| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | methaus.1 | . . . . 5
⊢ 𝐽 = (MetOpen‘𝐷) | 
| 2 | 1 | mopntop 24451 | . . . 4
⊢ (𝐷 ∈ (∞Met‘𝑋) → 𝐽 ∈ Top) | 
| 3 | 2 | adantr 480 | . . 3
⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐴 ⊆ 𝑋 ∧ 𝐴 ≼ ω ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) → 𝐽 ∈ Top) | 
| 4 |  | simpll 766 | . . . . . . 7
⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐴 ⊆ 𝑋 ∧ 𝐴 ≼ ω ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) ∧ (𝑥 ∈ ℕ ∧ 𝑦 ∈ 𝐴)) → 𝐷 ∈ (∞Met‘𝑋)) | 
| 5 |  | simplr1 1215 | . . . . . . . 8
⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐴 ⊆ 𝑋 ∧ 𝐴 ≼ ω ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) ∧ (𝑥 ∈ ℕ ∧ 𝑦 ∈ 𝐴)) → 𝐴 ⊆ 𝑋) | 
| 6 |  | simprr 772 | . . . . . . . 8
⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐴 ⊆ 𝑋 ∧ 𝐴 ≼ ω ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) ∧ (𝑥 ∈ ℕ ∧ 𝑦 ∈ 𝐴)) → 𝑦 ∈ 𝐴) | 
| 7 | 5, 6 | sseldd 3983 | . . . . . . 7
⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐴 ⊆ 𝑋 ∧ 𝐴 ≼ ω ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) ∧ (𝑥 ∈ ℕ ∧ 𝑦 ∈ 𝐴)) → 𝑦 ∈ 𝑋) | 
| 8 |  | simprl 770 | . . . . . . . . . 10
⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐴 ⊆ 𝑋 ∧ 𝐴 ≼ ω ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) ∧ (𝑥 ∈ ℕ ∧ 𝑦 ∈ 𝐴)) → 𝑥 ∈ ℕ) | 
| 9 | 8 | nnrpd 13076 | . . . . . . . . 9
⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐴 ⊆ 𝑋 ∧ 𝐴 ≼ ω ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) ∧ (𝑥 ∈ ℕ ∧ 𝑦 ∈ 𝐴)) → 𝑥 ∈ ℝ+) | 
| 10 | 9 | rpreccld 13088 | . . . . . . . 8
⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐴 ⊆ 𝑋 ∧ 𝐴 ≼ ω ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) ∧ (𝑥 ∈ ℕ ∧ 𝑦 ∈ 𝐴)) → (1 / 𝑥) ∈
ℝ+) | 
| 11 | 10 | rpxrd 13079 | . . . . . . 7
⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐴 ⊆ 𝑋 ∧ 𝐴 ≼ ω ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) ∧ (𝑥 ∈ ℕ ∧ 𝑦 ∈ 𝐴)) → (1 / 𝑥) ∈
ℝ*) | 
| 12 | 1 | blopn 24514 | . . . . . . 7
⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑦 ∈ 𝑋 ∧ (1 / 𝑥) ∈ ℝ*) → (𝑦(ball‘𝐷)(1 / 𝑥)) ∈ 𝐽) | 
| 13 | 4, 7, 11, 12 | syl3anc 1372 | . . . . . 6
⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐴 ⊆ 𝑋 ∧ 𝐴 ≼ ω ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) ∧ (𝑥 ∈ ℕ ∧ 𝑦 ∈ 𝐴)) → (𝑦(ball‘𝐷)(1 / 𝑥)) ∈ 𝐽) | 
| 14 | 13 | ralrimivva 3201 | . . . . 5
⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐴 ⊆ 𝑋 ∧ 𝐴 ≼ ω ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) → ∀𝑥 ∈ ℕ ∀𝑦 ∈ 𝐴 (𝑦(ball‘𝐷)(1 / 𝑥)) ∈ 𝐽) | 
| 15 |  | eqid 2736 | . . . . . 6
⊢ (𝑥 ∈ ℕ, 𝑦 ∈ 𝐴 ↦ (𝑦(ball‘𝐷)(1 / 𝑥))) = (𝑥 ∈ ℕ, 𝑦 ∈ 𝐴 ↦ (𝑦(ball‘𝐷)(1 / 𝑥))) | 
| 16 | 15 | fmpo 8094 | . . . . 5
⊢
(∀𝑥 ∈
ℕ ∀𝑦 ∈
𝐴 (𝑦(ball‘𝐷)(1 / 𝑥)) ∈ 𝐽 ↔ (𝑥 ∈ ℕ, 𝑦 ∈ 𝐴 ↦ (𝑦(ball‘𝐷)(1 / 𝑥))):(ℕ × 𝐴)⟶𝐽) | 
| 17 | 14, 16 | sylib 218 | . . . 4
⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐴 ⊆ 𝑋 ∧ 𝐴 ≼ ω ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) → (𝑥 ∈ ℕ, 𝑦 ∈ 𝐴 ↦ (𝑦(ball‘𝐷)(1 / 𝑥))):(ℕ × 𝐴)⟶𝐽) | 
| 18 | 17 | frnd 6743 | . . 3
⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐴 ⊆ 𝑋 ∧ 𝐴 ≼ ω ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) → ran (𝑥 ∈ ℕ, 𝑦 ∈ 𝐴 ↦ (𝑦(ball‘𝐷)(1 / 𝑥))) ⊆ 𝐽) | 
| 19 |  | simpll 766 | . . . . . 6
⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐴 ⊆ 𝑋 ∧ 𝐴 ≼ ω ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) ∧ (𝑢 ∈ 𝐽 ∧ 𝑧 ∈ 𝑢)) → 𝐷 ∈ (∞Met‘𝑋)) | 
| 20 |  | simprl 770 | . . . . . 6
⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐴 ⊆ 𝑋 ∧ 𝐴 ≼ ω ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) ∧ (𝑢 ∈ 𝐽 ∧ 𝑧 ∈ 𝑢)) → 𝑢 ∈ 𝐽) | 
| 21 |  | simprr 772 | . . . . . 6
⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐴 ⊆ 𝑋 ∧ 𝐴 ≼ ω ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) ∧ (𝑢 ∈ 𝐽 ∧ 𝑧 ∈ 𝑢)) → 𝑧 ∈ 𝑢) | 
| 22 | 1 | mopni2 24507 | . . . . . 6
⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑢 ∈ 𝐽 ∧ 𝑧 ∈ 𝑢) → ∃𝑟 ∈ ℝ+ (𝑧(ball‘𝐷)𝑟) ⊆ 𝑢) | 
| 23 | 19, 20, 21, 22 | syl3anc 1372 | . . . . 5
⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐴 ⊆ 𝑋 ∧ 𝐴 ≼ ω ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) ∧ (𝑢 ∈ 𝐽 ∧ 𝑧 ∈ 𝑢)) → ∃𝑟 ∈ ℝ+ (𝑧(ball‘𝐷)𝑟) ⊆ 𝑢) | 
| 24 |  | simprl 770 | . . . . . . . 8
⊢ ((((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐴 ⊆ 𝑋 ∧ 𝐴 ≼ ω ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) ∧ (𝑢 ∈ 𝐽 ∧ 𝑧 ∈ 𝑢)) ∧ (𝑟 ∈ ℝ+ ∧ (𝑧(ball‘𝐷)𝑟) ⊆ 𝑢)) → 𝑟 ∈ ℝ+) | 
| 25 | 24 | rphalfcld 13090 | . . . . . . 7
⊢ ((((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐴 ⊆ 𝑋 ∧ 𝐴 ≼ ω ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) ∧ (𝑢 ∈ 𝐽 ∧ 𝑧 ∈ 𝑢)) ∧ (𝑟 ∈ ℝ+ ∧ (𝑧(ball‘𝐷)𝑟) ⊆ 𝑢)) → (𝑟 / 2) ∈
ℝ+) | 
| 26 |  | elrp 13037 | . . . . . . . 8
⊢ ((𝑟 / 2) ∈ ℝ+
↔ ((𝑟 / 2) ∈
ℝ ∧ 0 < (𝑟 /
2))) | 
| 27 |  | nnrecl 12526 | . . . . . . . 8
⊢ (((𝑟 / 2) ∈ ℝ ∧ 0
< (𝑟 / 2)) →
∃𝑛 ∈ ℕ (1
/ 𝑛) < (𝑟 / 2)) | 
| 28 | 26, 27 | sylbi 217 | . . . . . . 7
⊢ ((𝑟 / 2) ∈ ℝ+
→ ∃𝑛 ∈
ℕ (1 / 𝑛) < (𝑟 / 2)) | 
| 29 | 25, 28 | syl 17 | . . . . . 6
⊢ ((((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐴 ⊆ 𝑋 ∧ 𝐴 ≼ ω ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) ∧ (𝑢 ∈ 𝐽 ∧ 𝑧 ∈ 𝑢)) ∧ (𝑟 ∈ ℝ+ ∧ (𝑧(ball‘𝐷)𝑟) ⊆ 𝑢)) → ∃𝑛 ∈ ℕ (1 / 𝑛) < (𝑟 / 2)) | 
| 30 | 3 | ad2antrr 726 | . . . . . . . . . 10
⊢ ((((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐴 ⊆ 𝑋 ∧ 𝐴 ≼ ω ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) ∧ (𝑢 ∈ 𝐽 ∧ 𝑧 ∈ 𝑢)) ∧ ((𝑟 ∈ ℝ+ ∧ (𝑧(ball‘𝐷)𝑟) ⊆ 𝑢) ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (𝑟 / 2)))) → 𝐽 ∈ Top) | 
| 31 |  | simpr1 1194 | . . . . . . . . . . . 12
⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐴 ⊆ 𝑋 ∧ 𝐴 ≼ ω ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) → 𝐴 ⊆ 𝑋) | 
| 32 | 31 | ad2antrr 726 | . . . . . . . . . . 11
⊢ ((((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐴 ⊆ 𝑋 ∧ 𝐴 ≼ ω ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) ∧ (𝑢 ∈ 𝐽 ∧ 𝑧 ∈ 𝑢)) ∧ ((𝑟 ∈ ℝ+ ∧ (𝑧(ball‘𝐷)𝑟) ⊆ 𝑢) ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (𝑟 / 2)))) → 𝐴 ⊆ 𝑋) | 
| 33 | 1 | mopnuni 24452 | . . . . . . . . . . . 12
⊢ (𝐷 ∈ (∞Met‘𝑋) → 𝑋 = ∪ 𝐽) | 
| 34 | 33 | ad3antrrr 730 | . . . . . . . . . . 11
⊢ ((((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐴 ⊆ 𝑋 ∧ 𝐴 ≼ ω ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) ∧ (𝑢 ∈ 𝐽 ∧ 𝑧 ∈ 𝑢)) ∧ ((𝑟 ∈ ℝ+ ∧ (𝑧(ball‘𝐷)𝑟) ⊆ 𝑢) ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (𝑟 / 2)))) → 𝑋 = ∪ 𝐽) | 
| 35 | 32, 34 | sseqtrd 4019 | . . . . . . . . . 10
⊢ ((((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐴 ⊆ 𝑋 ∧ 𝐴 ≼ ω ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) ∧ (𝑢 ∈ 𝐽 ∧ 𝑧 ∈ 𝑢)) ∧ ((𝑟 ∈ ℝ+ ∧ (𝑧(ball‘𝐷)𝑟) ⊆ 𝑢) ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (𝑟 / 2)))) → 𝐴 ⊆ ∪ 𝐽) | 
| 36 |  | simplrr 777 | . . . . . . . . . . . . 13
⊢ ((((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐴 ⊆ 𝑋 ∧ 𝐴 ≼ ω ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) ∧ (𝑢 ∈ 𝐽 ∧ 𝑧 ∈ 𝑢)) ∧ ((𝑟 ∈ ℝ+ ∧ (𝑧(ball‘𝐷)𝑟) ⊆ 𝑢) ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (𝑟 / 2)))) → 𝑧 ∈ 𝑢) | 
| 37 |  | simplrl 776 | . . . . . . . . . . . . 13
⊢ ((((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐴 ⊆ 𝑋 ∧ 𝐴 ≼ ω ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) ∧ (𝑢 ∈ 𝐽 ∧ 𝑧 ∈ 𝑢)) ∧ ((𝑟 ∈ ℝ+ ∧ (𝑧(ball‘𝐷)𝑟) ⊆ 𝑢) ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (𝑟 / 2)))) → 𝑢 ∈ 𝐽) | 
| 38 |  | elunii 4911 | . . . . . . . . . . . . 13
⊢ ((𝑧 ∈ 𝑢 ∧ 𝑢 ∈ 𝐽) → 𝑧 ∈ ∪ 𝐽) | 
| 39 | 36, 37, 38 | syl2anc 584 | . . . . . . . . . . . 12
⊢ ((((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐴 ⊆ 𝑋 ∧ 𝐴 ≼ ω ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) ∧ (𝑢 ∈ 𝐽 ∧ 𝑧 ∈ 𝑢)) ∧ ((𝑟 ∈ ℝ+ ∧ (𝑧(ball‘𝐷)𝑟) ⊆ 𝑢) ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (𝑟 / 2)))) → 𝑧 ∈ ∪ 𝐽) | 
| 40 | 39, 34 | eleqtrrd 2843 | . . . . . . . . . . 11
⊢ ((((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐴 ⊆ 𝑋 ∧ 𝐴 ≼ ω ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) ∧ (𝑢 ∈ 𝐽 ∧ 𝑧 ∈ 𝑢)) ∧ ((𝑟 ∈ ℝ+ ∧ (𝑧(ball‘𝐷)𝑟) ⊆ 𝑢) ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (𝑟 / 2)))) → 𝑧 ∈ 𝑋) | 
| 41 |  | simpr3 1196 | . . . . . . . . . . . 12
⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐴 ⊆ 𝑋 ∧ 𝐴 ≼ ω ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) → ((cls‘𝐽)‘𝐴) = 𝑋) | 
| 42 | 41 | ad2antrr 726 | . . . . . . . . . . 11
⊢ ((((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐴 ⊆ 𝑋 ∧ 𝐴 ≼ ω ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) ∧ (𝑢 ∈ 𝐽 ∧ 𝑧 ∈ 𝑢)) ∧ ((𝑟 ∈ ℝ+ ∧ (𝑧(ball‘𝐷)𝑟) ⊆ 𝑢) ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (𝑟 / 2)))) → ((cls‘𝐽)‘𝐴) = 𝑋) | 
| 43 | 40, 42 | eleqtrrd 2843 | . . . . . . . . . 10
⊢ ((((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐴 ⊆ 𝑋 ∧ 𝐴 ≼ ω ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) ∧ (𝑢 ∈ 𝐽 ∧ 𝑧 ∈ 𝑢)) ∧ ((𝑟 ∈ ℝ+ ∧ (𝑧(ball‘𝐷)𝑟) ⊆ 𝑢) ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (𝑟 / 2)))) → 𝑧 ∈ ((cls‘𝐽)‘𝐴)) | 
| 44 | 19 | adantr 480 | . . . . . . . . . . 11
⊢ ((((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐴 ⊆ 𝑋 ∧ 𝐴 ≼ ω ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) ∧ (𝑢 ∈ 𝐽 ∧ 𝑧 ∈ 𝑢)) ∧ ((𝑟 ∈ ℝ+ ∧ (𝑧(ball‘𝐷)𝑟) ⊆ 𝑢) ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (𝑟 / 2)))) → 𝐷 ∈ (∞Met‘𝑋)) | 
| 45 |  | simprrl 780 | . . . . . . . . . . . . . 14
⊢ ((((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐴 ⊆ 𝑋 ∧ 𝐴 ≼ ω ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) ∧ (𝑢 ∈ 𝐽 ∧ 𝑧 ∈ 𝑢)) ∧ ((𝑟 ∈ ℝ+ ∧ (𝑧(ball‘𝐷)𝑟) ⊆ 𝑢) ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (𝑟 / 2)))) → 𝑛 ∈ ℕ) | 
| 46 | 45 | nnrpd 13076 | . . . . . . . . . . . . 13
⊢ ((((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐴 ⊆ 𝑋 ∧ 𝐴 ≼ ω ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) ∧ (𝑢 ∈ 𝐽 ∧ 𝑧 ∈ 𝑢)) ∧ ((𝑟 ∈ ℝ+ ∧ (𝑧(ball‘𝐷)𝑟) ⊆ 𝑢) ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (𝑟 / 2)))) → 𝑛 ∈ ℝ+) | 
| 47 | 46 | rpreccld 13088 | . . . . . . . . . . . 12
⊢ ((((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐴 ⊆ 𝑋 ∧ 𝐴 ≼ ω ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) ∧ (𝑢 ∈ 𝐽 ∧ 𝑧 ∈ 𝑢)) ∧ ((𝑟 ∈ ℝ+ ∧ (𝑧(ball‘𝐷)𝑟) ⊆ 𝑢) ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (𝑟 / 2)))) → (1 / 𝑛) ∈
ℝ+) | 
| 48 | 47 | rpxrd 13079 | . . . . . . . . . . 11
⊢ ((((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐴 ⊆ 𝑋 ∧ 𝐴 ≼ ω ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) ∧ (𝑢 ∈ 𝐽 ∧ 𝑧 ∈ 𝑢)) ∧ ((𝑟 ∈ ℝ+ ∧ (𝑧(ball‘𝐷)𝑟) ⊆ 𝑢) ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (𝑟 / 2)))) → (1 / 𝑛) ∈
ℝ*) | 
| 49 | 1 | blopn 24514 | . . . . . . . . . . 11
⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑧 ∈ 𝑋 ∧ (1 / 𝑛) ∈ ℝ*) → (𝑧(ball‘𝐷)(1 / 𝑛)) ∈ 𝐽) | 
| 50 | 44, 40, 48, 49 | syl3anc 1372 | . . . . . . . . . 10
⊢ ((((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐴 ⊆ 𝑋 ∧ 𝐴 ≼ ω ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) ∧ (𝑢 ∈ 𝐽 ∧ 𝑧 ∈ 𝑢)) ∧ ((𝑟 ∈ ℝ+ ∧ (𝑧(ball‘𝐷)𝑟) ⊆ 𝑢) ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (𝑟 / 2)))) → (𝑧(ball‘𝐷)(1 / 𝑛)) ∈ 𝐽) | 
| 51 |  | blcntr 24424 | . . . . . . . . . . 11
⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑧 ∈ 𝑋 ∧ (1 / 𝑛) ∈ ℝ+) → 𝑧 ∈ (𝑧(ball‘𝐷)(1 / 𝑛))) | 
| 52 | 44, 40, 47, 51 | syl3anc 1372 | . . . . . . . . . 10
⊢ ((((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐴 ⊆ 𝑋 ∧ 𝐴 ≼ ω ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) ∧ (𝑢 ∈ 𝐽 ∧ 𝑧 ∈ 𝑢)) ∧ ((𝑟 ∈ ℝ+ ∧ (𝑧(ball‘𝐷)𝑟) ⊆ 𝑢) ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (𝑟 / 2)))) → 𝑧 ∈ (𝑧(ball‘𝐷)(1 / 𝑛))) | 
| 53 |  | eqid 2736 | . . . . . . . . . . 11
⊢ ∪ 𝐽 =
∪ 𝐽 | 
| 54 | 53 | clsndisj 23084 | . . . . . . . . . 10
⊢ (((𝐽 ∈ Top ∧ 𝐴 ⊆ ∪ 𝐽
∧ 𝑧 ∈
((cls‘𝐽)‘𝐴)) ∧ ((𝑧(ball‘𝐷)(1 / 𝑛)) ∈ 𝐽 ∧ 𝑧 ∈ (𝑧(ball‘𝐷)(1 / 𝑛)))) → ((𝑧(ball‘𝐷)(1 / 𝑛)) ∩ 𝐴) ≠ ∅) | 
| 55 | 30, 35, 43, 50, 52, 54 | syl32anc 1379 | . . . . . . . . 9
⊢ ((((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐴 ⊆ 𝑋 ∧ 𝐴 ≼ ω ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) ∧ (𝑢 ∈ 𝐽 ∧ 𝑧 ∈ 𝑢)) ∧ ((𝑟 ∈ ℝ+ ∧ (𝑧(ball‘𝐷)𝑟) ⊆ 𝑢) ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (𝑟 / 2)))) → ((𝑧(ball‘𝐷)(1 / 𝑛)) ∩ 𝐴) ≠ ∅) | 
| 56 |  | n0 4352 | . . . . . . . . 9
⊢ (((𝑧(ball‘𝐷)(1 / 𝑛)) ∩ 𝐴) ≠ ∅ ↔ ∃𝑡 𝑡 ∈ ((𝑧(ball‘𝐷)(1 / 𝑛)) ∩ 𝐴)) | 
| 57 | 55, 56 | sylib 218 | . . . . . . . 8
⊢ ((((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐴 ⊆ 𝑋 ∧ 𝐴 ≼ ω ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) ∧ (𝑢 ∈ 𝐽 ∧ 𝑧 ∈ 𝑢)) ∧ ((𝑟 ∈ ℝ+ ∧ (𝑧(ball‘𝐷)𝑟) ⊆ 𝑢) ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (𝑟 / 2)))) → ∃𝑡 𝑡 ∈ ((𝑧(ball‘𝐷)(1 / 𝑛)) ∩ 𝐴)) | 
| 58 | 45 | adantr 480 | . . . . . . . . . . 11
⊢
(((((𝐷 ∈
(∞Met‘𝑋) ∧
(𝐴 ⊆ 𝑋 ∧ 𝐴 ≼ ω ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) ∧ (𝑢 ∈ 𝐽 ∧ 𝑧 ∈ 𝑢)) ∧ ((𝑟 ∈ ℝ+ ∧ (𝑧(ball‘𝐷)𝑟) ⊆ 𝑢) ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (𝑟 / 2)))) ∧ 𝑡 ∈ ((𝑧(ball‘𝐷)(1 / 𝑛)) ∩ 𝐴)) → 𝑛 ∈ ℕ) | 
| 59 |  | simpr 484 | . . . . . . . . . . . 12
⊢
(((((𝐷 ∈
(∞Met‘𝑋) ∧
(𝐴 ⊆ 𝑋 ∧ 𝐴 ≼ ω ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) ∧ (𝑢 ∈ 𝐽 ∧ 𝑧 ∈ 𝑢)) ∧ ((𝑟 ∈ ℝ+ ∧ (𝑧(ball‘𝐷)𝑟) ⊆ 𝑢) ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (𝑟 / 2)))) ∧ 𝑡 ∈ ((𝑧(ball‘𝐷)(1 / 𝑛)) ∩ 𝐴)) → 𝑡 ∈ ((𝑧(ball‘𝐷)(1 / 𝑛)) ∩ 𝐴)) | 
| 60 | 59 | elin2d 4204 | . . . . . . . . . . 11
⊢
(((((𝐷 ∈
(∞Met‘𝑋) ∧
(𝐴 ⊆ 𝑋 ∧ 𝐴 ≼ ω ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) ∧ (𝑢 ∈ 𝐽 ∧ 𝑧 ∈ 𝑢)) ∧ ((𝑟 ∈ ℝ+ ∧ (𝑧(ball‘𝐷)𝑟) ⊆ 𝑢) ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (𝑟 / 2)))) ∧ 𝑡 ∈ ((𝑧(ball‘𝐷)(1 / 𝑛)) ∩ 𝐴)) → 𝑡 ∈ 𝐴) | 
| 61 |  | eqidd 2737 | . . . . . . . . . . 11
⊢
(((((𝐷 ∈
(∞Met‘𝑋) ∧
(𝐴 ⊆ 𝑋 ∧ 𝐴 ≼ ω ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) ∧ (𝑢 ∈ 𝐽 ∧ 𝑧 ∈ 𝑢)) ∧ ((𝑟 ∈ ℝ+ ∧ (𝑧(ball‘𝐷)𝑟) ⊆ 𝑢) ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (𝑟 / 2)))) ∧ 𝑡 ∈ ((𝑧(ball‘𝐷)(1 / 𝑛)) ∩ 𝐴)) → (𝑡(ball‘𝐷)(1 / 𝑛)) = (𝑡(ball‘𝐷)(1 / 𝑛))) | 
| 62 |  | oveq2 7440 | . . . . . . . . . . . . . 14
⊢ (𝑥 = 𝑛 → (1 / 𝑥) = (1 / 𝑛)) | 
| 63 | 62 | oveq2d 7448 | . . . . . . . . . . . . 13
⊢ (𝑥 = 𝑛 → (𝑦(ball‘𝐷)(1 / 𝑥)) = (𝑦(ball‘𝐷)(1 / 𝑛))) | 
| 64 | 63 | eqeq2d 2747 | . . . . . . . . . . . 12
⊢ (𝑥 = 𝑛 → ((𝑡(ball‘𝐷)(1 / 𝑛)) = (𝑦(ball‘𝐷)(1 / 𝑥)) ↔ (𝑡(ball‘𝐷)(1 / 𝑛)) = (𝑦(ball‘𝐷)(1 / 𝑛)))) | 
| 65 |  | oveq1 7439 | . . . . . . . . . . . . 13
⊢ (𝑦 = 𝑡 → (𝑦(ball‘𝐷)(1 / 𝑛)) = (𝑡(ball‘𝐷)(1 / 𝑛))) | 
| 66 | 65 | eqeq2d 2747 | . . . . . . . . . . . 12
⊢ (𝑦 = 𝑡 → ((𝑡(ball‘𝐷)(1 / 𝑛)) = (𝑦(ball‘𝐷)(1 / 𝑛)) ↔ (𝑡(ball‘𝐷)(1 / 𝑛)) = (𝑡(ball‘𝐷)(1 / 𝑛)))) | 
| 67 | 64, 66 | rspc2ev 3634 | . . . . . . . . . . 11
⊢ ((𝑛 ∈ ℕ ∧ 𝑡 ∈ 𝐴 ∧ (𝑡(ball‘𝐷)(1 / 𝑛)) = (𝑡(ball‘𝐷)(1 / 𝑛))) → ∃𝑥 ∈ ℕ ∃𝑦 ∈ 𝐴 (𝑡(ball‘𝐷)(1 / 𝑛)) = (𝑦(ball‘𝐷)(1 / 𝑥))) | 
| 68 | 58, 60, 61, 67 | syl3anc 1372 | . . . . . . . . . 10
⊢
(((((𝐷 ∈
(∞Met‘𝑋) ∧
(𝐴 ⊆ 𝑋 ∧ 𝐴 ≼ ω ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) ∧ (𝑢 ∈ 𝐽 ∧ 𝑧 ∈ 𝑢)) ∧ ((𝑟 ∈ ℝ+ ∧ (𝑧(ball‘𝐷)𝑟) ⊆ 𝑢) ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (𝑟 / 2)))) ∧ 𝑡 ∈ ((𝑧(ball‘𝐷)(1 / 𝑛)) ∩ 𝐴)) → ∃𝑥 ∈ ℕ ∃𝑦 ∈ 𝐴 (𝑡(ball‘𝐷)(1 / 𝑛)) = (𝑦(ball‘𝐷)(1 / 𝑥))) | 
| 69 |  | ovex 7465 | . . . . . . . . . . 11
⊢ (𝑡(ball‘𝐷)(1 / 𝑛)) ∈ V | 
| 70 |  | eqeq1 2740 | . . . . . . . . . . . 12
⊢ (𝑧 = (𝑡(ball‘𝐷)(1 / 𝑛)) → (𝑧 = (𝑦(ball‘𝐷)(1 / 𝑥)) ↔ (𝑡(ball‘𝐷)(1 / 𝑛)) = (𝑦(ball‘𝐷)(1 / 𝑥)))) | 
| 71 | 70 | 2rexbidv 3221 | . . . . . . . . . . 11
⊢ (𝑧 = (𝑡(ball‘𝐷)(1 / 𝑛)) → (∃𝑥 ∈ ℕ ∃𝑦 ∈ 𝐴 𝑧 = (𝑦(ball‘𝐷)(1 / 𝑥)) ↔ ∃𝑥 ∈ ℕ ∃𝑦 ∈ 𝐴 (𝑡(ball‘𝐷)(1 / 𝑛)) = (𝑦(ball‘𝐷)(1 / 𝑥)))) | 
| 72 | 15 | rnmpo 7567 | . . . . . . . . . . 11
⊢ ran
(𝑥 ∈ ℕ, 𝑦 ∈ 𝐴 ↦ (𝑦(ball‘𝐷)(1 / 𝑥))) = {𝑧 ∣ ∃𝑥 ∈ ℕ ∃𝑦 ∈ 𝐴 𝑧 = (𝑦(ball‘𝐷)(1 / 𝑥))} | 
| 73 | 69, 71, 72 | elab2 3681 | . . . . . . . . . 10
⊢ ((𝑡(ball‘𝐷)(1 / 𝑛)) ∈ ran (𝑥 ∈ ℕ, 𝑦 ∈ 𝐴 ↦ (𝑦(ball‘𝐷)(1 / 𝑥))) ↔ ∃𝑥 ∈ ℕ ∃𝑦 ∈ 𝐴 (𝑡(ball‘𝐷)(1 / 𝑛)) = (𝑦(ball‘𝐷)(1 / 𝑥))) | 
| 74 | 68, 73 | sylibr 234 | . . . . . . . . 9
⊢
(((((𝐷 ∈
(∞Met‘𝑋) ∧
(𝐴 ⊆ 𝑋 ∧ 𝐴 ≼ ω ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) ∧ (𝑢 ∈ 𝐽 ∧ 𝑧 ∈ 𝑢)) ∧ ((𝑟 ∈ ℝ+ ∧ (𝑧(ball‘𝐷)𝑟) ⊆ 𝑢) ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (𝑟 / 2)))) ∧ 𝑡 ∈ ((𝑧(ball‘𝐷)(1 / 𝑛)) ∩ 𝐴)) → (𝑡(ball‘𝐷)(1 / 𝑛)) ∈ ran (𝑥 ∈ ℕ, 𝑦 ∈ 𝐴 ↦ (𝑦(ball‘𝐷)(1 / 𝑥)))) | 
| 75 | 59 | elin1d 4203 | . . . . . . . . . 10
⊢
(((((𝐷 ∈
(∞Met‘𝑋) ∧
(𝐴 ⊆ 𝑋 ∧ 𝐴 ≼ ω ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) ∧ (𝑢 ∈ 𝐽 ∧ 𝑧 ∈ 𝑢)) ∧ ((𝑟 ∈ ℝ+ ∧ (𝑧(ball‘𝐷)𝑟) ⊆ 𝑢) ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (𝑟 / 2)))) ∧ 𝑡 ∈ ((𝑧(ball‘𝐷)(1 / 𝑛)) ∩ 𝐴)) → 𝑡 ∈ (𝑧(ball‘𝐷)(1 / 𝑛))) | 
| 76 | 44 | adantr 480 | . . . . . . . . . . 11
⊢
(((((𝐷 ∈
(∞Met‘𝑋) ∧
(𝐴 ⊆ 𝑋 ∧ 𝐴 ≼ ω ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) ∧ (𝑢 ∈ 𝐽 ∧ 𝑧 ∈ 𝑢)) ∧ ((𝑟 ∈ ℝ+ ∧ (𝑧(ball‘𝐷)𝑟) ⊆ 𝑢) ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (𝑟 / 2)))) ∧ 𝑡 ∈ ((𝑧(ball‘𝐷)(1 / 𝑛)) ∩ 𝐴)) → 𝐷 ∈ (∞Met‘𝑋)) | 
| 77 | 48 | adantr 480 | . . . . . . . . . . 11
⊢
(((((𝐷 ∈
(∞Met‘𝑋) ∧
(𝐴 ⊆ 𝑋 ∧ 𝐴 ≼ ω ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) ∧ (𝑢 ∈ 𝐽 ∧ 𝑧 ∈ 𝑢)) ∧ ((𝑟 ∈ ℝ+ ∧ (𝑧(ball‘𝐷)𝑟) ⊆ 𝑢) ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (𝑟 / 2)))) ∧ 𝑡 ∈ ((𝑧(ball‘𝐷)(1 / 𝑛)) ∩ 𝐴)) → (1 / 𝑛) ∈
ℝ*) | 
| 78 | 40 | adantr 480 | . . . . . . . . . . 11
⊢
(((((𝐷 ∈
(∞Met‘𝑋) ∧
(𝐴 ⊆ 𝑋 ∧ 𝐴 ≼ ω ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) ∧ (𝑢 ∈ 𝐽 ∧ 𝑧 ∈ 𝑢)) ∧ ((𝑟 ∈ ℝ+ ∧ (𝑧(ball‘𝐷)𝑟) ⊆ 𝑢) ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (𝑟 / 2)))) ∧ 𝑡 ∈ ((𝑧(ball‘𝐷)(1 / 𝑛)) ∩ 𝐴)) → 𝑧 ∈ 𝑋) | 
| 79 | 32 | adantr 480 | . . . . . . . . . . . 12
⊢
(((((𝐷 ∈
(∞Met‘𝑋) ∧
(𝐴 ⊆ 𝑋 ∧ 𝐴 ≼ ω ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) ∧ (𝑢 ∈ 𝐽 ∧ 𝑧 ∈ 𝑢)) ∧ ((𝑟 ∈ ℝ+ ∧ (𝑧(ball‘𝐷)𝑟) ⊆ 𝑢) ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (𝑟 / 2)))) ∧ 𝑡 ∈ ((𝑧(ball‘𝐷)(1 / 𝑛)) ∩ 𝐴)) → 𝐴 ⊆ 𝑋) | 
| 80 | 79, 60 | sseldd 3983 | . . . . . . . . . . 11
⊢
(((((𝐷 ∈
(∞Met‘𝑋) ∧
(𝐴 ⊆ 𝑋 ∧ 𝐴 ≼ ω ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) ∧ (𝑢 ∈ 𝐽 ∧ 𝑧 ∈ 𝑢)) ∧ ((𝑟 ∈ ℝ+ ∧ (𝑧(ball‘𝐷)𝑟) ⊆ 𝑢) ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (𝑟 / 2)))) ∧ 𝑡 ∈ ((𝑧(ball‘𝐷)(1 / 𝑛)) ∩ 𝐴)) → 𝑡 ∈ 𝑋) | 
| 81 |  | blcom 24405 | . . . . . . . . . . 11
⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ (1 / 𝑛) ∈ ℝ*) ∧ (𝑧 ∈ 𝑋 ∧ 𝑡 ∈ 𝑋)) → (𝑡 ∈ (𝑧(ball‘𝐷)(1 / 𝑛)) ↔ 𝑧 ∈ (𝑡(ball‘𝐷)(1 / 𝑛)))) | 
| 82 | 76, 77, 78, 80, 81 | syl22anc 838 | . . . . . . . . . 10
⊢
(((((𝐷 ∈
(∞Met‘𝑋) ∧
(𝐴 ⊆ 𝑋 ∧ 𝐴 ≼ ω ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) ∧ (𝑢 ∈ 𝐽 ∧ 𝑧 ∈ 𝑢)) ∧ ((𝑟 ∈ ℝ+ ∧ (𝑧(ball‘𝐷)𝑟) ⊆ 𝑢) ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (𝑟 / 2)))) ∧ 𝑡 ∈ ((𝑧(ball‘𝐷)(1 / 𝑛)) ∩ 𝐴)) → (𝑡 ∈ (𝑧(ball‘𝐷)(1 / 𝑛)) ↔ 𝑧 ∈ (𝑡(ball‘𝐷)(1 / 𝑛)))) | 
| 83 | 75, 82 | mpbid 232 | . . . . . . . . 9
⊢
(((((𝐷 ∈
(∞Met‘𝑋) ∧
(𝐴 ⊆ 𝑋 ∧ 𝐴 ≼ ω ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) ∧ (𝑢 ∈ 𝐽 ∧ 𝑧 ∈ 𝑢)) ∧ ((𝑟 ∈ ℝ+ ∧ (𝑧(ball‘𝐷)𝑟) ⊆ 𝑢) ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (𝑟 / 2)))) ∧ 𝑡 ∈ ((𝑧(ball‘𝐷)(1 / 𝑛)) ∩ 𝐴)) → 𝑧 ∈ (𝑡(ball‘𝐷)(1 / 𝑛))) | 
| 84 |  | simprll 778 | . . . . . . . . . . . . . 14
⊢ ((((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐴 ⊆ 𝑋 ∧ 𝐴 ≼ ω ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) ∧ (𝑢 ∈ 𝐽 ∧ 𝑧 ∈ 𝑢)) ∧ ((𝑟 ∈ ℝ+ ∧ (𝑧(ball‘𝐷)𝑟) ⊆ 𝑢) ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (𝑟 / 2)))) → 𝑟 ∈ ℝ+) | 
| 85 | 84 | adantr 480 | . . . . . . . . . . . . 13
⊢
(((((𝐷 ∈
(∞Met‘𝑋) ∧
(𝐴 ⊆ 𝑋 ∧ 𝐴 ≼ ω ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) ∧ (𝑢 ∈ 𝐽 ∧ 𝑧 ∈ 𝑢)) ∧ ((𝑟 ∈ ℝ+ ∧ (𝑧(ball‘𝐷)𝑟) ⊆ 𝑢) ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (𝑟 / 2)))) ∧ 𝑡 ∈ ((𝑧(ball‘𝐷)(1 / 𝑛)) ∩ 𝐴)) → 𝑟 ∈ ℝ+) | 
| 86 | 85 | rphalfcld 13090 | . . . . . . . . . . . 12
⊢
(((((𝐷 ∈
(∞Met‘𝑋) ∧
(𝐴 ⊆ 𝑋 ∧ 𝐴 ≼ ω ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) ∧ (𝑢 ∈ 𝐽 ∧ 𝑧 ∈ 𝑢)) ∧ ((𝑟 ∈ ℝ+ ∧ (𝑧(ball‘𝐷)𝑟) ⊆ 𝑢) ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (𝑟 / 2)))) ∧ 𝑡 ∈ ((𝑧(ball‘𝐷)(1 / 𝑛)) ∩ 𝐴)) → (𝑟 / 2) ∈
ℝ+) | 
| 87 | 86 | rpxrd 13079 | . . . . . . . . . . 11
⊢
(((((𝐷 ∈
(∞Met‘𝑋) ∧
(𝐴 ⊆ 𝑋 ∧ 𝐴 ≼ ω ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) ∧ (𝑢 ∈ 𝐽 ∧ 𝑧 ∈ 𝑢)) ∧ ((𝑟 ∈ ℝ+ ∧ (𝑧(ball‘𝐷)𝑟) ⊆ 𝑢) ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (𝑟 / 2)))) ∧ 𝑡 ∈ ((𝑧(ball‘𝐷)(1 / 𝑛)) ∩ 𝐴)) → (𝑟 / 2) ∈
ℝ*) | 
| 88 |  | simprrr 781 | . . . . . . . . . . . . 13
⊢ ((((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐴 ⊆ 𝑋 ∧ 𝐴 ≼ ω ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) ∧ (𝑢 ∈ 𝐽 ∧ 𝑧 ∈ 𝑢)) ∧ ((𝑟 ∈ ℝ+ ∧ (𝑧(ball‘𝐷)𝑟) ⊆ 𝑢) ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (𝑟 / 2)))) → (1 / 𝑛) < (𝑟 / 2)) | 
| 89 | 84 | rphalfcld 13090 | . . . . . . . . . . . . . 14
⊢ ((((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐴 ⊆ 𝑋 ∧ 𝐴 ≼ ω ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) ∧ (𝑢 ∈ 𝐽 ∧ 𝑧 ∈ 𝑢)) ∧ ((𝑟 ∈ ℝ+ ∧ (𝑧(ball‘𝐷)𝑟) ⊆ 𝑢) ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (𝑟 / 2)))) → (𝑟 / 2) ∈
ℝ+) | 
| 90 |  | rpre 13044 | . . . . . . . . . . . . . . 15
⊢ ((1 /
𝑛) ∈
ℝ+ → (1 / 𝑛) ∈ ℝ) | 
| 91 |  | rpre 13044 | . . . . . . . . . . . . . . 15
⊢ ((𝑟 / 2) ∈ ℝ+
→ (𝑟 / 2) ∈
ℝ) | 
| 92 |  | ltle 11350 | . . . . . . . . . . . . . . 15
⊢ (((1 /
𝑛) ∈ ℝ ∧
(𝑟 / 2) ∈ ℝ)
→ ((1 / 𝑛) < (𝑟 / 2) → (1 / 𝑛) ≤ (𝑟 / 2))) | 
| 93 | 90, 91, 92 | syl2an 596 | . . . . . . . . . . . . . 14
⊢ (((1 /
𝑛) ∈
ℝ+ ∧ (𝑟 / 2) ∈ ℝ+) → ((1
/ 𝑛) < (𝑟 / 2) → (1 / 𝑛) ≤ (𝑟 / 2))) | 
| 94 | 47, 89, 93 | syl2anc 584 | . . . . . . . . . . . . 13
⊢ ((((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐴 ⊆ 𝑋 ∧ 𝐴 ≼ ω ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) ∧ (𝑢 ∈ 𝐽 ∧ 𝑧 ∈ 𝑢)) ∧ ((𝑟 ∈ ℝ+ ∧ (𝑧(ball‘𝐷)𝑟) ⊆ 𝑢) ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (𝑟 / 2)))) → ((1 / 𝑛) < (𝑟 / 2) → (1 / 𝑛) ≤ (𝑟 / 2))) | 
| 95 | 88, 94 | mpd 15 | . . . . . . . . . . . 12
⊢ ((((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐴 ⊆ 𝑋 ∧ 𝐴 ≼ ω ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) ∧ (𝑢 ∈ 𝐽 ∧ 𝑧 ∈ 𝑢)) ∧ ((𝑟 ∈ ℝ+ ∧ (𝑧(ball‘𝐷)𝑟) ⊆ 𝑢) ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (𝑟 / 2)))) → (1 / 𝑛) ≤ (𝑟 / 2)) | 
| 96 | 95 | adantr 480 | . . . . . . . . . . 11
⊢
(((((𝐷 ∈
(∞Met‘𝑋) ∧
(𝐴 ⊆ 𝑋 ∧ 𝐴 ≼ ω ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) ∧ (𝑢 ∈ 𝐽 ∧ 𝑧 ∈ 𝑢)) ∧ ((𝑟 ∈ ℝ+ ∧ (𝑧(ball‘𝐷)𝑟) ⊆ 𝑢) ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (𝑟 / 2)))) ∧ 𝑡 ∈ ((𝑧(ball‘𝐷)(1 / 𝑛)) ∩ 𝐴)) → (1 / 𝑛) ≤ (𝑟 / 2)) | 
| 97 |  | ssbl 24434 | . . . . . . . . . . 11
⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑡 ∈ 𝑋) ∧ ((1 / 𝑛) ∈ ℝ* ∧ (𝑟 / 2) ∈
ℝ*) ∧ (1 / 𝑛) ≤ (𝑟 / 2)) → (𝑡(ball‘𝐷)(1 / 𝑛)) ⊆ (𝑡(ball‘𝐷)(𝑟 / 2))) | 
| 98 | 76, 80, 77, 87, 96, 97 | syl221anc 1382 | . . . . . . . . . 10
⊢
(((((𝐷 ∈
(∞Met‘𝑋) ∧
(𝐴 ⊆ 𝑋 ∧ 𝐴 ≼ ω ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) ∧ (𝑢 ∈ 𝐽 ∧ 𝑧 ∈ 𝑢)) ∧ ((𝑟 ∈ ℝ+ ∧ (𝑧(ball‘𝐷)𝑟) ⊆ 𝑢) ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (𝑟 / 2)))) ∧ 𝑡 ∈ ((𝑧(ball‘𝐷)(1 / 𝑛)) ∩ 𝐴)) → (𝑡(ball‘𝐷)(1 / 𝑛)) ⊆ (𝑡(ball‘𝐷)(𝑟 / 2))) | 
| 99 | 85 | rpred 13078 | . . . . . . . . . . . 12
⊢
(((((𝐷 ∈
(∞Met‘𝑋) ∧
(𝐴 ⊆ 𝑋 ∧ 𝐴 ≼ ω ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) ∧ (𝑢 ∈ 𝐽 ∧ 𝑧 ∈ 𝑢)) ∧ ((𝑟 ∈ ℝ+ ∧ (𝑧(ball‘𝐷)𝑟) ⊆ 𝑢) ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (𝑟 / 2)))) ∧ 𝑡 ∈ ((𝑧(ball‘𝐷)(1 / 𝑛)) ∩ 𝐴)) → 𝑟 ∈ ℝ) | 
| 100 | 98, 83 | sseldd 3983 | . . . . . . . . . . . 12
⊢
(((((𝐷 ∈
(∞Met‘𝑋) ∧
(𝐴 ⊆ 𝑋 ∧ 𝐴 ≼ ω ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) ∧ (𝑢 ∈ 𝐽 ∧ 𝑧 ∈ 𝑢)) ∧ ((𝑟 ∈ ℝ+ ∧ (𝑧(ball‘𝐷)𝑟) ⊆ 𝑢) ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (𝑟 / 2)))) ∧ 𝑡 ∈ ((𝑧(ball‘𝐷)(1 / 𝑛)) ∩ 𝐴)) → 𝑧 ∈ (𝑡(ball‘𝐷)(𝑟 / 2))) | 
| 101 |  | blhalf 24416 | . . . . . . . . . . . 12
⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑡 ∈ 𝑋) ∧ (𝑟 ∈ ℝ ∧ 𝑧 ∈ (𝑡(ball‘𝐷)(𝑟 / 2)))) → (𝑡(ball‘𝐷)(𝑟 / 2)) ⊆ (𝑧(ball‘𝐷)𝑟)) | 
| 102 | 76, 80, 99, 100, 101 | syl22anc 838 | . . . . . . . . . . 11
⊢
(((((𝐷 ∈
(∞Met‘𝑋) ∧
(𝐴 ⊆ 𝑋 ∧ 𝐴 ≼ ω ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) ∧ (𝑢 ∈ 𝐽 ∧ 𝑧 ∈ 𝑢)) ∧ ((𝑟 ∈ ℝ+ ∧ (𝑧(ball‘𝐷)𝑟) ⊆ 𝑢) ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (𝑟 / 2)))) ∧ 𝑡 ∈ ((𝑧(ball‘𝐷)(1 / 𝑛)) ∩ 𝐴)) → (𝑡(ball‘𝐷)(𝑟 / 2)) ⊆ (𝑧(ball‘𝐷)𝑟)) | 
| 103 |  | simprlr 779 | . . . . . . . . . . . 12
⊢ ((((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐴 ⊆ 𝑋 ∧ 𝐴 ≼ ω ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) ∧ (𝑢 ∈ 𝐽 ∧ 𝑧 ∈ 𝑢)) ∧ ((𝑟 ∈ ℝ+ ∧ (𝑧(ball‘𝐷)𝑟) ⊆ 𝑢) ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (𝑟 / 2)))) → (𝑧(ball‘𝐷)𝑟) ⊆ 𝑢) | 
| 104 | 103 | adantr 480 | . . . . . . . . . . 11
⊢
(((((𝐷 ∈
(∞Met‘𝑋) ∧
(𝐴 ⊆ 𝑋 ∧ 𝐴 ≼ ω ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) ∧ (𝑢 ∈ 𝐽 ∧ 𝑧 ∈ 𝑢)) ∧ ((𝑟 ∈ ℝ+ ∧ (𝑧(ball‘𝐷)𝑟) ⊆ 𝑢) ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (𝑟 / 2)))) ∧ 𝑡 ∈ ((𝑧(ball‘𝐷)(1 / 𝑛)) ∩ 𝐴)) → (𝑧(ball‘𝐷)𝑟) ⊆ 𝑢) | 
| 105 | 102, 104 | sstrd 3993 | . . . . . . . . . 10
⊢
(((((𝐷 ∈
(∞Met‘𝑋) ∧
(𝐴 ⊆ 𝑋 ∧ 𝐴 ≼ ω ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) ∧ (𝑢 ∈ 𝐽 ∧ 𝑧 ∈ 𝑢)) ∧ ((𝑟 ∈ ℝ+ ∧ (𝑧(ball‘𝐷)𝑟) ⊆ 𝑢) ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (𝑟 / 2)))) ∧ 𝑡 ∈ ((𝑧(ball‘𝐷)(1 / 𝑛)) ∩ 𝐴)) → (𝑡(ball‘𝐷)(𝑟 / 2)) ⊆ 𝑢) | 
| 106 | 98, 105 | sstrd 3993 | . . . . . . . . 9
⊢
(((((𝐷 ∈
(∞Met‘𝑋) ∧
(𝐴 ⊆ 𝑋 ∧ 𝐴 ≼ ω ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) ∧ (𝑢 ∈ 𝐽 ∧ 𝑧 ∈ 𝑢)) ∧ ((𝑟 ∈ ℝ+ ∧ (𝑧(ball‘𝐷)𝑟) ⊆ 𝑢) ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (𝑟 / 2)))) ∧ 𝑡 ∈ ((𝑧(ball‘𝐷)(1 / 𝑛)) ∩ 𝐴)) → (𝑡(ball‘𝐷)(1 / 𝑛)) ⊆ 𝑢) | 
| 107 |  | eleq2 2829 | . . . . . . . . . . 11
⊢ (𝑤 = (𝑡(ball‘𝐷)(1 / 𝑛)) → (𝑧 ∈ 𝑤 ↔ 𝑧 ∈ (𝑡(ball‘𝐷)(1 / 𝑛)))) | 
| 108 |  | sseq1 4008 | . . . . . . . . . . 11
⊢ (𝑤 = (𝑡(ball‘𝐷)(1 / 𝑛)) → (𝑤 ⊆ 𝑢 ↔ (𝑡(ball‘𝐷)(1 / 𝑛)) ⊆ 𝑢)) | 
| 109 | 107, 108 | anbi12d 632 | . . . . . . . . . 10
⊢ (𝑤 = (𝑡(ball‘𝐷)(1 / 𝑛)) → ((𝑧 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑢) ↔ (𝑧 ∈ (𝑡(ball‘𝐷)(1 / 𝑛)) ∧ (𝑡(ball‘𝐷)(1 / 𝑛)) ⊆ 𝑢))) | 
| 110 | 109 | rspcev 3621 | . . . . . . . . 9
⊢ (((𝑡(ball‘𝐷)(1 / 𝑛)) ∈ ran (𝑥 ∈ ℕ, 𝑦 ∈ 𝐴 ↦ (𝑦(ball‘𝐷)(1 / 𝑥))) ∧ (𝑧 ∈ (𝑡(ball‘𝐷)(1 / 𝑛)) ∧ (𝑡(ball‘𝐷)(1 / 𝑛)) ⊆ 𝑢)) → ∃𝑤 ∈ ran (𝑥 ∈ ℕ, 𝑦 ∈ 𝐴 ↦ (𝑦(ball‘𝐷)(1 / 𝑥)))(𝑧 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑢)) | 
| 111 | 74, 83, 106, 110 | syl12anc 836 | . . . . . . . 8
⊢
(((((𝐷 ∈
(∞Met‘𝑋) ∧
(𝐴 ⊆ 𝑋 ∧ 𝐴 ≼ ω ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) ∧ (𝑢 ∈ 𝐽 ∧ 𝑧 ∈ 𝑢)) ∧ ((𝑟 ∈ ℝ+ ∧ (𝑧(ball‘𝐷)𝑟) ⊆ 𝑢) ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (𝑟 / 2)))) ∧ 𝑡 ∈ ((𝑧(ball‘𝐷)(1 / 𝑛)) ∩ 𝐴)) → ∃𝑤 ∈ ran (𝑥 ∈ ℕ, 𝑦 ∈ 𝐴 ↦ (𝑦(ball‘𝐷)(1 / 𝑥)))(𝑧 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑢)) | 
| 112 | 57, 111 | exlimddv 1934 | . . . . . . 7
⊢ ((((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐴 ⊆ 𝑋 ∧ 𝐴 ≼ ω ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) ∧ (𝑢 ∈ 𝐽 ∧ 𝑧 ∈ 𝑢)) ∧ ((𝑟 ∈ ℝ+ ∧ (𝑧(ball‘𝐷)𝑟) ⊆ 𝑢) ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (𝑟 / 2)))) → ∃𝑤 ∈ ran (𝑥 ∈ ℕ, 𝑦 ∈ 𝐴 ↦ (𝑦(ball‘𝐷)(1 / 𝑥)))(𝑧 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑢)) | 
| 113 | 112 | anassrs 467 | . . . . . 6
⊢
(((((𝐷 ∈
(∞Met‘𝑋) ∧
(𝐴 ⊆ 𝑋 ∧ 𝐴 ≼ ω ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) ∧ (𝑢 ∈ 𝐽 ∧ 𝑧 ∈ 𝑢)) ∧ (𝑟 ∈ ℝ+ ∧ (𝑧(ball‘𝐷)𝑟) ⊆ 𝑢)) ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (𝑟 / 2))) → ∃𝑤 ∈ ran (𝑥 ∈ ℕ, 𝑦 ∈ 𝐴 ↦ (𝑦(ball‘𝐷)(1 / 𝑥)))(𝑧 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑢)) | 
| 114 | 29, 113 | rexlimddv 3160 | . . . . 5
⊢ ((((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐴 ⊆ 𝑋 ∧ 𝐴 ≼ ω ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) ∧ (𝑢 ∈ 𝐽 ∧ 𝑧 ∈ 𝑢)) ∧ (𝑟 ∈ ℝ+ ∧ (𝑧(ball‘𝐷)𝑟) ⊆ 𝑢)) → ∃𝑤 ∈ ran (𝑥 ∈ ℕ, 𝑦 ∈ 𝐴 ↦ (𝑦(ball‘𝐷)(1 / 𝑥)))(𝑧 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑢)) | 
| 115 | 23, 114 | rexlimddv 3160 | . . . 4
⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐴 ⊆ 𝑋 ∧ 𝐴 ≼ ω ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) ∧ (𝑢 ∈ 𝐽 ∧ 𝑧 ∈ 𝑢)) → ∃𝑤 ∈ ran (𝑥 ∈ ℕ, 𝑦 ∈ 𝐴 ↦ (𝑦(ball‘𝐷)(1 / 𝑥)))(𝑧 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑢)) | 
| 116 | 115 | ralrimivva 3201 | . . 3
⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐴 ⊆ 𝑋 ∧ 𝐴 ≼ ω ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) → ∀𝑢 ∈ 𝐽 ∀𝑧 ∈ 𝑢 ∃𝑤 ∈ ran (𝑥 ∈ ℕ, 𝑦 ∈ 𝐴 ↦ (𝑦(ball‘𝐷)(1 / 𝑥)))(𝑧 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑢)) | 
| 117 |  | basgen2 22997 | . . 3
⊢ ((𝐽 ∈ Top ∧ ran (𝑥 ∈ ℕ, 𝑦 ∈ 𝐴 ↦ (𝑦(ball‘𝐷)(1 / 𝑥))) ⊆ 𝐽 ∧ ∀𝑢 ∈ 𝐽 ∀𝑧 ∈ 𝑢 ∃𝑤 ∈ ran (𝑥 ∈ ℕ, 𝑦 ∈ 𝐴 ↦ (𝑦(ball‘𝐷)(1 / 𝑥)))(𝑧 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑢)) → (topGen‘ran (𝑥 ∈ ℕ, 𝑦 ∈ 𝐴 ↦ (𝑦(ball‘𝐷)(1 / 𝑥)))) = 𝐽) | 
| 118 | 3, 18, 116, 117 | syl3anc 1372 | . 2
⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐴 ⊆ 𝑋 ∧ 𝐴 ≼ ω ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) → (topGen‘ran (𝑥 ∈ ℕ, 𝑦 ∈ 𝐴 ↦ (𝑦(ball‘𝐷)(1 / 𝑥)))) = 𝐽) | 
| 119 | 118, 3 | eqeltrd 2840 | . . . 4
⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐴 ⊆ 𝑋 ∧ 𝐴 ≼ ω ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) → (topGen‘ran (𝑥 ∈ ℕ, 𝑦 ∈ 𝐴 ↦ (𝑦(ball‘𝐷)(1 / 𝑥)))) ∈ Top) | 
| 120 |  | tgclb 22978 | . . . 4
⊢ (ran
(𝑥 ∈ ℕ, 𝑦 ∈ 𝐴 ↦ (𝑦(ball‘𝐷)(1 / 𝑥))) ∈ TopBases ↔ (topGen‘ran
(𝑥 ∈ ℕ, 𝑦 ∈ 𝐴 ↦ (𝑦(ball‘𝐷)(1 / 𝑥)))) ∈ Top) | 
| 121 | 119, 120 | sylibr 234 | . . 3
⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐴 ⊆ 𝑋 ∧ 𝐴 ≼ ω ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) → ran (𝑥 ∈ ℕ, 𝑦 ∈ 𝐴 ↦ (𝑦(ball‘𝐷)(1 / 𝑥))) ∈ TopBases) | 
| 122 |  | omelon 9687 | . . . . . 6
⊢ ω
∈ On | 
| 123 |  | simpr2 1195 | . . . . . . . 8
⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐴 ⊆ 𝑋 ∧ 𝐴 ≼ ω ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) → 𝐴 ≼ ω) | 
| 124 |  | nnex 12273 | . . . . . . . . 9
⊢ ℕ
∈ V | 
| 125 | 124 | xpdom2 9108 | . . . . . . . 8
⊢ (𝐴 ≼ ω → (ℕ
× 𝐴) ≼ (ℕ
× ω)) | 
| 126 | 123, 125 | syl 17 | . . . . . . 7
⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐴 ⊆ 𝑋 ∧ 𝐴 ≼ ω ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) → (ℕ × 𝐴) ≼ (ℕ ×
ω)) | 
| 127 |  | nnenom 14022 | . . . . . . . . 9
⊢ ℕ
≈ ω | 
| 128 |  | omex 9684 | . . . . . . . . . 10
⊢ ω
∈ V | 
| 129 | 128 | enref 9026 | . . . . . . . . 9
⊢ ω
≈ ω | 
| 130 |  | xpen 9181 | . . . . . . . . 9
⊢ ((ℕ
≈ ω ∧ ω ≈ ω) → (ℕ × ω)
≈ (ω × ω)) | 
| 131 | 127, 129,
130 | mp2an 692 | . . . . . . . 8
⊢ (ℕ
× ω) ≈ (ω × ω) | 
| 132 |  | xpomen 10056 | . . . . . . . 8
⊢ (ω
× ω) ≈ ω | 
| 133 | 131, 132 | entri 9049 | . . . . . . 7
⊢ (ℕ
× ω) ≈ ω | 
| 134 |  | domentr 9054 | . . . . . . 7
⊢
(((ℕ × 𝐴) ≼ (ℕ × ω) ∧
(ℕ × ω) ≈ ω) → (ℕ × 𝐴) ≼
ω) | 
| 135 | 126, 133,
134 | sylancl 586 | . . . . . 6
⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐴 ⊆ 𝑋 ∧ 𝐴 ≼ ω ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) → (ℕ × 𝐴) ≼ ω) | 
| 136 |  | ondomen 10078 | . . . . . 6
⊢ ((ω
∈ On ∧ (ℕ × 𝐴) ≼ ω) → (ℕ ×
𝐴) ∈ dom
card) | 
| 137 | 122, 135,
136 | sylancr 587 | . . . . 5
⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐴 ⊆ 𝑋 ∧ 𝐴 ≼ ω ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) → (ℕ × 𝐴) ∈ dom card) | 
| 138 | 17 | ffnd 6736 | . . . . . 6
⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐴 ⊆ 𝑋 ∧ 𝐴 ≼ ω ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) → (𝑥 ∈ ℕ, 𝑦 ∈ 𝐴 ↦ (𝑦(ball‘𝐷)(1 / 𝑥))) Fn (ℕ × 𝐴)) | 
| 139 |  | dffn4 6825 | . . . . . 6
⊢ ((𝑥 ∈ ℕ, 𝑦 ∈ 𝐴 ↦ (𝑦(ball‘𝐷)(1 / 𝑥))) Fn (ℕ × 𝐴) ↔ (𝑥 ∈ ℕ, 𝑦 ∈ 𝐴 ↦ (𝑦(ball‘𝐷)(1 / 𝑥))):(ℕ × 𝐴)–onto→ran (𝑥 ∈ ℕ, 𝑦 ∈ 𝐴 ↦ (𝑦(ball‘𝐷)(1 / 𝑥)))) | 
| 140 | 138, 139 | sylib 218 | . . . . 5
⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐴 ⊆ 𝑋 ∧ 𝐴 ≼ ω ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) → (𝑥 ∈ ℕ, 𝑦 ∈ 𝐴 ↦ (𝑦(ball‘𝐷)(1 / 𝑥))):(ℕ × 𝐴)–onto→ran (𝑥 ∈ ℕ, 𝑦 ∈ 𝐴 ↦ (𝑦(ball‘𝐷)(1 / 𝑥)))) | 
| 141 |  | fodomnum 10098 | . . . . 5
⊢ ((ℕ
× 𝐴) ∈ dom card
→ ((𝑥 ∈ ℕ,
𝑦 ∈ 𝐴 ↦ (𝑦(ball‘𝐷)(1 / 𝑥))):(ℕ × 𝐴)–onto→ran (𝑥 ∈ ℕ, 𝑦 ∈ 𝐴 ↦ (𝑦(ball‘𝐷)(1 / 𝑥))) → ran (𝑥 ∈ ℕ, 𝑦 ∈ 𝐴 ↦ (𝑦(ball‘𝐷)(1 / 𝑥))) ≼ (ℕ × 𝐴))) | 
| 142 | 137, 140,
141 | sylc 65 | . . . 4
⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐴 ⊆ 𝑋 ∧ 𝐴 ≼ ω ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) → ran (𝑥 ∈ ℕ, 𝑦 ∈ 𝐴 ↦ (𝑦(ball‘𝐷)(1 / 𝑥))) ≼ (ℕ × 𝐴)) | 
| 143 |  | domtr 9048 | . . . 4
⊢ ((ran
(𝑥 ∈ ℕ, 𝑦 ∈ 𝐴 ↦ (𝑦(ball‘𝐷)(1 / 𝑥))) ≼ (ℕ × 𝐴) ∧ (ℕ × 𝐴) ≼ ω) → ran
(𝑥 ∈ ℕ, 𝑦 ∈ 𝐴 ↦ (𝑦(ball‘𝐷)(1 / 𝑥))) ≼ ω) | 
| 144 | 142, 135,
143 | syl2anc 584 | . . 3
⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐴 ⊆ 𝑋 ∧ 𝐴 ≼ ω ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) → ran (𝑥 ∈ ℕ, 𝑦 ∈ 𝐴 ↦ (𝑦(ball‘𝐷)(1 / 𝑥))) ≼ ω) | 
| 145 |  | 2ndci 23457 | . . 3
⊢ ((ran
(𝑥 ∈ ℕ, 𝑦 ∈ 𝐴 ↦ (𝑦(ball‘𝐷)(1 / 𝑥))) ∈ TopBases ∧ ran (𝑥 ∈ ℕ, 𝑦 ∈ 𝐴 ↦ (𝑦(ball‘𝐷)(1 / 𝑥))) ≼ ω) → (topGen‘ran
(𝑥 ∈ ℕ, 𝑦 ∈ 𝐴 ↦ (𝑦(ball‘𝐷)(1 / 𝑥)))) ∈
2ndω) | 
| 146 | 121, 144,
145 | syl2anc 584 | . 2
⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐴 ⊆ 𝑋 ∧ 𝐴 ≼ ω ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) → (topGen‘ran (𝑥 ∈ ℕ, 𝑦 ∈ 𝐴 ↦ (𝑦(ball‘𝐷)(1 / 𝑥)))) ∈
2ndω) | 
| 147 | 118, 146 | eqeltrrd 2841 | 1
⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐴 ⊆ 𝑋 ∧ 𝐴 ≼ ω ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) → 𝐽 ∈
2ndω) |