MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  met2ndci Structured version   Visualization version   GIF version

Theorem met2ndci 24416
Description: A separable metric space (a metric space with a countable dense subset) is second-countable. (Contributed by Mario Carneiro, 13-Apr-2015.)
Hypothesis
Ref Expression
methaus.1 𝐽 = (MetOpen‘𝐷)
Assertion
Ref Expression
met2ndci ((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐴𝑋𝐴 ≼ ω ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) → 𝐽 ∈ 2ndω)

Proof of Theorem met2ndci
Dummy variables 𝑛 𝑟 𝑡 𝑢 𝑤 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 methaus.1 . . . . 5 𝐽 = (MetOpen‘𝐷)
21mopntop 24334 . . . 4 (𝐷 ∈ (∞Met‘𝑋) → 𝐽 ∈ Top)
32adantr 480 . . 3 ((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐴𝑋𝐴 ≼ ω ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) → 𝐽 ∈ Top)
4 simpll 766 . . . . . . 7 (((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐴𝑋𝐴 ≼ ω ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) ∧ (𝑥 ∈ ℕ ∧ 𝑦𝐴)) → 𝐷 ∈ (∞Met‘𝑋))
5 simplr1 1216 . . . . . . . 8 (((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐴𝑋𝐴 ≼ ω ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) ∧ (𝑥 ∈ ℕ ∧ 𝑦𝐴)) → 𝐴𝑋)
6 simprr 772 . . . . . . . 8 (((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐴𝑋𝐴 ≼ ω ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) ∧ (𝑥 ∈ ℕ ∧ 𝑦𝐴)) → 𝑦𝐴)
75, 6sseldd 3949 . . . . . . 7 (((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐴𝑋𝐴 ≼ ω ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) ∧ (𝑥 ∈ ℕ ∧ 𝑦𝐴)) → 𝑦𝑋)
8 simprl 770 . . . . . . . . . 10 (((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐴𝑋𝐴 ≼ ω ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) ∧ (𝑥 ∈ ℕ ∧ 𝑦𝐴)) → 𝑥 ∈ ℕ)
98nnrpd 12999 . . . . . . . . 9 (((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐴𝑋𝐴 ≼ ω ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) ∧ (𝑥 ∈ ℕ ∧ 𝑦𝐴)) → 𝑥 ∈ ℝ+)
109rpreccld 13011 . . . . . . . 8 (((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐴𝑋𝐴 ≼ ω ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) ∧ (𝑥 ∈ ℕ ∧ 𝑦𝐴)) → (1 / 𝑥) ∈ ℝ+)
1110rpxrd 13002 . . . . . . 7 (((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐴𝑋𝐴 ≼ ω ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) ∧ (𝑥 ∈ ℕ ∧ 𝑦𝐴)) → (1 / 𝑥) ∈ ℝ*)
121blopn 24394 . . . . . . 7 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑦𝑋 ∧ (1 / 𝑥) ∈ ℝ*) → (𝑦(ball‘𝐷)(1 / 𝑥)) ∈ 𝐽)
134, 7, 11, 12syl3anc 1373 . . . . . 6 (((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐴𝑋𝐴 ≼ ω ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) ∧ (𝑥 ∈ ℕ ∧ 𝑦𝐴)) → (𝑦(ball‘𝐷)(1 / 𝑥)) ∈ 𝐽)
1413ralrimivva 3181 . . . . 5 ((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐴𝑋𝐴 ≼ ω ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) → ∀𝑥 ∈ ℕ ∀𝑦𝐴 (𝑦(ball‘𝐷)(1 / 𝑥)) ∈ 𝐽)
15 eqid 2730 . . . . . 6 (𝑥 ∈ ℕ, 𝑦𝐴 ↦ (𝑦(ball‘𝐷)(1 / 𝑥))) = (𝑥 ∈ ℕ, 𝑦𝐴 ↦ (𝑦(ball‘𝐷)(1 / 𝑥)))
1615fmpo 8049 . . . . 5 (∀𝑥 ∈ ℕ ∀𝑦𝐴 (𝑦(ball‘𝐷)(1 / 𝑥)) ∈ 𝐽 ↔ (𝑥 ∈ ℕ, 𝑦𝐴 ↦ (𝑦(ball‘𝐷)(1 / 𝑥))):(ℕ × 𝐴)⟶𝐽)
1714, 16sylib 218 . . . 4 ((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐴𝑋𝐴 ≼ ω ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) → (𝑥 ∈ ℕ, 𝑦𝐴 ↦ (𝑦(ball‘𝐷)(1 / 𝑥))):(ℕ × 𝐴)⟶𝐽)
1817frnd 6698 . . 3 ((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐴𝑋𝐴 ≼ ω ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) → ran (𝑥 ∈ ℕ, 𝑦𝐴 ↦ (𝑦(ball‘𝐷)(1 / 𝑥))) ⊆ 𝐽)
19 simpll 766 . . . . . 6 (((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐴𝑋𝐴 ≼ ω ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) ∧ (𝑢𝐽𝑧𝑢)) → 𝐷 ∈ (∞Met‘𝑋))
20 simprl 770 . . . . . 6 (((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐴𝑋𝐴 ≼ ω ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) ∧ (𝑢𝐽𝑧𝑢)) → 𝑢𝐽)
21 simprr 772 . . . . . 6 (((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐴𝑋𝐴 ≼ ω ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) ∧ (𝑢𝐽𝑧𝑢)) → 𝑧𝑢)
221mopni2 24387 . . . . . 6 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑢𝐽𝑧𝑢) → ∃𝑟 ∈ ℝ+ (𝑧(ball‘𝐷)𝑟) ⊆ 𝑢)
2319, 20, 21, 22syl3anc 1373 . . . . 5 (((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐴𝑋𝐴 ≼ ω ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) ∧ (𝑢𝐽𝑧𝑢)) → ∃𝑟 ∈ ℝ+ (𝑧(ball‘𝐷)𝑟) ⊆ 𝑢)
24 simprl 770 . . . . . . . 8 ((((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐴𝑋𝐴 ≼ ω ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) ∧ (𝑢𝐽𝑧𝑢)) ∧ (𝑟 ∈ ℝ+ ∧ (𝑧(ball‘𝐷)𝑟) ⊆ 𝑢)) → 𝑟 ∈ ℝ+)
2524rphalfcld 13013 . . . . . . 7 ((((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐴𝑋𝐴 ≼ ω ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) ∧ (𝑢𝐽𝑧𝑢)) ∧ (𝑟 ∈ ℝ+ ∧ (𝑧(ball‘𝐷)𝑟) ⊆ 𝑢)) → (𝑟 / 2) ∈ ℝ+)
26 elrp 12959 . . . . . . . 8 ((𝑟 / 2) ∈ ℝ+ ↔ ((𝑟 / 2) ∈ ℝ ∧ 0 < (𝑟 / 2)))
27 nnrecl 12446 . . . . . . . 8 (((𝑟 / 2) ∈ ℝ ∧ 0 < (𝑟 / 2)) → ∃𝑛 ∈ ℕ (1 / 𝑛) < (𝑟 / 2))
2826, 27sylbi 217 . . . . . . 7 ((𝑟 / 2) ∈ ℝ+ → ∃𝑛 ∈ ℕ (1 / 𝑛) < (𝑟 / 2))
2925, 28syl 17 . . . . . 6 ((((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐴𝑋𝐴 ≼ ω ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) ∧ (𝑢𝐽𝑧𝑢)) ∧ (𝑟 ∈ ℝ+ ∧ (𝑧(ball‘𝐷)𝑟) ⊆ 𝑢)) → ∃𝑛 ∈ ℕ (1 / 𝑛) < (𝑟 / 2))
303ad2antrr 726 . . . . . . . . . 10 ((((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐴𝑋𝐴 ≼ ω ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) ∧ (𝑢𝐽𝑧𝑢)) ∧ ((𝑟 ∈ ℝ+ ∧ (𝑧(ball‘𝐷)𝑟) ⊆ 𝑢) ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (𝑟 / 2)))) → 𝐽 ∈ Top)
31 simpr1 1195 . . . . . . . . . . . 12 ((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐴𝑋𝐴 ≼ ω ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) → 𝐴𝑋)
3231ad2antrr 726 . . . . . . . . . . 11 ((((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐴𝑋𝐴 ≼ ω ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) ∧ (𝑢𝐽𝑧𝑢)) ∧ ((𝑟 ∈ ℝ+ ∧ (𝑧(ball‘𝐷)𝑟) ⊆ 𝑢) ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (𝑟 / 2)))) → 𝐴𝑋)
331mopnuni 24335 . . . . . . . . . . . 12 (𝐷 ∈ (∞Met‘𝑋) → 𝑋 = 𝐽)
3433ad3antrrr 730 . . . . . . . . . . 11 ((((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐴𝑋𝐴 ≼ ω ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) ∧ (𝑢𝐽𝑧𝑢)) ∧ ((𝑟 ∈ ℝ+ ∧ (𝑧(ball‘𝐷)𝑟) ⊆ 𝑢) ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (𝑟 / 2)))) → 𝑋 = 𝐽)
3532, 34sseqtrd 3985 . . . . . . . . . 10 ((((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐴𝑋𝐴 ≼ ω ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) ∧ (𝑢𝐽𝑧𝑢)) ∧ ((𝑟 ∈ ℝ+ ∧ (𝑧(ball‘𝐷)𝑟) ⊆ 𝑢) ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (𝑟 / 2)))) → 𝐴 𝐽)
36 simplrr 777 . . . . . . . . . . . . 13 ((((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐴𝑋𝐴 ≼ ω ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) ∧ (𝑢𝐽𝑧𝑢)) ∧ ((𝑟 ∈ ℝ+ ∧ (𝑧(ball‘𝐷)𝑟) ⊆ 𝑢) ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (𝑟 / 2)))) → 𝑧𝑢)
37 simplrl 776 . . . . . . . . . . . . 13 ((((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐴𝑋𝐴 ≼ ω ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) ∧ (𝑢𝐽𝑧𝑢)) ∧ ((𝑟 ∈ ℝ+ ∧ (𝑧(ball‘𝐷)𝑟) ⊆ 𝑢) ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (𝑟 / 2)))) → 𝑢𝐽)
38 elunii 4878 . . . . . . . . . . . . 13 ((𝑧𝑢𝑢𝐽) → 𝑧 𝐽)
3936, 37, 38syl2anc 584 . . . . . . . . . . . 12 ((((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐴𝑋𝐴 ≼ ω ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) ∧ (𝑢𝐽𝑧𝑢)) ∧ ((𝑟 ∈ ℝ+ ∧ (𝑧(ball‘𝐷)𝑟) ⊆ 𝑢) ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (𝑟 / 2)))) → 𝑧 𝐽)
4039, 34eleqtrrd 2832 . . . . . . . . . . 11 ((((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐴𝑋𝐴 ≼ ω ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) ∧ (𝑢𝐽𝑧𝑢)) ∧ ((𝑟 ∈ ℝ+ ∧ (𝑧(ball‘𝐷)𝑟) ⊆ 𝑢) ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (𝑟 / 2)))) → 𝑧𝑋)
41 simpr3 1197 . . . . . . . . . . . 12 ((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐴𝑋𝐴 ≼ ω ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) → ((cls‘𝐽)‘𝐴) = 𝑋)
4241ad2antrr 726 . . . . . . . . . . 11 ((((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐴𝑋𝐴 ≼ ω ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) ∧ (𝑢𝐽𝑧𝑢)) ∧ ((𝑟 ∈ ℝ+ ∧ (𝑧(ball‘𝐷)𝑟) ⊆ 𝑢) ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (𝑟 / 2)))) → ((cls‘𝐽)‘𝐴) = 𝑋)
4340, 42eleqtrrd 2832 . . . . . . . . . 10 ((((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐴𝑋𝐴 ≼ ω ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) ∧ (𝑢𝐽𝑧𝑢)) ∧ ((𝑟 ∈ ℝ+ ∧ (𝑧(ball‘𝐷)𝑟) ⊆ 𝑢) ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (𝑟 / 2)))) → 𝑧 ∈ ((cls‘𝐽)‘𝐴))
4419adantr 480 . . . . . . . . . . 11 ((((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐴𝑋𝐴 ≼ ω ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) ∧ (𝑢𝐽𝑧𝑢)) ∧ ((𝑟 ∈ ℝ+ ∧ (𝑧(ball‘𝐷)𝑟) ⊆ 𝑢) ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (𝑟 / 2)))) → 𝐷 ∈ (∞Met‘𝑋))
45 simprrl 780 . . . . . . . . . . . . . 14 ((((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐴𝑋𝐴 ≼ ω ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) ∧ (𝑢𝐽𝑧𝑢)) ∧ ((𝑟 ∈ ℝ+ ∧ (𝑧(ball‘𝐷)𝑟) ⊆ 𝑢) ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (𝑟 / 2)))) → 𝑛 ∈ ℕ)
4645nnrpd 12999 . . . . . . . . . . . . 13 ((((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐴𝑋𝐴 ≼ ω ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) ∧ (𝑢𝐽𝑧𝑢)) ∧ ((𝑟 ∈ ℝ+ ∧ (𝑧(ball‘𝐷)𝑟) ⊆ 𝑢) ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (𝑟 / 2)))) → 𝑛 ∈ ℝ+)
4746rpreccld 13011 . . . . . . . . . . . 12 ((((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐴𝑋𝐴 ≼ ω ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) ∧ (𝑢𝐽𝑧𝑢)) ∧ ((𝑟 ∈ ℝ+ ∧ (𝑧(ball‘𝐷)𝑟) ⊆ 𝑢) ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (𝑟 / 2)))) → (1 / 𝑛) ∈ ℝ+)
4847rpxrd 13002 . . . . . . . . . . 11 ((((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐴𝑋𝐴 ≼ ω ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) ∧ (𝑢𝐽𝑧𝑢)) ∧ ((𝑟 ∈ ℝ+ ∧ (𝑧(ball‘𝐷)𝑟) ⊆ 𝑢) ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (𝑟 / 2)))) → (1 / 𝑛) ∈ ℝ*)
491blopn 24394 . . . . . . . . . . 11 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑧𝑋 ∧ (1 / 𝑛) ∈ ℝ*) → (𝑧(ball‘𝐷)(1 / 𝑛)) ∈ 𝐽)
5044, 40, 48, 49syl3anc 1373 . . . . . . . . . 10 ((((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐴𝑋𝐴 ≼ ω ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) ∧ (𝑢𝐽𝑧𝑢)) ∧ ((𝑟 ∈ ℝ+ ∧ (𝑧(ball‘𝐷)𝑟) ⊆ 𝑢) ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (𝑟 / 2)))) → (𝑧(ball‘𝐷)(1 / 𝑛)) ∈ 𝐽)
51 blcntr 24307 . . . . . . . . . . 11 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑧𝑋 ∧ (1 / 𝑛) ∈ ℝ+) → 𝑧 ∈ (𝑧(ball‘𝐷)(1 / 𝑛)))
5244, 40, 47, 51syl3anc 1373 . . . . . . . . . 10 ((((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐴𝑋𝐴 ≼ ω ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) ∧ (𝑢𝐽𝑧𝑢)) ∧ ((𝑟 ∈ ℝ+ ∧ (𝑧(ball‘𝐷)𝑟) ⊆ 𝑢) ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (𝑟 / 2)))) → 𝑧 ∈ (𝑧(ball‘𝐷)(1 / 𝑛)))
53 eqid 2730 . . . . . . . . . . 11 𝐽 = 𝐽
5453clsndisj 22968 . . . . . . . . . 10 (((𝐽 ∈ Top ∧ 𝐴 𝐽𝑧 ∈ ((cls‘𝐽)‘𝐴)) ∧ ((𝑧(ball‘𝐷)(1 / 𝑛)) ∈ 𝐽𝑧 ∈ (𝑧(ball‘𝐷)(1 / 𝑛)))) → ((𝑧(ball‘𝐷)(1 / 𝑛)) ∩ 𝐴) ≠ ∅)
5530, 35, 43, 50, 52, 54syl32anc 1380 . . . . . . . . 9 ((((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐴𝑋𝐴 ≼ ω ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) ∧ (𝑢𝐽𝑧𝑢)) ∧ ((𝑟 ∈ ℝ+ ∧ (𝑧(ball‘𝐷)𝑟) ⊆ 𝑢) ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (𝑟 / 2)))) → ((𝑧(ball‘𝐷)(1 / 𝑛)) ∩ 𝐴) ≠ ∅)
56 n0 4318 . . . . . . . . 9 (((𝑧(ball‘𝐷)(1 / 𝑛)) ∩ 𝐴) ≠ ∅ ↔ ∃𝑡 𝑡 ∈ ((𝑧(ball‘𝐷)(1 / 𝑛)) ∩ 𝐴))
5755, 56sylib 218 . . . . . . . 8 ((((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐴𝑋𝐴 ≼ ω ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) ∧ (𝑢𝐽𝑧𝑢)) ∧ ((𝑟 ∈ ℝ+ ∧ (𝑧(ball‘𝐷)𝑟) ⊆ 𝑢) ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (𝑟 / 2)))) → ∃𝑡 𝑡 ∈ ((𝑧(ball‘𝐷)(1 / 𝑛)) ∩ 𝐴))
5845adantr 480 . . . . . . . . . . 11 (((((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐴𝑋𝐴 ≼ ω ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) ∧ (𝑢𝐽𝑧𝑢)) ∧ ((𝑟 ∈ ℝ+ ∧ (𝑧(ball‘𝐷)𝑟) ⊆ 𝑢) ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (𝑟 / 2)))) ∧ 𝑡 ∈ ((𝑧(ball‘𝐷)(1 / 𝑛)) ∩ 𝐴)) → 𝑛 ∈ ℕ)
59 simpr 484 . . . . . . . . . . . 12 (((((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐴𝑋𝐴 ≼ ω ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) ∧ (𝑢𝐽𝑧𝑢)) ∧ ((𝑟 ∈ ℝ+ ∧ (𝑧(ball‘𝐷)𝑟) ⊆ 𝑢) ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (𝑟 / 2)))) ∧ 𝑡 ∈ ((𝑧(ball‘𝐷)(1 / 𝑛)) ∩ 𝐴)) → 𝑡 ∈ ((𝑧(ball‘𝐷)(1 / 𝑛)) ∩ 𝐴))
6059elin2d 4170 . . . . . . . . . . 11 (((((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐴𝑋𝐴 ≼ ω ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) ∧ (𝑢𝐽𝑧𝑢)) ∧ ((𝑟 ∈ ℝ+ ∧ (𝑧(ball‘𝐷)𝑟) ⊆ 𝑢) ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (𝑟 / 2)))) ∧ 𝑡 ∈ ((𝑧(ball‘𝐷)(1 / 𝑛)) ∩ 𝐴)) → 𝑡𝐴)
61 eqidd 2731 . . . . . . . . . . 11 (((((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐴𝑋𝐴 ≼ ω ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) ∧ (𝑢𝐽𝑧𝑢)) ∧ ((𝑟 ∈ ℝ+ ∧ (𝑧(ball‘𝐷)𝑟) ⊆ 𝑢) ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (𝑟 / 2)))) ∧ 𝑡 ∈ ((𝑧(ball‘𝐷)(1 / 𝑛)) ∩ 𝐴)) → (𝑡(ball‘𝐷)(1 / 𝑛)) = (𝑡(ball‘𝐷)(1 / 𝑛)))
62 oveq2 7397 . . . . . . . . . . . . . 14 (𝑥 = 𝑛 → (1 / 𝑥) = (1 / 𝑛))
6362oveq2d 7405 . . . . . . . . . . . . 13 (𝑥 = 𝑛 → (𝑦(ball‘𝐷)(1 / 𝑥)) = (𝑦(ball‘𝐷)(1 / 𝑛)))
6463eqeq2d 2741 . . . . . . . . . . . 12 (𝑥 = 𝑛 → ((𝑡(ball‘𝐷)(1 / 𝑛)) = (𝑦(ball‘𝐷)(1 / 𝑥)) ↔ (𝑡(ball‘𝐷)(1 / 𝑛)) = (𝑦(ball‘𝐷)(1 / 𝑛))))
65 oveq1 7396 . . . . . . . . . . . . 13 (𝑦 = 𝑡 → (𝑦(ball‘𝐷)(1 / 𝑛)) = (𝑡(ball‘𝐷)(1 / 𝑛)))
6665eqeq2d 2741 . . . . . . . . . . . 12 (𝑦 = 𝑡 → ((𝑡(ball‘𝐷)(1 / 𝑛)) = (𝑦(ball‘𝐷)(1 / 𝑛)) ↔ (𝑡(ball‘𝐷)(1 / 𝑛)) = (𝑡(ball‘𝐷)(1 / 𝑛))))
6764, 66rspc2ev 3604 . . . . . . . . . . 11 ((𝑛 ∈ ℕ ∧ 𝑡𝐴 ∧ (𝑡(ball‘𝐷)(1 / 𝑛)) = (𝑡(ball‘𝐷)(1 / 𝑛))) → ∃𝑥 ∈ ℕ ∃𝑦𝐴 (𝑡(ball‘𝐷)(1 / 𝑛)) = (𝑦(ball‘𝐷)(1 / 𝑥)))
6858, 60, 61, 67syl3anc 1373 . . . . . . . . . 10 (((((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐴𝑋𝐴 ≼ ω ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) ∧ (𝑢𝐽𝑧𝑢)) ∧ ((𝑟 ∈ ℝ+ ∧ (𝑧(ball‘𝐷)𝑟) ⊆ 𝑢) ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (𝑟 / 2)))) ∧ 𝑡 ∈ ((𝑧(ball‘𝐷)(1 / 𝑛)) ∩ 𝐴)) → ∃𝑥 ∈ ℕ ∃𝑦𝐴 (𝑡(ball‘𝐷)(1 / 𝑛)) = (𝑦(ball‘𝐷)(1 / 𝑥)))
69 ovex 7422 . . . . . . . . . . 11 (𝑡(ball‘𝐷)(1 / 𝑛)) ∈ V
70 eqeq1 2734 . . . . . . . . . . . 12 (𝑧 = (𝑡(ball‘𝐷)(1 / 𝑛)) → (𝑧 = (𝑦(ball‘𝐷)(1 / 𝑥)) ↔ (𝑡(ball‘𝐷)(1 / 𝑛)) = (𝑦(ball‘𝐷)(1 / 𝑥))))
71702rexbidv 3203 . . . . . . . . . . 11 (𝑧 = (𝑡(ball‘𝐷)(1 / 𝑛)) → (∃𝑥 ∈ ℕ ∃𝑦𝐴 𝑧 = (𝑦(ball‘𝐷)(1 / 𝑥)) ↔ ∃𝑥 ∈ ℕ ∃𝑦𝐴 (𝑡(ball‘𝐷)(1 / 𝑛)) = (𝑦(ball‘𝐷)(1 / 𝑥))))
7215rnmpo 7524 . . . . . . . . . . 11 ran (𝑥 ∈ ℕ, 𝑦𝐴 ↦ (𝑦(ball‘𝐷)(1 / 𝑥))) = {𝑧 ∣ ∃𝑥 ∈ ℕ ∃𝑦𝐴 𝑧 = (𝑦(ball‘𝐷)(1 / 𝑥))}
7369, 71, 72elab2 3651 . . . . . . . . . 10 ((𝑡(ball‘𝐷)(1 / 𝑛)) ∈ ran (𝑥 ∈ ℕ, 𝑦𝐴 ↦ (𝑦(ball‘𝐷)(1 / 𝑥))) ↔ ∃𝑥 ∈ ℕ ∃𝑦𝐴 (𝑡(ball‘𝐷)(1 / 𝑛)) = (𝑦(ball‘𝐷)(1 / 𝑥)))
7468, 73sylibr 234 . . . . . . . . 9 (((((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐴𝑋𝐴 ≼ ω ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) ∧ (𝑢𝐽𝑧𝑢)) ∧ ((𝑟 ∈ ℝ+ ∧ (𝑧(ball‘𝐷)𝑟) ⊆ 𝑢) ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (𝑟 / 2)))) ∧ 𝑡 ∈ ((𝑧(ball‘𝐷)(1 / 𝑛)) ∩ 𝐴)) → (𝑡(ball‘𝐷)(1 / 𝑛)) ∈ ran (𝑥 ∈ ℕ, 𝑦𝐴 ↦ (𝑦(ball‘𝐷)(1 / 𝑥))))
7559elin1d 4169 . . . . . . . . . 10 (((((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐴𝑋𝐴 ≼ ω ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) ∧ (𝑢𝐽𝑧𝑢)) ∧ ((𝑟 ∈ ℝ+ ∧ (𝑧(ball‘𝐷)𝑟) ⊆ 𝑢) ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (𝑟 / 2)))) ∧ 𝑡 ∈ ((𝑧(ball‘𝐷)(1 / 𝑛)) ∩ 𝐴)) → 𝑡 ∈ (𝑧(ball‘𝐷)(1 / 𝑛)))
7644adantr 480 . . . . . . . . . . 11 (((((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐴𝑋𝐴 ≼ ω ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) ∧ (𝑢𝐽𝑧𝑢)) ∧ ((𝑟 ∈ ℝ+ ∧ (𝑧(ball‘𝐷)𝑟) ⊆ 𝑢) ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (𝑟 / 2)))) ∧ 𝑡 ∈ ((𝑧(ball‘𝐷)(1 / 𝑛)) ∩ 𝐴)) → 𝐷 ∈ (∞Met‘𝑋))
7748adantr 480 . . . . . . . . . . 11 (((((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐴𝑋𝐴 ≼ ω ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) ∧ (𝑢𝐽𝑧𝑢)) ∧ ((𝑟 ∈ ℝ+ ∧ (𝑧(ball‘𝐷)𝑟) ⊆ 𝑢) ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (𝑟 / 2)))) ∧ 𝑡 ∈ ((𝑧(ball‘𝐷)(1 / 𝑛)) ∩ 𝐴)) → (1 / 𝑛) ∈ ℝ*)
7840adantr 480 . . . . . . . . . . 11 (((((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐴𝑋𝐴 ≼ ω ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) ∧ (𝑢𝐽𝑧𝑢)) ∧ ((𝑟 ∈ ℝ+ ∧ (𝑧(ball‘𝐷)𝑟) ⊆ 𝑢) ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (𝑟 / 2)))) ∧ 𝑡 ∈ ((𝑧(ball‘𝐷)(1 / 𝑛)) ∩ 𝐴)) → 𝑧𝑋)
7932adantr 480 . . . . . . . . . . . 12 (((((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐴𝑋𝐴 ≼ ω ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) ∧ (𝑢𝐽𝑧𝑢)) ∧ ((𝑟 ∈ ℝ+ ∧ (𝑧(ball‘𝐷)𝑟) ⊆ 𝑢) ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (𝑟 / 2)))) ∧ 𝑡 ∈ ((𝑧(ball‘𝐷)(1 / 𝑛)) ∩ 𝐴)) → 𝐴𝑋)
8079, 60sseldd 3949 . . . . . . . . . . 11 (((((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐴𝑋𝐴 ≼ ω ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) ∧ (𝑢𝐽𝑧𝑢)) ∧ ((𝑟 ∈ ℝ+ ∧ (𝑧(ball‘𝐷)𝑟) ⊆ 𝑢) ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (𝑟 / 2)))) ∧ 𝑡 ∈ ((𝑧(ball‘𝐷)(1 / 𝑛)) ∩ 𝐴)) → 𝑡𝑋)
81 blcom 24288 . . . . . . . . . . 11 (((𝐷 ∈ (∞Met‘𝑋) ∧ (1 / 𝑛) ∈ ℝ*) ∧ (𝑧𝑋𝑡𝑋)) → (𝑡 ∈ (𝑧(ball‘𝐷)(1 / 𝑛)) ↔ 𝑧 ∈ (𝑡(ball‘𝐷)(1 / 𝑛))))
8276, 77, 78, 80, 81syl22anc 838 . . . . . . . . . 10 (((((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐴𝑋𝐴 ≼ ω ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) ∧ (𝑢𝐽𝑧𝑢)) ∧ ((𝑟 ∈ ℝ+ ∧ (𝑧(ball‘𝐷)𝑟) ⊆ 𝑢) ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (𝑟 / 2)))) ∧ 𝑡 ∈ ((𝑧(ball‘𝐷)(1 / 𝑛)) ∩ 𝐴)) → (𝑡 ∈ (𝑧(ball‘𝐷)(1 / 𝑛)) ↔ 𝑧 ∈ (𝑡(ball‘𝐷)(1 / 𝑛))))
8375, 82mpbid 232 . . . . . . . . 9 (((((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐴𝑋𝐴 ≼ ω ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) ∧ (𝑢𝐽𝑧𝑢)) ∧ ((𝑟 ∈ ℝ+ ∧ (𝑧(ball‘𝐷)𝑟) ⊆ 𝑢) ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (𝑟 / 2)))) ∧ 𝑡 ∈ ((𝑧(ball‘𝐷)(1 / 𝑛)) ∩ 𝐴)) → 𝑧 ∈ (𝑡(ball‘𝐷)(1 / 𝑛)))
84 simprll 778 . . . . . . . . . . . . . 14 ((((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐴𝑋𝐴 ≼ ω ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) ∧ (𝑢𝐽𝑧𝑢)) ∧ ((𝑟 ∈ ℝ+ ∧ (𝑧(ball‘𝐷)𝑟) ⊆ 𝑢) ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (𝑟 / 2)))) → 𝑟 ∈ ℝ+)
8584adantr 480 . . . . . . . . . . . . 13 (((((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐴𝑋𝐴 ≼ ω ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) ∧ (𝑢𝐽𝑧𝑢)) ∧ ((𝑟 ∈ ℝ+ ∧ (𝑧(ball‘𝐷)𝑟) ⊆ 𝑢) ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (𝑟 / 2)))) ∧ 𝑡 ∈ ((𝑧(ball‘𝐷)(1 / 𝑛)) ∩ 𝐴)) → 𝑟 ∈ ℝ+)
8685rphalfcld 13013 . . . . . . . . . . . 12 (((((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐴𝑋𝐴 ≼ ω ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) ∧ (𝑢𝐽𝑧𝑢)) ∧ ((𝑟 ∈ ℝ+ ∧ (𝑧(ball‘𝐷)𝑟) ⊆ 𝑢) ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (𝑟 / 2)))) ∧ 𝑡 ∈ ((𝑧(ball‘𝐷)(1 / 𝑛)) ∩ 𝐴)) → (𝑟 / 2) ∈ ℝ+)
8786rpxrd 13002 . . . . . . . . . . 11 (((((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐴𝑋𝐴 ≼ ω ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) ∧ (𝑢𝐽𝑧𝑢)) ∧ ((𝑟 ∈ ℝ+ ∧ (𝑧(ball‘𝐷)𝑟) ⊆ 𝑢) ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (𝑟 / 2)))) ∧ 𝑡 ∈ ((𝑧(ball‘𝐷)(1 / 𝑛)) ∩ 𝐴)) → (𝑟 / 2) ∈ ℝ*)
88 simprrr 781 . . . . . . . . . . . . 13 ((((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐴𝑋𝐴 ≼ ω ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) ∧ (𝑢𝐽𝑧𝑢)) ∧ ((𝑟 ∈ ℝ+ ∧ (𝑧(ball‘𝐷)𝑟) ⊆ 𝑢) ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (𝑟 / 2)))) → (1 / 𝑛) < (𝑟 / 2))
8984rphalfcld 13013 . . . . . . . . . . . . . 14 ((((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐴𝑋𝐴 ≼ ω ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) ∧ (𝑢𝐽𝑧𝑢)) ∧ ((𝑟 ∈ ℝ+ ∧ (𝑧(ball‘𝐷)𝑟) ⊆ 𝑢) ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (𝑟 / 2)))) → (𝑟 / 2) ∈ ℝ+)
90 rpre 12966 . . . . . . . . . . . . . . 15 ((1 / 𝑛) ∈ ℝ+ → (1 / 𝑛) ∈ ℝ)
91 rpre 12966 . . . . . . . . . . . . . . 15 ((𝑟 / 2) ∈ ℝ+ → (𝑟 / 2) ∈ ℝ)
92 ltle 11268 . . . . . . . . . . . . . . 15 (((1 / 𝑛) ∈ ℝ ∧ (𝑟 / 2) ∈ ℝ) → ((1 / 𝑛) < (𝑟 / 2) → (1 / 𝑛) ≤ (𝑟 / 2)))
9390, 91, 92syl2an 596 . . . . . . . . . . . . . 14 (((1 / 𝑛) ∈ ℝ+ ∧ (𝑟 / 2) ∈ ℝ+) → ((1 / 𝑛) < (𝑟 / 2) → (1 / 𝑛) ≤ (𝑟 / 2)))
9447, 89, 93syl2anc 584 . . . . . . . . . . . . 13 ((((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐴𝑋𝐴 ≼ ω ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) ∧ (𝑢𝐽𝑧𝑢)) ∧ ((𝑟 ∈ ℝ+ ∧ (𝑧(ball‘𝐷)𝑟) ⊆ 𝑢) ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (𝑟 / 2)))) → ((1 / 𝑛) < (𝑟 / 2) → (1 / 𝑛) ≤ (𝑟 / 2)))
9588, 94mpd 15 . . . . . . . . . . . 12 ((((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐴𝑋𝐴 ≼ ω ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) ∧ (𝑢𝐽𝑧𝑢)) ∧ ((𝑟 ∈ ℝ+ ∧ (𝑧(ball‘𝐷)𝑟) ⊆ 𝑢) ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (𝑟 / 2)))) → (1 / 𝑛) ≤ (𝑟 / 2))
9695adantr 480 . . . . . . . . . . 11 (((((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐴𝑋𝐴 ≼ ω ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) ∧ (𝑢𝐽𝑧𝑢)) ∧ ((𝑟 ∈ ℝ+ ∧ (𝑧(ball‘𝐷)𝑟) ⊆ 𝑢) ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (𝑟 / 2)))) ∧ 𝑡 ∈ ((𝑧(ball‘𝐷)(1 / 𝑛)) ∩ 𝐴)) → (1 / 𝑛) ≤ (𝑟 / 2))
97 ssbl 24317 . . . . . . . . . . 11 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑡𝑋) ∧ ((1 / 𝑛) ∈ ℝ* ∧ (𝑟 / 2) ∈ ℝ*) ∧ (1 / 𝑛) ≤ (𝑟 / 2)) → (𝑡(ball‘𝐷)(1 / 𝑛)) ⊆ (𝑡(ball‘𝐷)(𝑟 / 2)))
9876, 80, 77, 87, 96, 97syl221anc 1383 . . . . . . . . . 10 (((((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐴𝑋𝐴 ≼ ω ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) ∧ (𝑢𝐽𝑧𝑢)) ∧ ((𝑟 ∈ ℝ+ ∧ (𝑧(ball‘𝐷)𝑟) ⊆ 𝑢) ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (𝑟 / 2)))) ∧ 𝑡 ∈ ((𝑧(ball‘𝐷)(1 / 𝑛)) ∩ 𝐴)) → (𝑡(ball‘𝐷)(1 / 𝑛)) ⊆ (𝑡(ball‘𝐷)(𝑟 / 2)))
9985rpred 13001 . . . . . . . . . . . 12 (((((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐴𝑋𝐴 ≼ ω ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) ∧ (𝑢𝐽𝑧𝑢)) ∧ ((𝑟 ∈ ℝ+ ∧ (𝑧(ball‘𝐷)𝑟) ⊆ 𝑢) ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (𝑟 / 2)))) ∧ 𝑡 ∈ ((𝑧(ball‘𝐷)(1 / 𝑛)) ∩ 𝐴)) → 𝑟 ∈ ℝ)
10098, 83sseldd 3949 . . . . . . . . . . . 12 (((((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐴𝑋𝐴 ≼ ω ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) ∧ (𝑢𝐽𝑧𝑢)) ∧ ((𝑟 ∈ ℝ+ ∧ (𝑧(ball‘𝐷)𝑟) ⊆ 𝑢) ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (𝑟 / 2)))) ∧ 𝑡 ∈ ((𝑧(ball‘𝐷)(1 / 𝑛)) ∩ 𝐴)) → 𝑧 ∈ (𝑡(ball‘𝐷)(𝑟 / 2)))
101 blhalf 24299 . . . . . . . . . . . 12 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑡𝑋) ∧ (𝑟 ∈ ℝ ∧ 𝑧 ∈ (𝑡(ball‘𝐷)(𝑟 / 2)))) → (𝑡(ball‘𝐷)(𝑟 / 2)) ⊆ (𝑧(ball‘𝐷)𝑟))
10276, 80, 99, 100, 101syl22anc 838 . . . . . . . . . . 11 (((((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐴𝑋𝐴 ≼ ω ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) ∧ (𝑢𝐽𝑧𝑢)) ∧ ((𝑟 ∈ ℝ+ ∧ (𝑧(ball‘𝐷)𝑟) ⊆ 𝑢) ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (𝑟 / 2)))) ∧ 𝑡 ∈ ((𝑧(ball‘𝐷)(1 / 𝑛)) ∩ 𝐴)) → (𝑡(ball‘𝐷)(𝑟 / 2)) ⊆ (𝑧(ball‘𝐷)𝑟))
103 simprlr 779 . . . . . . . . . . . 12 ((((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐴𝑋𝐴 ≼ ω ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) ∧ (𝑢𝐽𝑧𝑢)) ∧ ((𝑟 ∈ ℝ+ ∧ (𝑧(ball‘𝐷)𝑟) ⊆ 𝑢) ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (𝑟 / 2)))) → (𝑧(ball‘𝐷)𝑟) ⊆ 𝑢)
104103adantr 480 . . . . . . . . . . 11 (((((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐴𝑋𝐴 ≼ ω ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) ∧ (𝑢𝐽𝑧𝑢)) ∧ ((𝑟 ∈ ℝ+ ∧ (𝑧(ball‘𝐷)𝑟) ⊆ 𝑢) ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (𝑟 / 2)))) ∧ 𝑡 ∈ ((𝑧(ball‘𝐷)(1 / 𝑛)) ∩ 𝐴)) → (𝑧(ball‘𝐷)𝑟) ⊆ 𝑢)
105102, 104sstrd 3959 . . . . . . . . . 10 (((((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐴𝑋𝐴 ≼ ω ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) ∧ (𝑢𝐽𝑧𝑢)) ∧ ((𝑟 ∈ ℝ+ ∧ (𝑧(ball‘𝐷)𝑟) ⊆ 𝑢) ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (𝑟 / 2)))) ∧ 𝑡 ∈ ((𝑧(ball‘𝐷)(1 / 𝑛)) ∩ 𝐴)) → (𝑡(ball‘𝐷)(𝑟 / 2)) ⊆ 𝑢)
10698, 105sstrd 3959 . . . . . . . . 9 (((((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐴𝑋𝐴 ≼ ω ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) ∧ (𝑢𝐽𝑧𝑢)) ∧ ((𝑟 ∈ ℝ+ ∧ (𝑧(ball‘𝐷)𝑟) ⊆ 𝑢) ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (𝑟 / 2)))) ∧ 𝑡 ∈ ((𝑧(ball‘𝐷)(1 / 𝑛)) ∩ 𝐴)) → (𝑡(ball‘𝐷)(1 / 𝑛)) ⊆ 𝑢)
107 eleq2 2818 . . . . . . . . . . 11 (𝑤 = (𝑡(ball‘𝐷)(1 / 𝑛)) → (𝑧𝑤𝑧 ∈ (𝑡(ball‘𝐷)(1 / 𝑛))))
108 sseq1 3974 . . . . . . . . . . 11 (𝑤 = (𝑡(ball‘𝐷)(1 / 𝑛)) → (𝑤𝑢 ↔ (𝑡(ball‘𝐷)(1 / 𝑛)) ⊆ 𝑢))
109107, 108anbi12d 632 . . . . . . . . . 10 (𝑤 = (𝑡(ball‘𝐷)(1 / 𝑛)) → ((𝑧𝑤𝑤𝑢) ↔ (𝑧 ∈ (𝑡(ball‘𝐷)(1 / 𝑛)) ∧ (𝑡(ball‘𝐷)(1 / 𝑛)) ⊆ 𝑢)))
110109rspcev 3591 . . . . . . . . 9 (((𝑡(ball‘𝐷)(1 / 𝑛)) ∈ ran (𝑥 ∈ ℕ, 𝑦𝐴 ↦ (𝑦(ball‘𝐷)(1 / 𝑥))) ∧ (𝑧 ∈ (𝑡(ball‘𝐷)(1 / 𝑛)) ∧ (𝑡(ball‘𝐷)(1 / 𝑛)) ⊆ 𝑢)) → ∃𝑤 ∈ ran (𝑥 ∈ ℕ, 𝑦𝐴 ↦ (𝑦(ball‘𝐷)(1 / 𝑥)))(𝑧𝑤𝑤𝑢))
11174, 83, 106, 110syl12anc 836 . . . . . . . 8 (((((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐴𝑋𝐴 ≼ ω ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) ∧ (𝑢𝐽𝑧𝑢)) ∧ ((𝑟 ∈ ℝ+ ∧ (𝑧(ball‘𝐷)𝑟) ⊆ 𝑢) ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (𝑟 / 2)))) ∧ 𝑡 ∈ ((𝑧(ball‘𝐷)(1 / 𝑛)) ∩ 𝐴)) → ∃𝑤 ∈ ran (𝑥 ∈ ℕ, 𝑦𝐴 ↦ (𝑦(ball‘𝐷)(1 / 𝑥)))(𝑧𝑤𝑤𝑢))
11257, 111exlimddv 1935 . . . . . . 7 ((((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐴𝑋𝐴 ≼ ω ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) ∧ (𝑢𝐽𝑧𝑢)) ∧ ((𝑟 ∈ ℝ+ ∧ (𝑧(ball‘𝐷)𝑟) ⊆ 𝑢) ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (𝑟 / 2)))) → ∃𝑤 ∈ ran (𝑥 ∈ ℕ, 𝑦𝐴 ↦ (𝑦(ball‘𝐷)(1 / 𝑥)))(𝑧𝑤𝑤𝑢))
113112anassrs 467 . . . . . 6 (((((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐴𝑋𝐴 ≼ ω ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) ∧ (𝑢𝐽𝑧𝑢)) ∧ (𝑟 ∈ ℝ+ ∧ (𝑧(ball‘𝐷)𝑟) ⊆ 𝑢)) ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (𝑟 / 2))) → ∃𝑤 ∈ ran (𝑥 ∈ ℕ, 𝑦𝐴 ↦ (𝑦(ball‘𝐷)(1 / 𝑥)))(𝑧𝑤𝑤𝑢))
11429, 113rexlimddv 3141 . . . . 5 ((((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐴𝑋𝐴 ≼ ω ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) ∧ (𝑢𝐽𝑧𝑢)) ∧ (𝑟 ∈ ℝ+ ∧ (𝑧(ball‘𝐷)𝑟) ⊆ 𝑢)) → ∃𝑤 ∈ ran (𝑥 ∈ ℕ, 𝑦𝐴 ↦ (𝑦(ball‘𝐷)(1 / 𝑥)))(𝑧𝑤𝑤𝑢))
11523, 114rexlimddv 3141 . . . 4 (((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐴𝑋𝐴 ≼ ω ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) ∧ (𝑢𝐽𝑧𝑢)) → ∃𝑤 ∈ ran (𝑥 ∈ ℕ, 𝑦𝐴 ↦ (𝑦(ball‘𝐷)(1 / 𝑥)))(𝑧𝑤𝑤𝑢))
116115ralrimivva 3181 . . 3 ((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐴𝑋𝐴 ≼ ω ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) → ∀𝑢𝐽𝑧𝑢𝑤 ∈ ran (𝑥 ∈ ℕ, 𝑦𝐴 ↦ (𝑦(ball‘𝐷)(1 / 𝑥)))(𝑧𝑤𝑤𝑢))
117 basgen2 22882 . . 3 ((𝐽 ∈ Top ∧ ran (𝑥 ∈ ℕ, 𝑦𝐴 ↦ (𝑦(ball‘𝐷)(1 / 𝑥))) ⊆ 𝐽 ∧ ∀𝑢𝐽𝑧𝑢𝑤 ∈ ran (𝑥 ∈ ℕ, 𝑦𝐴 ↦ (𝑦(ball‘𝐷)(1 / 𝑥)))(𝑧𝑤𝑤𝑢)) → (topGen‘ran (𝑥 ∈ ℕ, 𝑦𝐴 ↦ (𝑦(ball‘𝐷)(1 / 𝑥)))) = 𝐽)
1183, 18, 116, 117syl3anc 1373 . 2 ((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐴𝑋𝐴 ≼ ω ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) → (topGen‘ran (𝑥 ∈ ℕ, 𝑦𝐴 ↦ (𝑦(ball‘𝐷)(1 / 𝑥)))) = 𝐽)
119118, 3eqeltrd 2829 . . . 4 ((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐴𝑋𝐴 ≼ ω ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) → (topGen‘ran (𝑥 ∈ ℕ, 𝑦𝐴 ↦ (𝑦(ball‘𝐷)(1 / 𝑥)))) ∈ Top)
120 tgclb 22863 . . . 4 (ran (𝑥 ∈ ℕ, 𝑦𝐴 ↦ (𝑦(ball‘𝐷)(1 / 𝑥))) ∈ TopBases ↔ (topGen‘ran (𝑥 ∈ ℕ, 𝑦𝐴 ↦ (𝑦(ball‘𝐷)(1 / 𝑥)))) ∈ Top)
121119, 120sylibr 234 . . 3 ((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐴𝑋𝐴 ≼ ω ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) → ran (𝑥 ∈ ℕ, 𝑦𝐴 ↦ (𝑦(ball‘𝐷)(1 / 𝑥))) ∈ TopBases)
122 omelon 9605 . . . . . 6 ω ∈ On
123 simpr2 1196 . . . . . . . 8 ((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐴𝑋𝐴 ≼ ω ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) → 𝐴 ≼ ω)
124 nnex 12193 . . . . . . . . 9 ℕ ∈ V
125124xpdom2 9040 . . . . . . . 8 (𝐴 ≼ ω → (ℕ × 𝐴) ≼ (ℕ × ω))
126123, 125syl 17 . . . . . . 7 ((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐴𝑋𝐴 ≼ ω ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) → (ℕ × 𝐴) ≼ (ℕ × ω))
127 nnenom 13951 . . . . . . . . 9 ℕ ≈ ω
128 omex 9602 . . . . . . . . . 10 ω ∈ V
129128enref 8958 . . . . . . . . 9 ω ≈ ω
130 xpen 9109 . . . . . . . . 9 ((ℕ ≈ ω ∧ ω ≈ ω) → (ℕ × ω) ≈ (ω × ω))
131127, 129, 130mp2an 692 . . . . . . . 8 (ℕ × ω) ≈ (ω × ω)
132 xpomen 9974 . . . . . . . 8 (ω × ω) ≈ ω
133131, 132entri 8981 . . . . . . 7 (ℕ × ω) ≈ ω
134 domentr 8986 . . . . . . 7 (((ℕ × 𝐴) ≼ (ℕ × ω) ∧ (ℕ × ω) ≈ ω) → (ℕ × 𝐴) ≼ ω)
135126, 133, 134sylancl 586 . . . . . 6 ((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐴𝑋𝐴 ≼ ω ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) → (ℕ × 𝐴) ≼ ω)
136 ondomen 9996 . . . . . 6 ((ω ∈ On ∧ (ℕ × 𝐴) ≼ ω) → (ℕ × 𝐴) ∈ dom card)
137122, 135, 136sylancr 587 . . . . 5 ((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐴𝑋𝐴 ≼ ω ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) → (ℕ × 𝐴) ∈ dom card)
13817ffnd 6691 . . . . . 6 ((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐴𝑋𝐴 ≼ ω ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) → (𝑥 ∈ ℕ, 𝑦𝐴 ↦ (𝑦(ball‘𝐷)(1 / 𝑥))) Fn (ℕ × 𝐴))
139 dffn4 6780 . . . . . 6 ((𝑥 ∈ ℕ, 𝑦𝐴 ↦ (𝑦(ball‘𝐷)(1 / 𝑥))) Fn (ℕ × 𝐴) ↔ (𝑥 ∈ ℕ, 𝑦𝐴 ↦ (𝑦(ball‘𝐷)(1 / 𝑥))):(ℕ × 𝐴)–onto→ran (𝑥 ∈ ℕ, 𝑦𝐴 ↦ (𝑦(ball‘𝐷)(1 / 𝑥))))
140138, 139sylib 218 . . . . 5 ((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐴𝑋𝐴 ≼ ω ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) → (𝑥 ∈ ℕ, 𝑦𝐴 ↦ (𝑦(ball‘𝐷)(1 / 𝑥))):(ℕ × 𝐴)–onto→ran (𝑥 ∈ ℕ, 𝑦𝐴 ↦ (𝑦(ball‘𝐷)(1 / 𝑥))))
141 fodomnum 10016 . . . . 5 ((ℕ × 𝐴) ∈ dom card → ((𝑥 ∈ ℕ, 𝑦𝐴 ↦ (𝑦(ball‘𝐷)(1 / 𝑥))):(ℕ × 𝐴)–onto→ran (𝑥 ∈ ℕ, 𝑦𝐴 ↦ (𝑦(ball‘𝐷)(1 / 𝑥))) → ran (𝑥 ∈ ℕ, 𝑦𝐴 ↦ (𝑦(ball‘𝐷)(1 / 𝑥))) ≼ (ℕ × 𝐴)))
142137, 140, 141sylc 65 . . . 4 ((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐴𝑋𝐴 ≼ ω ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) → ran (𝑥 ∈ ℕ, 𝑦𝐴 ↦ (𝑦(ball‘𝐷)(1 / 𝑥))) ≼ (ℕ × 𝐴))
143 domtr 8980 . . . 4 ((ran (𝑥 ∈ ℕ, 𝑦𝐴 ↦ (𝑦(ball‘𝐷)(1 / 𝑥))) ≼ (ℕ × 𝐴) ∧ (ℕ × 𝐴) ≼ ω) → ran (𝑥 ∈ ℕ, 𝑦𝐴 ↦ (𝑦(ball‘𝐷)(1 / 𝑥))) ≼ ω)
144142, 135, 143syl2anc 584 . . 3 ((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐴𝑋𝐴 ≼ ω ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) → ran (𝑥 ∈ ℕ, 𝑦𝐴 ↦ (𝑦(ball‘𝐷)(1 / 𝑥))) ≼ ω)
145 2ndci 23341 . . 3 ((ran (𝑥 ∈ ℕ, 𝑦𝐴 ↦ (𝑦(ball‘𝐷)(1 / 𝑥))) ∈ TopBases ∧ ran (𝑥 ∈ ℕ, 𝑦𝐴 ↦ (𝑦(ball‘𝐷)(1 / 𝑥))) ≼ ω) → (topGen‘ran (𝑥 ∈ ℕ, 𝑦𝐴 ↦ (𝑦(ball‘𝐷)(1 / 𝑥)))) ∈ 2ndω)
146121, 144, 145syl2anc 584 . 2 ((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐴𝑋𝐴 ≼ ω ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) → (topGen‘ran (𝑥 ∈ ℕ, 𝑦𝐴 ↦ (𝑦(ball‘𝐷)(1 / 𝑥)))) ∈ 2ndω)
147118, 146eqeltrrd 2830 1 ((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐴𝑋𝐴 ≼ ω ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) → 𝐽 ∈ 2ndω)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wex 1779  wcel 2109  wne 2926  wral 3045  wrex 3054  cin 3915  wss 3916  c0 4298   cuni 4873   class class class wbr 5109   × cxp 5638  dom cdm 5640  ran crn 5641  Oncon0 6334   Fn wfn 6508  wf 6509  ontowfo 6511  cfv 6513  (class class class)co 7389  cmpo 7391  ωcom 7844  cen 8917  cdom 8918  cardccrd 9894  cr 11073  0cc0 11074  1c1 11075  *cxr 11213   < clt 11214  cle 11215   / cdiv 11841  cn 12187  2c2 12242  +crp 12957  topGenctg 17406  ∞Metcxmet 21255  ballcbl 21257  MetOpencmopn 21260  Topctop 22786  TopBasesctb 22838  clsccl 22911  2ndωc2ndc 23331
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5236  ax-sep 5253  ax-nul 5263  ax-pow 5322  ax-pr 5389  ax-un 7713  ax-inf2 9600  ax-cnex 11130  ax-resscn 11131  ax-1cn 11132  ax-icn 11133  ax-addcl 11134  ax-addrcl 11135  ax-mulcl 11136  ax-mulrcl 11137  ax-mulcom 11138  ax-addass 11139  ax-mulass 11140  ax-distr 11141  ax-i2m1 11142  ax-1ne0 11143  ax-1rid 11144  ax-rnegex 11145  ax-rrecex 11146  ax-cnre 11147  ax-pre-lttri 11148  ax-pre-lttrn 11149  ax-pre-ltadd 11150  ax-pre-mulgt0 11151  ax-pre-sup 11152
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3756  df-csb 3865  df-dif 3919  df-un 3921  df-in 3923  df-ss 3933  df-pss 3936  df-nul 4299  df-if 4491  df-pw 4567  df-sn 4592  df-pr 4594  df-op 4598  df-uni 4874  df-int 4913  df-iun 4959  df-iin 4960  df-br 5110  df-opab 5172  df-mpt 5191  df-tr 5217  df-id 5535  df-eprel 5540  df-po 5548  df-so 5549  df-fr 5593  df-se 5594  df-we 5595  df-xp 5646  df-rel 5647  df-cnv 5648  df-co 5649  df-dm 5650  df-rn 5651  df-res 5652  df-ima 5653  df-pred 6276  df-ord 6337  df-on 6338  df-lim 6339  df-suc 6340  df-iota 6466  df-fun 6515  df-fn 6516  df-f 6517  df-f1 6518  df-fo 6519  df-f1o 6520  df-fv 6521  df-isom 6522  df-riota 7346  df-ov 7392  df-oprab 7393  df-mpo 7394  df-om 7845  df-1st 7970  df-2nd 7971  df-frecs 8262  df-wrecs 8293  df-recs 8342  df-rdg 8380  df-1o 8436  df-er 8673  df-map 8803  df-en 8921  df-dom 8922  df-sdom 8923  df-fin 8924  df-sup 9399  df-inf 9400  df-oi 9469  df-card 9898  df-acn 9901  df-pnf 11216  df-mnf 11217  df-xr 11218  df-ltxr 11219  df-le 11220  df-sub 11413  df-neg 11414  df-div 11842  df-nn 12188  df-2 12250  df-n0 12449  df-z 12536  df-uz 12800  df-q 12914  df-rp 12958  df-xneg 13078  df-xadd 13079  df-xmul 13080  df-topgen 17412  df-psmet 21262  df-xmet 21263  df-bl 21265  df-mopn 21266  df-top 22787  df-topon 22804  df-bases 22839  df-cld 22912  df-ntr 22913  df-cls 22914  df-2ndc 23333
This theorem is referenced by:  met2ndc  24417
  Copyright terms: Public domain W3C validator