Step | Hyp | Ref
| Expression |
1 | | is2ndc 22597 |
. 2
⊢ (𝑅 ∈ 2ndω
↔ ∃𝑟 ∈
TopBases (𝑟 ≼ ω
∧ (topGen‘𝑟) =
𝑅)) |
2 | | is2ndc 22597 |
. 2
⊢ (𝑆 ∈ 2ndω
↔ ∃𝑠 ∈
TopBases (𝑠 ≼ ω
∧ (topGen‘𝑠) =
𝑆)) |
3 | | reeanv 3294 |
. . 3
⊢
(∃𝑟 ∈
TopBases ∃𝑠 ∈
TopBases ((𝑟 ≼
ω ∧ (topGen‘𝑟) = 𝑅) ∧ (𝑠 ≼ ω ∧ (topGen‘𝑠) = 𝑆)) ↔ (∃𝑟 ∈ TopBases (𝑟 ≼ ω ∧ (topGen‘𝑟) = 𝑅) ∧ ∃𝑠 ∈ TopBases (𝑠 ≼ ω ∧ (topGen‘𝑠) = 𝑆))) |
4 | | an4 653 |
. . . . 5
⊢ (((𝑟 ≼ ω ∧
(topGen‘𝑟) = 𝑅) ∧ (𝑠 ≼ ω ∧ (topGen‘𝑠) = 𝑆)) ↔ ((𝑟 ≼ ω ∧ 𝑠 ≼ ω) ∧ ((topGen‘𝑟) = 𝑅 ∧ (topGen‘𝑠) = 𝑆))) |
5 | | txbasval 22757 |
. . . . . . . . . 10
⊢ ((𝑟 ∈ TopBases ∧ 𝑠 ∈ TopBases) →
((topGen‘𝑟)
×t (topGen‘𝑠)) = (𝑟 ×t 𝑠)) |
6 | | eqid 2738 |
. . . . . . . . . . 11
⊢ ran
(𝑥 ∈ 𝑟, 𝑦 ∈ 𝑠 ↦ (𝑥 × 𝑦)) = ran (𝑥 ∈ 𝑟, 𝑦 ∈ 𝑠 ↦ (𝑥 × 𝑦)) |
7 | 6 | txval 22715 |
. . . . . . . . . 10
⊢ ((𝑟 ∈ TopBases ∧ 𝑠 ∈ TopBases) → (𝑟 ×t 𝑠) = (topGen‘ran (𝑥 ∈ 𝑟, 𝑦 ∈ 𝑠 ↦ (𝑥 × 𝑦)))) |
8 | 5, 7 | eqtrd 2778 |
. . . . . . . . 9
⊢ ((𝑟 ∈ TopBases ∧ 𝑠 ∈ TopBases) →
((topGen‘𝑟)
×t (topGen‘𝑠)) = (topGen‘ran (𝑥 ∈ 𝑟, 𝑦 ∈ 𝑠 ↦ (𝑥 × 𝑦)))) |
9 | 8 | adantr 481 |
. . . . . . . 8
⊢ (((𝑟 ∈ TopBases ∧ 𝑠 ∈ TopBases) ∧ (𝑟 ≼ ω ∧ 𝑠 ≼ ω)) →
((topGen‘𝑟)
×t (topGen‘𝑠)) = (topGen‘ran (𝑥 ∈ 𝑟, 𝑦 ∈ 𝑠 ↦ (𝑥 × 𝑦)))) |
10 | 6 | txbas 22718 |
. . . . . . . . . 10
⊢ ((𝑟 ∈ TopBases ∧ 𝑠 ∈ TopBases) → ran
(𝑥 ∈ 𝑟, 𝑦 ∈ 𝑠 ↦ (𝑥 × 𝑦)) ∈ TopBases) |
11 | 10 | adantr 481 |
. . . . . . . . 9
⊢ (((𝑟 ∈ TopBases ∧ 𝑠 ∈ TopBases) ∧ (𝑟 ≼ ω ∧ 𝑠 ≼ ω)) → ran
(𝑥 ∈ 𝑟, 𝑦 ∈ 𝑠 ↦ (𝑥 × 𝑦)) ∈ TopBases) |
12 | | omelon 9404 |
. . . . . . . . . . . 12
⊢ ω
∈ On |
13 | | vex 3436 |
. . . . . . . . . . . . . . . 16
⊢ 𝑠 ∈ V |
14 | 13 | xpdom1 8858 |
. . . . . . . . . . . . . . 15
⊢ (𝑟 ≼ ω → (𝑟 × 𝑠) ≼ (ω × 𝑠)) |
15 | | omex 9401 |
. . . . . . . . . . . . . . . 16
⊢ ω
∈ V |
16 | 15 | xpdom2 8854 |
. . . . . . . . . . . . . . 15
⊢ (𝑠 ≼ ω → (ω
× 𝑠) ≼ (ω
× ω)) |
17 | | domtr 8793 |
. . . . . . . . . . . . . . 15
⊢ (((𝑟 × 𝑠) ≼ (ω × 𝑠) ∧ (ω × 𝑠) ≼ (ω × ω)) →
(𝑟 × 𝑠) ≼ (ω ×
ω)) |
18 | 14, 16, 17 | syl2an 596 |
. . . . . . . . . . . . . 14
⊢ ((𝑟 ≼ ω ∧ 𝑠 ≼ ω) → (𝑟 × 𝑠) ≼ (ω ×
ω)) |
19 | 18 | adantl 482 |
. . . . . . . . . . . . 13
⊢ (((𝑟 ∈ TopBases ∧ 𝑠 ∈ TopBases) ∧ (𝑟 ≼ ω ∧ 𝑠 ≼ ω)) → (𝑟 × 𝑠) ≼ (ω ×
ω)) |
20 | | xpomen 9771 |
. . . . . . . . . . . . 13
⊢ (ω
× ω) ≈ ω |
21 | | domentr 8799 |
. . . . . . . . . . . . 13
⊢ (((𝑟 × 𝑠) ≼ (ω × ω) ∧
(ω × ω) ≈ ω) → (𝑟 × 𝑠) ≼ ω) |
22 | 19, 20, 21 | sylancl 586 |
. . . . . . . . . . . 12
⊢ (((𝑟 ∈ TopBases ∧ 𝑠 ∈ TopBases) ∧ (𝑟 ≼ ω ∧ 𝑠 ≼ ω)) → (𝑟 × 𝑠) ≼ ω) |
23 | | ondomen 9793 |
. . . . . . . . . . . 12
⊢ ((ω
∈ On ∧ (𝑟 ×
𝑠) ≼ ω) →
(𝑟 × 𝑠) ∈ dom
card) |
24 | 12, 22, 23 | sylancr 587 |
. . . . . . . . . . 11
⊢ (((𝑟 ∈ TopBases ∧ 𝑠 ∈ TopBases) ∧ (𝑟 ≼ ω ∧ 𝑠 ≼ ω)) → (𝑟 × 𝑠) ∈ dom card) |
25 | | eqid 2738 |
. . . . . . . . . . . . . 14
⊢ (𝑥 ∈ 𝑟, 𝑦 ∈ 𝑠 ↦ (𝑥 × 𝑦)) = (𝑥 ∈ 𝑟, 𝑦 ∈ 𝑠 ↦ (𝑥 × 𝑦)) |
26 | | vex 3436 |
. . . . . . . . . . . . . . 15
⊢ 𝑥 ∈ V |
27 | | vex 3436 |
. . . . . . . . . . . . . . 15
⊢ 𝑦 ∈ V |
28 | 26, 27 | xpex 7603 |
. . . . . . . . . . . . . 14
⊢ (𝑥 × 𝑦) ∈ V |
29 | 25, 28 | fnmpoi 7910 |
. . . . . . . . . . . . 13
⊢ (𝑥 ∈ 𝑟, 𝑦 ∈ 𝑠 ↦ (𝑥 × 𝑦)) Fn (𝑟 × 𝑠) |
30 | 29 | a1i 11 |
. . . . . . . . . . . 12
⊢ (((𝑟 ∈ TopBases ∧ 𝑠 ∈ TopBases) ∧ (𝑟 ≼ ω ∧ 𝑠 ≼ ω)) → (𝑥 ∈ 𝑟, 𝑦 ∈ 𝑠 ↦ (𝑥 × 𝑦)) Fn (𝑟 × 𝑠)) |
31 | | dffn4 6694 |
. . . . . . . . . . . 12
⊢ ((𝑥 ∈ 𝑟, 𝑦 ∈ 𝑠 ↦ (𝑥 × 𝑦)) Fn (𝑟 × 𝑠) ↔ (𝑥 ∈ 𝑟, 𝑦 ∈ 𝑠 ↦ (𝑥 × 𝑦)):(𝑟 × 𝑠)–onto→ran (𝑥 ∈ 𝑟, 𝑦 ∈ 𝑠 ↦ (𝑥 × 𝑦))) |
32 | 30, 31 | sylib 217 |
. . . . . . . . . . 11
⊢ (((𝑟 ∈ TopBases ∧ 𝑠 ∈ TopBases) ∧ (𝑟 ≼ ω ∧ 𝑠 ≼ ω)) → (𝑥 ∈ 𝑟, 𝑦 ∈ 𝑠 ↦ (𝑥 × 𝑦)):(𝑟 × 𝑠)–onto→ran (𝑥 ∈ 𝑟, 𝑦 ∈ 𝑠 ↦ (𝑥 × 𝑦))) |
33 | | fodomnum 9813 |
. . . . . . . . . . 11
⊢ ((𝑟 × 𝑠) ∈ dom card → ((𝑥 ∈ 𝑟, 𝑦 ∈ 𝑠 ↦ (𝑥 × 𝑦)):(𝑟 × 𝑠)–onto→ran (𝑥 ∈ 𝑟, 𝑦 ∈ 𝑠 ↦ (𝑥 × 𝑦)) → ran (𝑥 ∈ 𝑟, 𝑦 ∈ 𝑠 ↦ (𝑥 × 𝑦)) ≼ (𝑟 × 𝑠))) |
34 | 24, 32, 33 | sylc 65 |
. . . . . . . . . 10
⊢ (((𝑟 ∈ TopBases ∧ 𝑠 ∈ TopBases) ∧ (𝑟 ≼ ω ∧ 𝑠 ≼ ω)) → ran
(𝑥 ∈ 𝑟, 𝑦 ∈ 𝑠 ↦ (𝑥 × 𝑦)) ≼ (𝑟 × 𝑠)) |
35 | | domtr 8793 |
. . . . . . . . . 10
⊢ ((ran
(𝑥 ∈ 𝑟, 𝑦 ∈ 𝑠 ↦ (𝑥 × 𝑦)) ≼ (𝑟 × 𝑠) ∧ (𝑟 × 𝑠) ≼ ω) → ran (𝑥 ∈ 𝑟, 𝑦 ∈ 𝑠 ↦ (𝑥 × 𝑦)) ≼ ω) |
36 | 34, 22, 35 | syl2anc 584 |
. . . . . . . . 9
⊢ (((𝑟 ∈ TopBases ∧ 𝑠 ∈ TopBases) ∧ (𝑟 ≼ ω ∧ 𝑠 ≼ ω)) → ran
(𝑥 ∈ 𝑟, 𝑦 ∈ 𝑠 ↦ (𝑥 × 𝑦)) ≼ ω) |
37 | | 2ndci 22599 |
. . . . . . . . 9
⊢ ((ran
(𝑥 ∈ 𝑟, 𝑦 ∈ 𝑠 ↦ (𝑥 × 𝑦)) ∈ TopBases ∧ ran (𝑥 ∈ 𝑟, 𝑦 ∈ 𝑠 ↦ (𝑥 × 𝑦)) ≼ ω) → (topGen‘ran
(𝑥 ∈ 𝑟, 𝑦 ∈ 𝑠 ↦ (𝑥 × 𝑦))) ∈
2ndω) |
38 | 11, 36, 37 | syl2anc 584 |
. . . . . . . 8
⊢ (((𝑟 ∈ TopBases ∧ 𝑠 ∈ TopBases) ∧ (𝑟 ≼ ω ∧ 𝑠 ≼ ω)) →
(topGen‘ran (𝑥 ∈
𝑟, 𝑦 ∈ 𝑠 ↦ (𝑥 × 𝑦))) ∈
2ndω) |
39 | 9, 38 | eqeltrd 2839 |
. . . . . . 7
⊢ (((𝑟 ∈ TopBases ∧ 𝑠 ∈ TopBases) ∧ (𝑟 ≼ ω ∧ 𝑠 ≼ ω)) →
((topGen‘𝑟)
×t (topGen‘𝑠)) ∈
2ndω) |
40 | | oveq12 7284 |
. . . . . . . 8
⊢
(((topGen‘𝑟) =
𝑅 ∧ (topGen‘𝑠) = 𝑆) → ((topGen‘𝑟) ×t (topGen‘𝑠)) = (𝑅 ×t 𝑆)) |
41 | 40 | eleq1d 2823 |
. . . . . . 7
⊢
(((topGen‘𝑟) =
𝑅 ∧ (topGen‘𝑠) = 𝑆) → (((topGen‘𝑟) ×t (topGen‘𝑠)) ∈ 2ndω
↔ (𝑅
×t 𝑆)
∈ 2ndω)) |
42 | 39, 41 | syl5ibcom 244 |
. . . . . 6
⊢ (((𝑟 ∈ TopBases ∧ 𝑠 ∈ TopBases) ∧ (𝑟 ≼ ω ∧ 𝑠 ≼ ω)) →
(((topGen‘𝑟) = 𝑅 ∧ (topGen‘𝑠) = 𝑆) → (𝑅 ×t 𝑆) ∈
2ndω)) |
43 | 42 | expimpd 454 |
. . . . 5
⊢ ((𝑟 ∈ TopBases ∧ 𝑠 ∈ TopBases) →
(((𝑟 ≼ ω ∧
𝑠 ≼ ω) ∧
((topGen‘𝑟) = 𝑅 ∧ (topGen‘𝑠) = 𝑆)) → (𝑅 ×t 𝑆) ∈
2ndω)) |
44 | 4, 43 | syl5bi 241 |
. . . 4
⊢ ((𝑟 ∈ TopBases ∧ 𝑠 ∈ TopBases) →
(((𝑟 ≼ ω ∧
(topGen‘𝑟) = 𝑅) ∧ (𝑠 ≼ ω ∧ (topGen‘𝑠) = 𝑆)) → (𝑅 ×t 𝑆) ∈
2ndω)) |
45 | 44 | rexlimivv 3221 |
. . 3
⊢
(∃𝑟 ∈
TopBases ∃𝑠 ∈
TopBases ((𝑟 ≼
ω ∧ (topGen‘𝑟) = 𝑅) ∧ (𝑠 ≼ ω ∧ (topGen‘𝑠) = 𝑆)) → (𝑅 ×t 𝑆) ∈
2ndω) |
46 | 3, 45 | sylbir 234 |
. 2
⊢
((∃𝑟 ∈
TopBases (𝑟 ≼ ω
∧ (topGen‘𝑟) =
𝑅) ∧ ∃𝑠 ∈ TopBases (𝑠 ≼ ω ∧
(topGen‘𝑠) = 𝑆)) → (𝑅 ×t 𝑆) ∈
2ndω) |
47 | 1, 2, 46 | syl2anb 598 |
1
⊢ ((𝑅 ∈ 2ndω
∧ 𝑆 ∈
2ndω) → (𝑅 ×t 𝑆) ∈
2ndω) |