝑠) = 𝑆)) → (𝑅 ×t 𝑆) ∈ 2ndω))
4544rexlimivv 3180 . . 3 (∃𝑟 ∈ TopBases ∃𝑠 ∈ TopBases ((𝑟 ≼ ω ∧ (topGen‘𝑟) = 𝑅) ∧ (𝑠 ≼ ω ∧ (topGen‘𝑠) = 𝑆)) → (𝑅 ×t 𝑆) ∈ 2ndω)
463, 45sylbir 235 . 2 ((∃𝑟 ∈ TopBases (𝑟 ≼ ω ∧ (topGen‘𝑟) = 𝑅) ∧ ∃𝑠 ∈ TopBases (𝑠 ≼ ω ∧ (topGen‘𝑠) = 𝑆)) → (𝑅 ×t 𝑆) ∈ 2ndω)
471, 2, 46syl2anb 598 1 ((𝑅 ∈ 2ndω ∧ 𝑆 ∈ 2ndω) → (𝑅 ×t 𝑆) ∈ 2ndω)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wrex 3054   class class class wbr 5110   × cxp 5639  dom cdm 5641  ran crn 5642  Oncon0 6335   Fn wfn 6509  ontowfo 6512  cfv 6514  (class class class)co 7390  cmpo 7392  ωcom 7845  cen 8918  cdom 8919  cardccrd 9895  topGenctg 17407  TopBasesctb 22839  2ndωc2ndc 23332   ×t ctx 23454
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-inf2 9601
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-se 5595  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-isom 6523  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-1st 7971  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-er 8674  df-map 8804  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-oi 9470  df-card 9899  df-acn 9902  df-topgen 17413  df-bases 22840  df-2ndc 23334  df-tx 23456
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator