MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  met2ndci Structured version   Visualization version   GIF version

Theorem met2ndci 24430
Description: A separable metric space (a metric space with a countable dense subset) is second-countable. (Contributed by Mario Carneiro, 13-Apr-2015.)
Hypothesis
Ref Expression
methaus.1 𝐽 = (MetOpen‘𝐷)
Assertion
Ref Expression
met2ndci ((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐴𝑋𝐴 ≼ ω ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) → 𝐽 ∈ 2ndω)

Proof of Theorem met2ndci
Dummy variables 𝑛 𝑟 𝑡 𝑢 𝑤 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 methaus.1 . . . . 5 𝐽 = (MetOpen‘𝐷)
21mopntop 24348 . . . 4 (𝐷 ∈ (∞Met‘𝑋) → 𝐽 ∈ Top)
32adantr 480 . . 3 ((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐴𝑋𝐴 ≼ ω ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) → 𝐽 ∈ Top)
4 simpll 766 . . . . . . 7 (((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐴𝑋𝐴 ≼ ω ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) ∧ (𝑥 ∈ ℕ ∧ 𝑦𝐴)) → 𝐷 ∈ (∞Met‘𝑋))
5 simplr1 1216 . . . . . . . 8 (((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐴𝑋𝐴 ≼ ω ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) ∧ (𝑥 ∈ ℕ ∧ 𝑦𝐴)) → 𝐴𝑋)
6 simprr 772 . . . . . . . 8 (((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐴𝑋𝐴 ≼ ω ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) ∧ (𝑥 ∈ ℕ ∧ 𝑦𝐴)) → 𝑦𝐴)
75, 6sseldd 3933 . . . . . . 7 (((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐴𝑋𝐴 ≼ ω ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) ∧ (𝑥 ∈ ℕ ∧ 𝑦𝐴)) → 𝑦𝑋)
8 simprl 770 . . . . . . . . . 10 (((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐴𝑋𝐴 ≼ ω ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) ∧ (𝑥 ∈ ℕ ∧ 𝑦𝐴)) → 𝑥 ∈ ℕ)
98nnrpd 12924 . . . . . . . . 9 (((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐴𝑋𝐴 ≼ ω ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) ∧ (𝑥 ∈ ℕ ∧ 𝑦𝐴)) → 𝑥 ∈ ℝ+)
109rpreccld 12936 . . . . . . . 8 (((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐴𝑋𝐴 ≼ ω ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) ∧ (𝑥 ∈ ℕ ∧ 𝑦𝐴)) → (1 / 𝑥) ∈ ℝ+)
1110rpxrd 12927 . . . . . . 7 (((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐴𝑋𝐴 ≼ ω ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) ∧ (𝑥 ∈ ℕ ∧ 𝑦𝐴)) → (1 / 𝑥) ∈ ℝ*)
121blopn 24408 . . . . . . 7 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑦𝑋 ∧ (1 / 𝑥) ∈ ℝ*) → (𝑦(ball‘𝐷)(1 / 𝑥)) ∈ 𝐽)
134, 7, 11, 12syl3anc 1373 . . . . . 6 (((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐴𝑋𝐴 ≼ ω ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) ∧ (𝑥 ∈ ℕ ∧ 𝑦𝐴)) → (𝑦(ball‘𝐷)(1 / 𝑥)) ∈ 𝐽)
1413ralrimivva 3173 . . . . 5 ((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐴𝑋𝐴 ≼ ω ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) → ∀𝑥 ∈ ℕ ∀𝑦𝐴 (𝑦(ball‘𝐷)(1 / 𝑥)) ∈ 𝐽)
15 eqid 2730 . . . . . 6 (𝑥 ∈ ℕ, 𝑦𝐴 ↦ (𝑦(ball‘𝐷)(1 / 𝑥))) = (𝑥 ∈ ℕ, 𝑦𝐴 ↦ (𝑦(ball‘𝐷)(1 / 𝑥)))
1615fmpo 7995 . . . . 5 (∀𝑥 ∈ ℕ ∀𝑦𝐴 (𝑦(ball‘𝐷)(1 / 𝑥)) ∈ 𝐽 ↔ (𝑥 ∈ ℕ, 𝑦𝐴 ↦ (𝑦(ball‘𝐷)(1 / 𝑥))):(ℕ × 𝐴)⟶𝐽)
1714, 16sylib 218 . . . 4 ((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐴𝑋𝐴 ≼ ω ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) → (𝑥 ∈ ℕ, 𝑦𝐴 ↦ (𝑦(ball‘𝐷)(1 / 𝑥))):(ℕ × 𝐴)⟶𝐽)
1817frnd 6655 . . 3 ((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐴𝑋𝐴 ≼ ω ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) → ran (𝑥 ∈ ℕ, 𝑦𝐴 ↦ (𝑦(ball‘𝐷)(1 / 𝑥))) ⊆ 𝐽)
19 simpll 766 . . . . . 6 (((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐴𝑋𝐴 ≼ ω ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) ∧ (𝑢𝐽𝑧𝑢)) → 𝐷 ∈ (∞Met‘𝑋))
20 simprl 770 . . . . . 6 (((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐴𝑋𝐴 ≼ ω ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) ∧ (𝑢𝐽𝑧𝑢)) → 𝑢𝐽)
21 simprr 772 . . . . . 6 (((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐴𝑋𝐴 ≼ ω ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) ∧ (𝑢𝐽𝑧𝑢)) → 𝑧𝑢)
221mopni2 24401 . . . . . 6 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑢𝐽𝑧𝑢) → ∃𝑟 ∈ ℝ+ (𝑧(ball‘𝐷)𝑟) ⊆ 𝑢)
2319, 20, 21, 22syl3anc 1373 . . . . 5 (((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐴𝑋𝐴 ≼ ω ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) ∧ (𝑢𝐽𝑧𝑢)) → ∃𝑟 ∈ ℝ+ (𝑧(ball‘𝐷)𝑟) ⊆ 𝑢)
24 simprl 770 . . . . . . . 8 ((((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐴𝑋𝐴 ≼ ω ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) ∧ (𝑢𝐽𝑧𝑢)) ∧ (𝑟 ∈ ℝ+ ∧ (𝑧(ball‘𝐷)𝑟) ⊆ 𝑢)) → 𝑟 ∈ ℝ+)
2524rphalfcld 12938 . . . . . . 7 ((((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐴𝑋𝐴 ≼ ω ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) ∧ (𝑢𝐽𝑧𝑢)) ∧ (𝑟 ∈ ℝ+ ∧ (𝑧(ball‘𝐷)𝑟) ⊆ 𝑢)) → (𝑟 / 2) ∈ ℝ+)
26 elrp 12884 . . . . . . . 8 ((𝑟 / 2) ∈ ℝ+ ↔ ((𝑟 / 2) ∈ ℝ ∧ 0 < (𝑟 / 2)))
27 nnrecl 12371 . . . . . . . 8 (((𝑟 / 2) ∈ ℝ ∧ 0 < (𝑟 / 2)) → ∃𝑛 ∈ ℕ (1 / 𝑛) < (𝑟 / 2))
2826, 27sylbi 217 . . . . . . 7 ((𝑟 / 2) ∈ ℝ+ → ∃𝑛 ∈ ℕ (1 / 𝑛) < (𝑟 / 2))
2925, 28syl 17 . . . . . 6 ((((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐴𝑋𝐴 ≼ ω ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) ∧ (𝑢𝐽𝑧𝑢)) ∧ (𝑟 ∈ ℝ+ ∧ (𝑧(ball‘𝐷)𝑟) ⊆ 𝑢)) → ∃𝑛 ∈ ℕ (1 / 𝑛) < (𝑟 / 2))
303ad2antrr 726 . . . . . . . . . 10 ((((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐴𝑋𝐴 ≼ ω ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) ∧ (𝑢𝐽𝑧𝑢)) ∧ ((𝑟 ∈ ℝ+ ∧ (𝑧(ball‘𝐷)𝑟) ⊆ 𝑢) ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (𝑟 / 2)))) → 𝐽 ∈ Top)
31 simpr1 1195 . . . . . . . . . . . 12 ((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐴𝑋𝐴 ≼ ω ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) → 𝐴𝑋)
3231ad2antrr 726 . . . . . . . . . . 11 ((((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐴𝑋𝐴 ≼ ω ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) ∧ (𝑢𝐽𝑧𝑢)) ∧ ((𝑟 ∈ ℝ+ ∧ (𝑧(ball‘𝐷)𝑟) ⊆ 𝑢) ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (𝑟 / 2)))) → 𝐴𝑋)
331mopnuni 24349 . . . . . . . . . . . 12 (𝐷 ∈ (∞Met‘𝑋) → 𝑋 = 𝐽)
3433ad3antrrr 730 . . . . . . . . . . 11 ((((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐴𝑋𝐴 ≼ ω ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) ∧ (𝑢𝐽𝑧𝑢)) ∧ ((𝑟 ∈ ℝ+ ∧ (𝑧(ball‘𝐷)𝑟) ⊆ 𝑢) ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (𝑟 / 2)))) → 𝑋 = 𝐽)
3532, 34sseqtrd 3969 . . . . . . . . . 10 ((((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐴𝑋𝐴 ≼ ω ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) ∧ (𝑢𝐽𝑧𝑢)) ∧ ((𝑟 ∈ ℝ+ ∧ (𝑧(ball‘𝐷)𝑟) ⊆ 𝑢) ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (𝑟 / 2)))) → 𝐴 𝐽)
36 simplrr 777 . . . . . . . . . . . . 13 ((((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐴𝑋𝐴 ≼ ω ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) ∧ (𝑢𝐽𝑧𝑢)) ∧ ((𝑟 ∈ ℝ+ ∧ (𝑧(ball‘𝐷)𝑟) ⊆ 𝑢) ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (𝑟 / 2)))) → 𝑧𝑢)
37 simplrl 776 . . . . . . . . . . . . 13 ((((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐴𝑋𝐴 ≼ ω ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) ∧ (𝑢𝐽𝑧𝑢)) ∧ ((𝑟 ∈ ℝ+ ∧ (𝑧(ball‘𝐷)𝑟) ⊆ 𝑢) ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (𝑟 / 2)))) → 𝑢𝐽)
38 elunii 4862 . . . . . . . . . . . . 13 ((𝑧𝑢𝑢𝐽) → 𝑧 𝐽)
3936, 37, 38syl2anc 584 . . . . . . . . . . . 12 ((((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐴𝑋𝐴 ≼ ω ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) ∧ (𝑢𝐽𝑧𝑢)) ∧ ((𝑟 ∈ ℝ+ ∧ (𝑧(ball‘𝐷)𝑟) ⊆ 𝑢) ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (𝑟 / 2)))) → 𝑧 𝐽)
4039, 34eleqtrrd 2832 . . . . . . . . . . 11 ((((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐴𝑋𝐴 ≼ ω ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) ∧ (𝑢𝐽𝑧𝑢)) ∧ ((𝑟 ∈ ℝ+ ∧ (𝑧(ball‘𝐷)𝑟) ⊆ 𝑢) ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (𝑟 / 2)))) → 𝑧𝑋)
41 simpr3 1197 . . . . . . . . . . . 12 ((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐴𝑋𝐴 ≼ ω ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) → ((cls‘𝐽)‘𝐴) = 𝑋)
4241ad2antrr 726 . . . . . . . . . . 11 ((((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐴𝑋𝐴 ≼ ω ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) ∧ (𝑢𝐽𝑧𝑢)) ∧ ((𝑟 ∈ ℝ+ ∧ (𝑧(ball‘𝐷)𝑟) ⊆ 𝑢) ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (𝑟 / 2)))) → ((cls‘𝐽)‘𝐴) = 𝑋)
4340, 42eleqtrrd 2832 . . . . . . . . . 10 ((((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐴𝑋𝐴 ≼ ω ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) ∧ (𝑢𝐽𝑧𝑢)) ∧ ((𝑟 ∈ ℝ+ ∧ (𝑧(ball‘𝐷)𝑟) ⊆ 𝑢) ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (𝑟 / 2)))) → 𝑧 ∈ ((cls‘𝐽)‘𝐴))
4419adantr 480 . . . . . . . . . . 11 ((((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐴𝑋𝐴 ≼ ω ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) ∧ (𝑢𝐽𝑧𝑢)) ∧ ((𝑟 ∈ ℝ+ ∧ (𝑧(ball‘𝐷)𝑟) ⊆ 𝑢) ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (𝑟 / 2)))) → 𝐷 ∈ (∞Met‘𝑋))
45 simprrl 780 . . . . . . . . . . . . . 14 ((((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐴𝑋𝐴 ≼ ω ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) ∧ (𝑢𝐽𝑧𝑢)) ∧ ((𝑟 ∈ ℝ+ ∧ (𝑧(ball‘𝐷)𝑟) ⊆ 𝑢) ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (𝑟 / 2)))) → 𝑛 ∈ ℕ)
4645nnrpd 12924 . . . . . . . . . . . . 13 ((((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐴𝑋𝐴 ≼ ω ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) ∧ (𝑢𝐽𝑧𝑢)) ∧ ((𝑟 ∈ ℝ+ ∧ (𝑧(ball‘𝐷)𝑟) ⊆ 𝑢) ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (𝑟 / 2)))) → 𝑛 ∈ ℝ+)
4746rpreccld 12936 . . . . . . . . . . . 12 ((((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐴𝑋𝐴 ≼ ω ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) ∧ (𝑢𝐽𝑧𝑢)) ∧ ((𝑟 ∈ ℝ+ ∧ (𝑧(ball‘𝐷)𝑟) ⊆ 𝑢) ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (𝑟 / 2)))) → (1 / 𝑛) ∈ ℝ+)
4847rpxrd 12927 . . . . . . . . . . 11 ((((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐴𝑋𝐴 ≼ ω ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) ∧ (𝑢𝐽𝑧𝑢)) ∧ ((𝑟 ∈ ℝ+ ∧ (𝑧(ball‘𝐷)𝑟) ⊆ 𝑢) ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (𝑟 / 2)))) → (1 / 𝑛) ∈ ℝ*)
491blopn 24408 . . . . . . . . . . 11 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑧𝑋 ∧ (1 / 𝑛) ∈ ℝ*) → (𝑧(ball‘𝐷)(1 / 𝑛)) ∈ 𝐽)
5044, 40, 48, 49syl3anc 1373 . . . . . . . . . 10 ((((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐴𝑋𝐴 ≼ ω ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) ∧ (𝑢𝐽𝑧𝑢)) ∧ ((𝑟 ∈ ℝ+ ∧ (𝑧(ball‘𝐷)𝑟) ⊆ 𝑢) ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (𝑟 / 2)))) → (𝑧(ball‘𝐷)(1 / 𝑛)) ∈ 𝐽)
51 blcntr 24321 . . . . . . . . . . 11 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑧𝑋 ∧ (1 / 𝑛) ∈ ℝ+) → 𝑧 ∈ (𝑧(ball‘𝐷)(1 / 𝑛)))
5244, 40, 47, 51syl3anc 1373 . . . . . . . . . 10 ((((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐴𝑋𝐴 ≼ ω ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) ∧ (𝑢𝐽𝑧𝑢)) ∧ ((𝑟 ∈ ℝ+ ∧ (𝑧(ball‘𝐷)𝑟) ⊆ 𝑢) ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (𝑟 / 2)))) → 𝑧 ∈ (𝑧(ball‘𝐷)(1 / 𝑛)))
53 eqid 2730 . . . . . . . . . . 11 𝐽 = 𝐽
5453clsndisj 22983 . . . . . . . . . 10 (((𝐽 ∈ Top ∧ 𝐴 𝐽𝑧 ∈ ((cls‘𝐽)‘𝐴)) ∧ ((𝑧(ball‘𝐷)(1 / 𝑛)) ∈ 𝐽𝑧 ∈ (𝑧(ball‘𝐷)(1 / 𝑛)))) → ((𝑧(ball‘𝐷)(1 / 𝑛)) ∩ 𝐴) ≠ ∅)
5530, 35, 43, 50, 52, 54syl32anc 1380 . . . . . . . . 9 ((((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐴𝑋𝐴 ≼ ω ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) ∧ (𝑢𝐽𝑧𝑢)) ∧ ((𝑟 ∈ ℝ+ ∧ (𝑧(ball‘𝐷)𝑟) ⊆ 𝑢) ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (𝑟 / 2)))) → ((𝑧(ball‘𝐷)(1 / 𝑛)) ∩ 𝐴) ≠ ∅)
56 n0 4301 . . . . . . . . 9 (((𝑧(ball‘𝐷)(1 / 𝑛)) ∩ 𝐴) ≠ ∅ ↔ ∃𝑡 𝑡 ∈ ((𝑧(ball‘𝐷)(1 / 𝑛)) ∩ 𝐴))
5755, 56sylib 218 . . . . . . . 8 ((((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐴𝑋𝐴 ≼ ω ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) ∧ (𝑢𝐽𝑧𝑢)) ∧ ((𝑟 ∈ ℝ+ ∧ (𝑧(ball‘𝐷)𝑟) ⊆ 𝑢) ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (𝑟 / 2)))) → ∃𝑡 𝑡 ∈ ((𝑧(ball‘𝐷)(1 / 𝑛)) ∩ 𝐴))
5845adantr 480 . . . . . . . . . . 11 (((((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐴𝑋𝐴 ≼ ω ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) ∧ (𝑢𝐽𝑧𝑢)) ∧ ((𝑟 ∈ ℝ+ ∧ (𝑧(ball‘𝐷)𝑟) ⊆ 𝑢) ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (𝑟 / 2)))) ∧ 𝑡 ∈ ((𝑧(ball‘𝐷)(1 / 𝑛)) ∩ 𝐴)) → 𝑛 ∈ ℕ)
59 simpr 484 . . . . . . . . . . . 12 (((((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐴𝑋𝐴 ≼ ω ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) ∧ (𝑢𝐽𝑧𝑢)) ∧ ((𝑟 ∈ ℝ+ ∧ (𝑧(ball‘𝐷)𝑟) ⊆ 𝑢) ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (𝑟 / 2)))) ∧ 𝑡 ∈ ((𝑧(ball‘𝐷)(1 / 𝑛)) ∩ 𝐴)) → 𝑡 ∈ ((𝑧(ball‘𝐷)(1 / 𝑛)) ∩ 𝐴))
6059elin2d 4153 . . . . . . . . . . 11 (((((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐴𝑋𝐴 ≼ ω ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) ∧ (𝑢𝐽𝑧𝑢)) ∧ ((𝑟 ∈ ℝ+ ∧ (𝑧(ball‘𝐷)𝑟) ⊆ 𝑢) ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (𝑟 / 2)))) ∧ 𝑡 ∈ ((𝑧(ball‘𝐷)(1 / 𝑛)) ∩ 𝐴)) → 𝑡𝐴)
61 eqidd 2731 . . . . . . . . . . 11 (((((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐴𝑋𝐴 ≼ ω ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) ∧ (𝑢𝐽𝑧𝑢)) ∧ ((𝑟 ∈ ℝ+ ∧ (𝑧(ball‘𝐷)𝑟) ⊆ 𝑢) ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (𝑟 / 2)))) ∧ 𝑡 ∈ ((𝑧(ball‘𝐷)(1 / 𝑛)) ∩ 𝐴)) → (𝑡(ball‘𝐷)(1 / 𝑛)) = (𝑡(ball‘𝐷)(1 / 𝑛)))
62 oveq2 7349 . . . . . . . . . . . . . 14 (𝑥 = 𝑛 → (1 / 𝑥) = (1 / 𝑛))
6362oveq2d 7357 . . . . . . . . . . . . 13 (𝑥 = 𝑛 → (𝑦(ball‘𝐷)(1 / 𝑥)) = (𝑦(ball‘𝐷)(1 / 𝑛)))
6463eqeq2d 2741 . . . . . . . . . . . 12 (𝑥 = 𝑛 → ((𝑡(ball‘𝐷)(1 / 𝑛)) = (𝑦(ball‘𝐷)(1 / 𝑥)) ↔ (𝑡(ball‘𝐷)(1 / 𝑛)) = (𝑦(ball‘𝐷)(1 / 𝑛))))
65 oveq1 7348 . . . . . . . . . . . . 13 (𝑦 = 𝑡 → (𝑦(ball‘𝐷)(1 / 𝑛)) = (𝑡(ball‘𝐷)(1 / 𝑛)))
6665eqeq2d 2741 . . . . . . . . . . . 12 (𝑦 = 𝑡 → ((𝑡(ball‘𝐷)(1 / 𝑛)) = (𝑦(ball‘𝐷)(1 / 𝑛)) ↔ (𝑡(ball‘𝐷)(1 / 𝑛)) = (𝑡(ball‘𝐷)(1 / 𝑛))))
6764, 66rspc2ev 3588 . . . . . . . . . . 11 ((𝑛 ∈ ℕ ∧ 𝑡𝐴 ∧ (𝑡(ball‘𝐷)(1 / 𝑛)) = (𝑡(ball‘𝐷)(1 / 𝑛))) → ∃𝑥 ∈ ℕ ∃𝑦𝐴 (𝑡(ball‘𝐷)(1 / 𝑛)) = (𝑦(ball‘𝐷)(1 / 𝑥)))
6858, 60, 61, 67syl3anc 1373 . . . . . . . . . 10 (((((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐴𝑋𝐴 ≼ ω ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) ∧ (𝑢𝐽𝑧𝑢)) ∧ ((𝑟 ∈ ℝ+ ∧ (𝑧(ball‘𝐷)𝑟) ⊆ 𝑢) ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (𝑟 / 2)))) ∧ 𝑡 ∈ ((𝑧(ball‘𝐷)(1 / 𝑛)) ∩ 𝐴)) → ∃𝑥 ∈ ℕ ∃𝑦𝐴 (𝑡(ball‘𝐷)(1 / 𝑛)) = (𝑦(ball‘𝐷)(1 / 𝑥)))
69 ovex 7374 . . . . . . . . . . 11 (𝑡(ball‘𝐷)(1 / 𝑛)) ∈ V
70 eqeq1 2734 . . . . . . . . . . . 12 (𝑧 = (𝑡(ball‘𝐷)(1 / 𝑛)) → (𝑧 = (𝑦(ball‘𝐷)(1 / 𝑥)) ↔ (𝑡(ball‘𝐷)(1 / 𝑛)) = (𝑦(ball‘𝐷)(1 / 𝑥))))
71702rexbidv 3195 . . . . . . . . . . 11 (𝑧 = (𝑡(ball‘𝐷)(1 / 𝑛)) → (∃𝑥 ∈ ℕ ∃𝑦𝐴 𝑧 = (𝑦(ball‘𝐷)(1 / 𝑥)) ↔ ∃𝑥 ∈ ℕ ∃𝑦𝐴 (𝑡(ball‘𝐷)(1 / 𝑛)) = (𝑦(ball‘𝐷)(1 / 𝑥))))
7215rnmpo 7474 . . . . . . . . . . 11 ran (𝑥 ∈ ℕ, 𝑦𝐴 ↦ (𝑦(ball‘𝐷)(1 / 𝑥))) = {𝑧 ∣ ∃𝑥 ∈ ℕ ∃𝑦𝐴 𝑧 = (𝑦(ball‘𝐷)(1 / 𝑥))}
7369, 71, 72elab2 3636 . . . . . . . . . 10 ((𝑡(ball‘𝐷)(1 / 𝑛)) ∈ ran (𝑥 ∈ ℕ, 𝑦𝐴 ↦ (𝑦(ball‘𝐷)(1 / 𝑥))) ↔ ∃𝑥 ∈ ℕ ∃𝑦𝐴 (𝑡(ball‘𝐷)(1 / 𝑛)) = (𝑦(ball‘𝐷)(1 / 𝑥)))
7468, 73sylibr 234 . . . . . . . . 9 (((((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐴𝑋𝐴 ≼ ω ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) ∧ (𝑢𝐽𝑧𝑢)) ∧ ((𝑟 ∈ ℝ+ ∧ (𝑧(ball‘𝐷)𝑟) ⊆ 𝑢) ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (𝑟 / 2)))) ∧ 𝑡 ∈ ((𝑧(ball‘𝐷)(1 / 𝑛)) ∩ 𝐴)) → (𝑡(ball‘𝐷)(1 / 𝑛)) ∈ ran (𝑥 ∈ ℕ, 𝑦𝐴 ↦ (𝑦(ball‘𝐷)(1 / 𝑥))))
7559elin1d 4152 . . . . . . . . . 10 (((((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐴𝑋𝐴 ≼ ω ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) ∧ (𝑢𝐽𝑧𝑢)) ∧ ((𝑟 ∈ ℝ+ ∧ (𝑧(ball‘𝐷)𝑟) ⊆ 𝑢) ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (𝑟 / 2)))) ∧ 𝑡 ∈ ((𝑧(ball‘𝐷)(1 / 𝑛)) ∩ 𝐴)) → 𝑡 ∈ (𝑧(ball‘𝐷)(1 / 𝑛)))
7644adantr 480 . . . . . . . . . . 11 (((((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐴𝑋𝐴 ≼ ω ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) ∧ (𝑢𝐽𝑧𝑢)) ∧ ((𝑟 ∈ ℝ+ ∧ (𝑧(ball‘𝐷)𝑟) ⊆ 𝑢) ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (𝑟 / 2)))) ∧ 𝑡 ∈ ((𝑧(ball‘𝐷)(1 / 𝑛)) ∩ 𝐴)) → 𝐷 ∈ (∞Met‘𝑋))
7748adantr 480 . . . . . . . . . . 11 (((((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐴𝑋𝐴 ≼ ω ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) ∧ (𝑢𝐽𝑧𝑢)) ∧ ((𝑟 ∈ ℝ+ ∧ (𝑧(ball‘𝐷)𝑟) ⊆ 𝑢) ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (𝑟 / 2)))) ∧ 𝑡 ∈ ((𝑧(ball‘𝐷)(1 / 𝑛)) ∩ 𝐴)) → (1 / 𝑛) ∈ ℝ*)
7840adantr 480 . . . . . . . . . . 11 (((((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐴𝑋𝐴 ≼ ω ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) ∧ (𝑢𝐽𝑧𝑢)) ∧ ((𝑟 ∈ ℝ+ ∧ (𝑧(ball‘𝐷)𝑟) ⊆ 𝑢) ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (𝑟 / 2)))) ∧ 𝑡 ∈ ((𝑧(ball‘𝐷)(1 / 𝑛)) ∩ 𝐴)) → 𝑧𝑋)
7932adantr 480 . . . . . . . . . . . 12 (((((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐴𝑋𝐴 ≼ ω ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) ∧ (𝑢𝐽𝑧𝑢)) ∧ ((𝑟 ∈ ℝ+ ∧ (𝑧(ball‘𝐷)𝑟) ⊆ 𝑢) ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (𝑟 / 2)))) ∧ 𝑡 ∈ ((𝑧(ball‘𝐷)(1 / 𝑛)) ∩ 𝐴)) → 𝐴𝑋)
8079, 60sseldd 3933 . . . . . . . . . . 11 (((((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐴𝑋𝐴 ≼ ω ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) ∧ (𝑢𝐽𝑧𝑢)) ∧ ((𝑟 ∈ ℝ+ ∧ (𝑧(ball‘𝐷)𝑟) ⊆ 𝑢) ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (𝑟 / 2)))) ∧ 𝑡 ∈ ((𝑧(ball‘𝐷)(1 / 𝑛)) ∩ 𝐴)) → 𝑡𝑋)
81 blcom 24302 . . . . . . . . . . 11 (((𝐷 ∈ (∞Met‘𝑋) ∧ (1 / 𝑛) ∈ ℝ*) ∧ (𝑧𝑋𝑡𝑋)) → (𝑡 ∈ (𝑧(ball‘𝐷)(1 / 𝑛)) ↔ 𝑧 ∈ (𝑡(ball‘𝐷)(1 / 𝑛))))
8276, 77, 78, 80, 81syl22anc 838 . . . . . . . . . 10 (((((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐴𝑋𝐴 ≼ ω ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) ∧ (𝑢𝐽𝑧𝑢)) ∧ ((𝑟 ∈ ℝ+ ∧ (𝑧(ball‘𝐷)𝑟) ⊆ 𝑢) ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (𝑟 / 2)))) ∧ 𝑡 ∈ ((𝑧(ball‘𝐷)(1 / 𝑛)) ∩ 𝐴)) → (𝑡 ∈ (𝑧(ball‘𝐷)(1 / 𝑛)) ↔ 𝑧 ∈ (𝑡(ball‘𝐷)(1 / 𝑛))))
8375, 82mpbid 232 . . . . . . . . 9 (((((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐴𝑋𝐴 ≼ ω ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) ∧ (𝑢𝐽𝑧𝑢)) ∧ ((𝑟 ∈ ℝ+ ∧ (𝑧(ball‘𝐷)𝑟) ⊆ 𝑢) ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (𝑟 / 2)))) ∧ 𝑡 ∈ ((𝑧(ball‘𝐷)(1 / 𝑛)) ∩ 𝐴)) → 𝑧 ∈ (𝑡(ball‘𝐷)(1 / 𝑛)))
84 simprll 778 . . . . . . . . . . . . . 14 ((((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐴𝑋𝐴 ≼ ω ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) ∧ (𝑢𝐽𝑧𝑢)) ∧ ((𝑟 ∈ ℝ+ ∧ (𝑧(ball‘𝐷)𝑟) ⊆ 𝑢) ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (𝑟 / 2)))) → 𝑟 ∈ ℝ+)
8584adantr 480 . . . . . . . . . . . . 13 (((((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐴𝑋𝐴 ≼ ω ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) ∧ (𝑢𝐽𝑧𝑢)) ∧ ((𝑟 ∈ ℝ+ ∧ (𝑧(ball‘𝐷)𝑟) ⊆ 𝑢) ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (𝑟 / 2)))) ∧ 𝑡 ∈ ((𝑧(ball‘𝐷)(1 / 𝑛)) ∩ 𝐴)) → 𝑟 ∈ ℝ+)
8685rphalfcld 12938 . . . . . . . . . . . 12 (((((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐴𝑋𝐴 ≼ ω ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) ∧ (𝑢𝐽𝑧𝑢)) ∧ ((𝑟 ∈ ℝ+ ∧ (𝑧(ball‘𝐷)𝑟) ⊆ 𝑢) ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (𝑟 / 2)))) ∧ 𝑡 ∈ ((𝑧(ball‘𝐷)(1 / 𝑛)) ∩ 𝐴)) → (𝑟 / 2) ∈ ℝ+)
8786rpxrd 12927 . . . . . . . . . . 11 (((((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐴𝑋𝐴 ≼ ω ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) ∧ (𝑢𝐽𝑧𝑢)) ∧ ((𝑟 ∈ ℝ+ ∧ (𝑧(ball‘𝐷)𝑟) ⊆ 𝑢) ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (𝑟 / 2)))) ∧ 𝑡 ∈ ((𝑧(ball‘𝐷)(1 / 𝑛)) ∩ 𝐴)) → (𝑟 / 2) ∈ ℝ*)
88 simprrr 781 . . . . . . . . . . . . 13 ((((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐴𝑋𝐴 ≼ ω ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) ∧ (𝑢𝐽𝑧𝑢)) ∧ ((𝑟 ∈ ℝ+ ∧ (𝑧(ball‘𝐷)𝑟) ⊆ 𝑢) ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (𝑟 / 2)))) → (1 / 𝑛) < (𝑟 / 2))
8984rphalfcld 12938 . . . . . . . . . . . . . 14 ((((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐴𝑋𝐴 ≼ ω ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) ∧ (𝑢𝐽𝑧𝑢)) ∧ ((𝑟 ∈ ℝ+ ∧ (𝑧(ball‘𝐷)𝑟) ⊆ 𝑢) ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (𝑟 / 2)))) → (𝑟 / 2) ∈ ℝ+)
90 rpre 12891 . . . . . . . . . . . . . . 15 ((1 / 𝑛) ∈ ℝ+ → (1 / 𝑛) ∈ ℝ)
91 rpre 12891 . . . . . . . . . . . . . . 15 ((𝑟 / 2) ∈ ℝ+ → (𝑟 / 2) ∈ ℝ)
92 ltle 11193 . . . . . . . . . . . . . . 15 (((1 / 𝑛) ∈ ℝ ∧ (𝑟 / 2) ∈ ℝ) → ((1 / 𝑛) < (𝑟 / 2) → (1 / 𝑛) ≤ (𝑟 / 2)))
9390, 91, 92syl2an 596 . . . . . . . . . . . . . 14 (((1 / 𝑛) ∈ ℝ+ ∧ (𝑟 / 2) ∈ ℝ+) → ((1 / 𝑛) < (𝑟 / 2) → (1 / 𝑛) ≤ (𝑟 / 2)))
9447, 89, 93syl2anc 584 . . . . . . . . . . . . 13 ((((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐴𝑋𝐴 ≼ ω ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) ∧ (𝑢𝐽𝑧𝑢)) ∧ ((𝑟 ∈ ℝ+ ∧ (𝑧(ball‘𝐷)𝑟) ⊆ 𝑢) ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (𝑟 / 2)))) → ((1 / 𝑛) < (𝑟 / 2) → (1 / 𝑛) ≤ (𝑟 / 2)))
9588, 94mpd 15 . . . . . . . . . . . 12 ((((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐴𝑋𝐴 ≼ ω ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) ∧ (𝑢𝐽𝑧𝑢)) ∧ ((𝑟 ∈ ℝ+ ∧ (𝑧(ball‘𝐷)𝑟) ⊆ 𝑢) ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (𝑟 / 2)))) → (1 / 𝑛) ≤ (𝑟 / 2))
9695adantr 480 . . . . . . . . . . 11 (((((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐴𝑋𝐴 ≼ ω ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) ∧ (𝑢𝐽𝑧𝑢)) ∧ ((𝑟 ∈ ℝ+ ∧ (𝑧(ball‘𝐷)𝑟) ⊆ 𝑢) ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (𝑟 / 2)))) ∧ 𝑡 ∈ ((𝑧(ball‘𝐷)(1 / 𝑛)) ∩ 𝐴)) → (1 / 𝑛) ≤ (𝑟 / 2))
97 ssbl 24331 . . . . . . . . . . 11 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑡𝑋) ∧ ((1 / 𝑛) ∈ ℝ* ∧ (𝑟 / 2) ∈ ℝ*) ∧ (1 / 𝑛) ≤ (𝑟 / 2)) → (𝑡(ball‘𝐷)(1 / 𝑛)) ⊆ (𝑡(ball‘𝐷)(𝑟 / 2)))
9876, 80, 77, 87, 96, 97syl221anc 1383 . . . . . . . . . 10 (((((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐴𝑋𝐴 ≼ ω ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) ∧ (𝑢𝐽𝑧𝑢)) ∧ ((𝑟 ∈ ℝ+ ∧ (𝑧(ball‘𝐷)𝑟) ⊆ 𝑢) ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (𝑟 / 2)))) ∧ 𝑡 ∈ ((𝑧(ball‘𝐷)(1 / 𝑛)) ∩ 𝐴)) → (𝑡(ball‘𝐷)(1 / 𝑛)) ⊆ (𝑡(ball‘𝐷)(𝑟 / 2)))
9985rpred 12926 . . . . . . . . . . . 12 (((((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐴𝑋𝐴 ≼ ω ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) ∧ (𝑢𝐽𝑧𝑢)) ∧ ((𝑟 ∈ ℝ+ ∧ (𝑧(ball‘𝐷)𝑟) ⊆ 𝑢) ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (𝑟 / 2)))) ∧ 𝑡 ∈ ((𝑧(ball‘𝐷)(1 / 𝑛)) ∩ 𝐴)) → 𝑟 ∈ ℝ)
10098, 83sseldd 3933 . . . . . . . . . . . 12 (((((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐴𝑋𝐴 ≼ ω ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) ∧ (𝑢𝐽𝑧𝑢)) ∧ ((𝑟 ∈ ℝ+ ∧ (𝑧(ball‘𝐷)𝑟) ⊆ 𝑢) ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (𝑟 / 2)))) ∧ 𝑡 ∈ ((𝑧(ball‘𝐷)(1 / 𝑛)) ∩ 𝐴)) → 𝑧 ∈ (𝑡(ball‘𝐷)(𝑟 / 2)))
101 blhalf 24313 . . . . . . . . . . . 12 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑡𝑋) ∧ (𝑟 ∈ ℝ ∧ 𝑧 ∈ (𝑡(ball‘𝐷)(𝑟 / 2)))) → (𝑡(ball‘𝐷)(𝑟 / 2)) ⊆ (𝑧(ball‘𝐷)𝑟))
10276, 80, 99, 100, 101syl22anc 838 . . . . . . . . . . 11 (((((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐴𝑋𝐴 ≼ ω ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) ∧ (𝑢𝐽𝑧𝑢)) ∧ ((𝑟 ∈ ℝ+ ∧ (𝑧(ball‘𝐷)𝑟) ⊆ 𝑢) ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (𝑟 / 2)))) ∧ 𝑡 ∈ ((𝑧(ball‘𝐷)(1 / 𝑛)) ∩ 𝐴)) → (𝑡(ball‘𝐷)(𝑟 / 2)) ⊆ (𝑧(ball‘𝐷)𝑟))
103 simprlr 779 . . . . . . . . . . . 12 ((((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐴𝑋𝐴 ≼ ω ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) ∧ (𝑢𝐽𝑧𝑢)) ∧ ((𝑟 ∈ ℝ+ ∧ (𝑧(ball‘𝐷)𝑟) ⊆ 𝑢) ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (𝑟 / 2)))) → (𝑧(ball‘𝐷)𝑟) ⊆ 𝑢)
104103adantr 480 . . . . . . . . . . 11 (((((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐴𝑋𝐴 ≼ ω ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) ∧ (𝑢𝐽𝑧𝑢)) ∧ ((𝑟 ∈ ℝ+ ∧ (𝑧(ball‘𝐷)𝑟) ⊆ 𝑢) ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (𝑟 / 2)))) ∧ 𝑡 ∈ ((𝑧(ball‘𝐷)(1 / 𝑛)) ∩ 𝐴)) → (𝑧(ball‘𝐷)𝑟) ⊆ 𝑢)
105102, 104sstrd 3943 . . . . . . . . . 10 (((((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐴𝑋𝐴 ≼ ω ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) ∧ (𝑢𝐽𝑧𝑢)) ∧ ((𝑟 ∈ ℝ+ ∧ (𝑧(ball‘𝐷)𝑟) ⊆ 𝑢) ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (𝑟 / 2)))) ∧ 𝑡 ∈ ((𝑧(ball‘𝐷)(1 / 𝑛)) ∩ 𝐴)) → (𝑡(ball‘𝐷)(𝑟 / 2)) ⊆ 𝑢)
10698, 105sstrd 3943 . . . . . . . . 9 (((((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐴𝑋𝐴 ≼ ω ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) ∧ (𝑢𝐽𝑧𝑢)) ∧ ((𝑟 ∈ ℝ+ ∧ (𝑧(ball‘𝐷)𝑟) ⊆ 𝑢) ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (𝑟 / 2)))) ∧ 𝑡 ∈ ((𝑧(ball‘𝐷)(1 / 𝑛)) ∩ 𝐴)) → (𝑡(ball‘𝐷)(1 / 𝑛)) ⊆ 𝑢)
107 eleq2 2818 . . . . . . . . . . 11 (𝑤 = (𝑡(ball‘𝐷)(1 / 𝑛)) → (𝑧𝑤𝑧 ∈ (𝑡(ball‘𝐷)(1 / 𝑛))))
108 sseq1 3958 . . . . . . . . . . 11 (𝑤 = (𝑡(ball‘𝐷)(1 / 𝑛)) → (𝑤𝑢 ↔ (𝑡(ball‘𝐷)(1 / 𝑛)) ⊆ 𝑢))
109107, 108anbi12d 632 . . . . . . . . . 10 (𝑤 = (𝑡(ball‘𝐷)(1 / 𝑛)) → ((𝑧𝑤𝑤𝑢) ↔ (𝑧 ∈ (𝑡(ball‘𝐷)(1 / 𝑛)) ∧ (𝑡(ball‘𝐷)(1 / 𝑛)) ⊆ 𝑢)))
110109rspcev 3575 . . . . . . . . 9 (((𝑡(ball‘𝐷)(1 / 𝑛)) ∈ ran (𝑥 ∈ ℕ, 𝑦𝐴 ↦ (𝑦(ball‘𝐷)(1 / 𝑥))) ∧ (𝑧 ∈ (𝑡(ball‘𝐷)(1 / 𝑛)) ∧ (𝑡(ball‘𝐷)(1 / 𝑛)) ⊆ 𝑢)) → ∃𝑤 ∈ ran (𝑥 ∈ ℕ, 𝑦𝐴 ↦ (𝑦(ball‘𝐷)(1 / 𝑥)))(𝑧𝑤𝑤𝑢))
11174, 83, 106, 110syl12anc 836 . . . . . . . 8 (((((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐴𝑋𝐴 ≼ ω ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) ∧ (𝑢𝐽𝑧𝑢)) ∧ ((𝑟 ∈ ℝ+ ∧ (𝑧(ball‘𝐷)𝑟) ⊆ 𝑢) ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (𝑟 / 2)))) ∧ 𝑡 ∈ ((𝑧(ball‘𝐷)(1 / 𝑛)) ∩ 𝐴)) → ∃𝑤 ∈ ran (𝑥 ∈ ℕ, 𝑦𝐴 ↦ (𝑦(ball‘𝐷)(1 / 𝑥)))(𝑧𝑤𝑤𝑢))
11257, 111exlimddv 1936 . . . . . . 7 ((((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐴𝑋𝐴 ≼ ω ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) ∧ (𝑢𝐽𝑧𝑢)) ∧ ((𝑟 ∈ ℝ+ ∧ (𝑧(ball‘𝐷)𝑟) ⊆ 𝑢) ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (𝑟 / 2)))) → ∃𝑤 ∈ ran (𝑥 ∈ ℕ, 𝑦𝐴 ↦ (𝑦(ball‘𝐷)(1 / 𝑥)))(𝑧𝑤𝑤𝑢))
113112anassrs 467 . . . . . 6 (((((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐴𝑋𝐴 ≼ ω ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) ∧ (𝑢𝐽𝑧𝑢)) ∧ (𝑟 ∈ ℝ+ ∧ (𝑧(ball‘𝐷)𝑟) ⊆ 𝑢)) ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (𝑟 / 2))) → ∃𝑤 ∈ ran (𝑥 ∈ ℕ, 𝑦𝐴 ↦ (𝑦(ball‘𝐷)(1 / 𝑥)))(𝑧𝑤𝑤𝑢))
11429, 113rexlimddv 3137 . . . . 5 ((((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐴𝑋𝐴 ≼ ω ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) ∧ (𝑢𝐽𝑧𝑢)) ∧ (𝑟 ∈ ℝ+ ∧ (𝑧(ball‘𝐷)𝑟) ⊆ 𝑢)) → ∃𝑤 ∈ ran (𝑥 ∈ ℕ, 𝑦𝐴 ↦ (𝑦(ball‘𝐷)(1 / 𝑥)))(𝑧𝑤𝑤𝑢))
11523, 114rexlimddv 3137 . . . 4 (((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐴𝑋𝐴 ≼ ω ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) ∧ (𝑢𝐽𝑧𝑢)) → ∃𝑤 ∈ ran (𝑥 ∈ ℕ, 𝑦𝐴 ↦ (𝑦(ball‘𝐷)(1 / 𝑥)))(𝑧𝑤𝑤𝑢))
116115ralrimivva 3173 . . 3 ((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐴𝑋𝐴 ≼ ω ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) → ∀𝑢𝐽𝑧𝑢𝑤 ∈ ran (𝑥 ∈ ℕ, 𝑦𝐴 ↦ (𝑦(ball‘𝐷)(1 / 𝑥)))(𝑧𝑤𝑤𝑢))
117 basgen2 22897 . . 3 ((𝐽 ∈ Top ∧ ran (𝑥 ∈ ℕ, 𝑦𝐴 ↦ (𝑦(ball‘𝐷)(1 / 𝑥))) ⊆ 𝐽 ∧ ∀𝑢𝐽𝑧𝑢𝑤 ∈ ran (𝑥 ∈ ℕ, 𝑦𝐴 ↦ (𝑦(ball‘𝐷)(1 / 𝑥)))(𝑧𝑤𝑤𝑢)) → (topGen‘ran (𝑥 ∈ ℕ, 𝑦𝐴 ↦ (𝑦(ball‘𝐷)(1 / 𝑥)))) = 𝐽)
1183, 18, 116, 117syl3anc 1373 . 2 ((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐴𝑋𝐴 ≼ ω ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) → (topGen‘ran (𝑥 ∈ ℕ, 𝑦𝐴 ↦ (𝑦(ball‘𝐷)(1 / 𝑥)))) = 𝐽)
119118, 3eqeltrd 2829 . . . 4 ((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐴𝑋𝐴 ≼ ω ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) → (topGen‘ran (𝑥 ∈ ℕ, 𝑦𝐴 ↦ (𝑦(ball‘𝐷)(1 / 𝑥)))) ∈ Top)
120 tgclb 22878 . . . 4 (ran (𝑥 ∈ ℕ, 𝑦𝐴 ↦ (𝑦(ball‘𝐷)(1 / 𝑥))) ∈ TopBases ↔ (topGen‘ran (𝑥 ∈ ℕ, 𝑦𝐴 ↦ (𝑦(ball‘𝐷)(1 / 𝑥)))) ∈ Top)
121119, 120sylibr 234 . . 3 ((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐴𝑋𝐴 ≼ ω ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) → ran (𝑥 ∈ ℕ, 𝑦𝐴 ↦ (𝑦(ball‘𝐷)(1 / 𝑥))) ∈ TopBases)
122 omelon 9531 . . . . . 6 ω ∈ On
123 simpr2 1196 . . . . . . . 8 ((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐴𝑋𝐴 ≼ ω ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) → 𝐴 ≼ ω)
124 nnex 12123 . . . . . . . . 9 ℕ ∈ V
125124xpdom2 8980 . . . . . . . 8 (𝐴 ≼ ω → (ℕ × 𝐴) ≼ (ℕ × ω))
126123, 125syl 17 . . . . . . 7 ((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐴𝑋𝐴 ≼ ω ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) → (ℕ × 𝐴) ≼ (ℕ × ω))
127 nnenom 13879 . . . . . . . . 9 ℕ ≈ ω
128 omex 9528 . . . . . . . . . 10 ω ∈ V
129128enref 8902 . . . . . . . . 9 ω ≈ ω
130 xpen 9048 . . . . . . . . 9 ((ℕ ≈ ω ∧ ω ≈ ω) → (ℕ × ω) ≈ (ω × ω))
131127, 129, 130mp2an 692 . . . . . . . 8 (ℕ × ω) ≈ (ω × ω)
132 xpomen 9898 . . . . . . . 8 (ω × ω) ≈ ω
133131, 132entri 8925 . . . . . . 7 (ℕ × ω) ≈ ω
134 domentr 8930 . . . . . . 7 (((ℕ × 𝐴) ≼ (ℕ × ω) ∧ (ℕ × ω) ≈ ω) → (ℕ × 𝐴) ≼ ω)
135126, 133, 134sylancl 586 . . . . . 6 ((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐴𝑋𝐴 ≼ ω ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) → (ℕ × 𝐴) ≼ ω)
136 ondomen 9920 . . . . . 6 ((ω ∈ On ∧ (ℕ × 𝐴) ≼ ω) → (ℕ × 𝐴) ∈ dom card)
137122, 135, 136sylancr 587 . . . . 5 ((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐴𝑋𝐴 ≼ ω ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) → (ℕ × 𝐴) ∈ dom card)
13817ffnd 6648 . . . . . 6 ((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐴𝑋𝐴 ≼ ω ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) → (𝑥 ∈ ℕ, 𝑦𝐴 ↦ (𝑦(ball‘𝐷)(1 / 𝑥))) Fn (ℕ × 𝐴))
139 dffn4 6737 . . . . . 6 ((𝑥 ∈ ℕ, 𝑦𝐴 ↦ (𝑦(ball‘𝐷)(1 / 𝑥))) Fn (ℕ × 𝐴) ↔ (𝑥 ∈ ℕ, 𝑦𝐴 ↦ (𝑦(ball‘𝐷)(1 / 𝑥))):(ℕ × 𝐴)–onto→ran (𝑥 ∈ ℕ, 𝑦𝐴 ↦ (𝑦(ball‘𝐷)(1 / 𝑥))))
140138, 139sylib 218 . . . . 5 ((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐴𝑋𝐴 ≼ ω ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) → (𝑥 ∈ ℕ, 𝑦𝐴 ↦ (𝑦(ball‘𝐷)(1 / 𝑥))):(ℕ × 𝐴)–onto→ran (𝑥 ∈ ℕ, 𝑦𝐴 ↦ (𝑦(ball‘𝐷)(1 / 𝑥))))
141 fodomnum 9940 . . . . 5 ((ℕ × 𝐴) ∈ dom card → ((𝑥 ∈ ℕ, 𝑦𝐴 ↦ (𝑦(ball‘𝐷)(1 / 𝑥))):(ℕ × 𝐴)–onto→ran (𝑥 ∈ ℕ, 𝑦𝐴 ↦ (𝑦(ball‘𝐷)(1 / 𝑥))) → ran (𝑥 ∈ ℕ, 𝑦𝐴 ↦ (𝑦(ball‘𝐷)(1 / 𝑥))) ≼ (ℕ × 𝐴)))
142137, 140, 141sylc 65 . . . 4 ((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐴𝑋𝐴 ≼ ω ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) → ran (𝑥 ∈ ℕ, 𝑦𝐴 ↦ (𝑦(ball‘𝐷)(1 / 𝑥))) ≼ (ℕ × 𝐴))
143 domtr 8924 . . . 4 ((ran (𝑥 ∈ ℕ, 𝑦𝐴 ↦ (𝑦(ball‘𝐷)(1 / 𝑥))) ≼ (ℕ × 𝐴) ∧ (ℕ × 𝐴) ≼ ω) → ran (𝑥 ∈ ℕ, 𝑦𝐴 ↦ (𝑦(ball‘𝐷)(1 / 𝑥))) ≼ ω)
144142, 135, 143syl2anc 584 . . 3 ((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐴𝑋𝐴 ≼ ω ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) → ran (𝑥 ∈ ℕ, 𝑦𝐴 ↦ (𝑦(ball‘𝐷)(1 / 𝑥))) ≼ ω)
145 2ndci 23356 . . 3 ((ran (𝑥 ∈ ℕ, 𝑦𝐴 ↦ (𝑦(ball‘𝐷)(1 / 𝑥))) ∈ TopBases ∧ ran (𝑥 ∈ ℕ, 𝑦𝐴 ↦ (𝑦(ball‘𝐷)(1 / 𝑥))) ≼ ω) → (topGen‘ran (𝑥 ∈ ℕ, 𝑦𝐴 ↦ (𝑦(ball‘𝐷)(1 / 𝑥)))) ∈ 2ndω)
146121, 144, 145syl2anc 584 . 2 ((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐴𝑋𝐴 ≼ ω ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) → (topGen‘ran (𝑥 ∈ ℕ, 𝑦𝐴 ↦ (𝑦(ball‘𝐷)(1 / 𝑥)))) ∈ 2ndω)
147118, 146eqeltrrd 2830 1 ((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐴𝑋𝐴 ≼ ω ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) → 𝐽 ∈ 2ndω)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1541  wex 1780  wcel 2110  wne 2926  wral 3045  wrex 3054  cin 3899  wss 3900  c0 4281   cuni 4857   class class class wbr 5089   × cxp 5612  dom cdm 5614  ran crn 5615  Oncon0 6302   Fn wfn 6472  wf 6473  ontowfo 6475  cfv 6477  (class class class)co 7341  cmpo 7343  ωcom 7791  cen 8861  cdom 8862  cardccrd 9820  cr 10997  0cc0 10998  1c1 10999  *cxr 11137   < clt 11138  cle 11139   / cdiv 11766  cn 12117  2c2 12172  +crp 12882  topGenctg 17333  ∞Metcxmet 21269  ballcbl 21271  MetOpencmopn 21274  Topctop 22801  TopBasesctb 22853  clsccl 22926  2ndωc2ndc 23346
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2112  ax-9 2120  ax-10 2143  ax-11 2159  ax-12 2179  ax-ext 2702  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7663  ax-inf2 9526  ax-cnex 11054  ax-resscn 11055  ax-1cn 11056  ax-icn 11057  ax-addcl 11058  ax-addrcl 11059  ax-mulcl 11060  ax-mulrcl 11061  ax-mulcom 11062  ax-addass 11063  ax-mulass 11064  ax-distr 11065  ax-i2m1 11066  ax-1ne0 11067  ax-1rid 11068  ax-rnegex 11069  ax-rrecex 11070  ax-cnre 11071  ax-pre-lttri 11072  ax-pre-lttrn 11073  ax-pre-ltadd 11074  ax-pre-mulgt0 11075  ax-pre-sup 11076
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3344  df-reu 3345  df-rab 3394  df-v 3436  df-sbc 3740  df-csb 3849  df-dif 3903  df-un 3905  df-in 3907  df-ss 3917  df-pss 3920  df-nul 4282  df-if 4474  df-pw 4550  df-sn 4575  df-pr 4577  df-op 4581  df-uni 4858  df-int 4896  df-iun 4941  df-iin 4942  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-se 5568  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6244  df-ord 6305  df-on 6306  df-lim 6307  df-suc 6308  df-iota 6433  df-fun 6479  df-fn 6480  df-f 6481  df-f1 6482  df-fo 6483  df-f1o 6484  df-fv 6485  df-isom 6486  df-riota 7298  df-ov 7344  df-oprab 7345  df-mpo 7346  df-om 7792  df-1st 7916  df-2nd 7917  df-frecs 8206  df-wrecs 8237  df-recs 8286  df-rdg 8324  df-1o 8380  df-er 8617  df-map 8747  df-en 8865  df-dom 8866  df-sdom 8867  df-fin 8868  df-sup 9321  df-inf 9322  df-oi 9391  df-card 9824  df-acn 9827  df-pnf 11140  df-mnf 11141  df-xr 11142  df-ltxr 11143  df-le 11144  df-sub 11338  df-neg 11339  df-div 11767  df-nn 12118  df-2 12180  df-n0 12374  df-z 12461  df-uz 12725  df-q 12839  df-rp 12883  df-xneg 13003  df-xadd 13004  df-xmul 13005  df-topgen 17339  df-psmet 21276  df-xmet 21277  df-bl 21279  df-mopn 21280  df-top 22802  df-topon 22819  df-bases 22854  df-cld 22927  df-ntr 22928  df-cls 22929  df-2ndc 23348
This theorem is referenced by:  met2ndc  24431
  Copyright terms: Public domain W3C validator