MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tx2ndc Structured version   Visualization version   GIF version

Theorem tx2ndc 23536
Description: The topological product of two second-countable spaces is second-countable. (Contributed by Mario Carneiro, 21-Mar-2015.)
Assertion
Ref Expression
tx2ndc ((𝑅 ∈ 2ndω ∧ 𝑆 ∈ 2ndω) → (𝑅 ×t 𝑆) ∈ 2ndω)

Proof of Theorem tx2ndc
Dummy variables 𝑠 𝑟 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 is2ndc 23331 . 2 (𝑅 ∈ 2ndω ↔ ∃𝑟 ∈ TopBases (𝑟 ≼ ω ∧ (topGen‘𝑟) = 𝑅))
2 is2ndc 23331 . 2 (𝑆 ∈ 2ndω ↔ ∃𝑠 ∈ TopBases (𝑠 ≼ ω ∧ (topGen‘𝑠) = 𝑆))
3 reeanv 3201 . . 3 (∃𝑟 ∈ TopBases ∃𝑠 ∈ TopBases ((𝑟 ≼ ω ∧ (topGen‘𝑟) = 𝑅) ∧ (𝑠 ≼ ω ∧ (topGen‘𝑠) = 𝑆)) ↔ (∃𝑟 ∈ TopBases (𝑟 ≼ ω ∧ (topGen‘𝑟) = 𝑅) ∧ ∃𝑠 ∈ TopBases (𝑠 ≼ ω ∧ (topGen‘𝑠) = 𝑆)))
4 an4 656 . . . . 5 (((𝑟 ≼ ω ∧ (topGen‘𝑟) = 𝑅) ∧ (𝑠 ≼ ω ∧ (topGen‘𝑠) = 𝑆)) ↔ ((𝑟 ≼ ω ∧ 𝑠 ≼ ω) ∧ ((topGen‘𝑟) = 𝑅 ∧ (topGen‘𝑠) = 𝑆)))
5 txbasval 23491 . . . . . . . . . 10 ((𝑟 ∈ TopBases ∧ 𝑠 ∈ TopBases) → ((topGen‘𝑟) ×t (topGen‘𝑠)) = (𝑟 ×t 𝑠))
6 eqid 2729 . . . . . . . . . . 11 ran (𝑥𝑟, 𝑦𝑠 ↦ (𝑥 × 𝑦)) = ran (𝑥𝑟, 𝑦𝑠 ↦ (𝑥 × 𝑦))
76txval 23449 . . . . . . . . . 10 ((𝑟 ∈ TopBases ∧ 𝑠 ∈ TopBases) → (𝑟 ×t 𝑠) = (topGen‘ran (𝑥𝑟, 𝑦𝑠 ↦ (𝑥 × 𝑦))))
85, 7eqtrd 2764 . . . . . . . . 9 ((𝑟 ∈ TopBases ∧ 𝑠 ∈ TopBases) → ((topGen‘𝑟) ×t (topGen‘𝑠)) = (topGen‘ran (𝑥𝑟, 𝑦𝑠 ↦ (𝑥 × 𝑦))))
98adantr 480 . . . . . . . 8 (((𝑟 ∈ TopBases ∧ 𝑠 ∈ TopBases) ∧ (𝑟 ≼ ω ∧ 𝑠 ≼ ω)) → ((topGen‘𝑟) ×t (topGen‘𝑠)) = (topGen‘ran (𝑥𝑟, 𝑦𝑠 ↦ (𝑥 × 𝑦))))
106txbas 23452 . . . . . . . . . 10 ((𝑟 ∈ TopBases ∧ 𝑠 ∈ TopBases) → ran (𝑥𝑟, 𝑦𝑠 ↦ (𝑥 × 𝑦)) ∈ TopBases)
1110adantr 480 . . . . . . . . 9 (((𝑟 ∈ TopBases ∧ 𝑠 ∈ TopBases) ∧ (𝑟 ≼ ω ∧ 𝑠 ≼ ω)) → ran (𝑥𝑟, 𝑦𝑠 ↦ (𝑥 × 𝑦)) ∈ TopBases)
12 omelon 9542 . . . . . . . . . . . 12 ω ∈ On
13 vex 3440 . . . . . . . . . . . . . . . 16 𝑠 ∈ V
1413xpdom1 8993 . . . . . . . . . . . . . . 15 (𝑟 ≼ ω → (𝑟 × 𝑠) ≼ (ω × 𝑠))
15 omex 9539 . . . . . . . . . . . . . . . 16 ω ∈ V
1615xpdom2 8989 . . . . . . . . . . . . . . 15 (𝑠 ≼ ω → (ω × 𝑠) ≼ (ω × ω))
17 domtr 8932 . . . . . . . . . . . . . . 15 (((𝑟 × 𝑠) ≼ (ω × 𝑠) ∧ (ω × 𝑠) ≼ (ω × ω)) → (𝑟 × 𝑠) ≼ (ω × ω))
1814, 16, 17syl2an 596 . . . . . . . . . . . . . 14 ((𝑟 ≼ ω ∧ 𝑠 ≼ ω) → (𝑟 × 𝑠) ≼ (ω × ω))
1918adantl 481 . . . . . . . . . . . . 13 (((𝑟 ∈ TopBases ∧ 𝑠 ∈ TopBases) ∧ (𝑟 ≼ ω ∧ 𝑠 ≼ ω)) → (𝑟 × 𝑠) ≼ (ω × ω))
20 xpomen 9909 . . . . . . . . . . . . 13 (ω × ω) ≈ ω
21 domentr 8938 . . . . . . . . . . . . 13 (((𝑟 × 𝑠) ≼ (ω × ω) ∧ (ω × ω) ≈ ω) → (𝑟 × 𝑠) ≼ ω)
2219, 20, 21sylancl 586 . . . . . . . . . . . 12 (((𝑟 ∈ TopBases ∧ 𝑠 ∈ TopBases) ∧ (𝑟 ≼ ω ∧ 𝑠 ≼ ω)) → (𝑟 × 𝑠) ≼ ω)
23 ondomen 9931 . . . . . . . . . . . 12 ((ω ∈ On ∧ (𝑟 × 𝑠) ≼ ω) → (𝑟 × 𝑠) ∈ dom card)
2412, 22, 23sylancr 587 . . . . . . . . . . 11 (((𝑟 ∈ TopBases ∧ 𝑠 ∈ TopBases) ∧ (𝑟 ≼ ω ∧ 𝑠 ≼ ω)) → (𝑟 × 𝑠) ∈ dom card)
25 eqid 2729 . . . . . . . . . . . . . 14 (𝑥𝑟, 𝑦𝑠 ↦ (𝑥 × 𝑦)) = (𝑥𝑟, 𝑦𝑠 ↦ (𝑥 × 𝑦))
26 vex 3440 . . . . . . . . . . . . . . 15 𝑥 ∈ V
27 vex 3440 . . . . . . . . . . . . . . 15 𝑦 ∈ V
2826, 27xpex 7689 . . . . . . . . . . . . . 14 (𝑥 × 𝑦) ∈ V
2925, 28fnmpoi 8005 . . . . . . . . . . . . 13 (𝑥𝑟, 𝑦𝑠 ↦ (𝑥 × 𝑦)) Fn (𝑟 × 𝑠)
3029a1i 11 . . . . . . . . . . . 12 (((𝑟 ∈ TopBases ∧ 𝑠 ∈ TopBases) ∧ (𝑟 ≼ ω ∧ 𝑠 ≼ ω)) → (𝑥𝑟, 𝑦𝑠 ↦ (𝑥 × 𝑦)) Fn (𝑟 × 𝑠))
31 dffn4 6742 . . . . . . . . . . . 12 ((𝑥𝑟, 𝑦𝑠 ↦ (𝑥 × 𝑦)) Fn (𝑟 × 𝑠) ↔ (𝑥𝑟, 𝑦𝑠 ↦ (𝑥 × 𝑦)):(𝑟 × 𝑠)–onto→ran (𝑥𝑟, 𝑦𝑠 ↦ (𝑥 × 𝑦)))
3230, 31sylib 218 . . . . . . . . . . 11 (((𝑟 ∈ TopBases ∧ 𝑠 ∈ TopBases) ∧ (𝑟 ≼ ω ∧ 𝑠 ≼ ω)) → (𝑥𝑟, 𝑦𝑠 ↦ (𝑥 × 𝑦)):(𝑟 × 𝑠)–onto→ran (𝑥𝑟, 𝑦𝑠 ↦ (𝑥 × 𝑦)))
33 fodomnum 9951 . . . . . . . . . . 11 ((𝑟 × 𝑠) ∈ dom card → ((𝑥𝑟, 𝑦𝑠 ↦ (𝑥 × 𝑦)):(𝑟 × 𝑠)–onto→ran (𝑥𝑟, 𝑦𝑠 ↦ (𝑥 × 𝑦)) → ran (𝑥𝑟, 𝑦𝑠 ↦ (𝑥 × 𝑦)) ≼ (𝑟 × 𝑠)))
3424, 32, 33sylc 65 . . . . . . . . . 10 (((𝑟 ∈ TopBases ∧ 𝑠 ∈ TopBases) ∧ (𝑟 ≼ ω ∧ 𝑠 ≼ ω)) → ran (𝑥𝑟, 𝑦𝑠 ↦ (𝑥 × 𝑦)) ≼ (𝑟 × 𝑠))
35 domtr 8932 . . . . . . . . . 10 ((ran (𝑥𝑟, 𝑦𝑠 ↦ (𝑥 × 𝑦)) ≼ (𝑟 × 𝑠) ∧ (𝑟 × 𝑠) ≼ ω) → ran (𝑥𝑟, 𝑦𝑠 ↦ (𝑥 × 𝑦)) ≼ ω)
3634, 22, 35syl2anc 584 . . . . . . . . 9 (((𝑟 ∈ TopBases ∧ 𝑠 ∈ TopBases) ∧ (𝑟 ≼ ω ∧ 𝑠 ≼ ω)) → ran (𝑥𝑟, 𝑦𝑠 ↦ (𝑥 × 𝑦)) ≼ ω)
37 2ndci 23333 . . . . . . . . 9 ((ran (𝑥𝑟, 𝑦𝑠 ↦ (𝑥 × 𝑦)) ∈ TopBases ∧ ran (𝑥𝑟, 𝑦𝑠 ↦ (𝑥 × 𝑦)) ≼ ω) → (topGen‘ran (𝑥𝑟, 𝑦𝑠 ↦ (𝑥 × 𝑦))) ∈ 2ndω)
3811, 36, 37syl2anc 584 . . . . . . . 8 (((𝑟 ∈ TopBases ∧ 𝑠 ∈ TopBases) ∧ (𝑟 ≼ ω ∧ 𝑠 ≼ ω)) → (topGen‘ran (𝑥𝑟, 𝑦𝑠 ↦ (𝑥 × 𝑦))) ∈ 2ndω)
399, 38eqeltrd 2828 . . . . . . 7 (((𝑟 ∈ TopBases ∧ 𝑠 ∈ TopBases) ∧ (𝑟 ≼ ω ∧ 𝑠 ≼ ω)) → ((topGen‘𝑟) ×t (topGen‘𝑠)) ∈ 2ndω)
40 oveq12 7358 . . . . . . . 8 (((topGen‘𝑟) = 𝑅 ∧ (topGen‘𝑠) = 𝑆) → ((topGen‘𝑟) ×t (topGen‘𝑠)) = (𝑅 ×t 𝑆))
4140eleq1d 2813 . . . . . . 7 (((topGen‘𝑟) = 𝑅 ∧ (topGen‘𝑠) = 𝑆) → (((topGen‘𝑟) ×t (topGen‘𝑠)) ∈ 2ndω ↔ (𝑅 ×t 𝑆) ∈ 2ndω))
4239, 41syl5ibcom 245 . . . . . 6 (((𝑟 ∈ TopBases ∧ 𝑠 ∈ TopBases) ∧ (𝑟 ≼ ω ∧ 𝑠 ≼ ω)) → (((topGen‘𝑟) = 𝑅 ∧ (topGen‘𝑠) = 𝑆) → (𝑅 ×t 𝑆) ∈ 2ndω))
4342expimpd 453 . . . . 5 ((𝑟 ∈ TopBases ∧ 𝑠 ∈ TopBases) → (((𝑟 ≼ ω ∧ 𝑠 ≼ ω) ∧ ((topGen‘𝑟) = 𝑅 ∧ (topGen‘𝑠) = 𝑆)) → (𝑅 ×t 𝑆) ∈ 2ndω))
444, 43biimtrid 242 . . . 4 ((𝑟 ∈ TopBases ∧ 𝑠 ∈ TopBases) → (((𝑟 ≼ ω ∧ (topGen‘𝑟) = 𝑅) ∧ (𝑠 ≼ ω ∧ (topGen‘𝑠) = 𝑆)) → (𝑅 ×t 𝑆) ∈ 2ndω))
4544rexlimivv 3171 . . 3 (∃𝑟 ∈ TopBases ∃𝑠 ∈ TopBases ((𝑟 ≼ ω ∧ (topGen‘𝑟) = 𝑅) ∧ (𝑠 ≼ ω ∧ (topGen‘𝑠) = 𝑆)) → (𝑅 ×t 𝑆) ∈ 2ndω)
463, 45sylbir 235 . 2 ((∃𝑟 ∈ TopBases (𝑟 ≼ ω ∧ (topGen‘𝑟) = 𝑅) ∧ ∃𝑠 ∈ TopBases (𝑠 ≼ ω ∧ (topGen‘𝑠) = 𝑆)) → (𝑅 ×t 𝑆) ∈ 2ndω)
471, 2, 46syl2anb 598 1 ((𝑅 ∈ 2ndω ∧ 𝑆 ∈ 2ndω) → (𝑅 ×t 𝑆) ∈ 2ndω)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wrex 3053   class class class wbr 5092   × cxp 5617  dom cdm 5619  ran crn 5620  Oncon0 6307   Fn wfn 6477  ontowfo 6480  cfv 6482  (class class class)co 7349  cmpo 7351  ωcom 7799  cen 8869  cdom 8870  cardccrd 9831  topGenctg 17341  TopBasesctb 22830  2ndωc2ndc 23323   ×t ctx 23445
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-inf2 9537
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-int 4897  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-se 5573  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-isom 6491  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-om 7800  df-1st 7924  df-2nd 7925  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-1o 8388  df-er 8625  df-map 8755  df-en 8873  df-dom 8874  df-sdom 8875  df-fin 8876  df-oi 9402  df-card 9835  df-acn 9838  df-topgen 17347  df-bases 22831  df-2ndc 23325  df-tx 23447
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator