MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  met2ndci Structured version   Visualization version   GIF version

Theorem met2ndci 24466
Description: A separable metric space (a metric space with a countable dense subset) is second-countable. (Contributed by Mario Carneiro, 13-Apr-2015.)
Hypothesis
Ref Expression
methaus.1 𝐽 = (MetOpen‘𝐷)
Assertion
Ref Expression
met2ndci ((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐴𝑋𝐴 ≼ ω ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) → 𝐽 ∈ 2ndω)

Proof of Theorem met2ndci
Dummy variables 𝑛 𝑟 𝑡 𝑢 𝑤 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 methaus.1 . . . . 5 𝐽 = (MetOpen‘𝐷)
21mopntop 24384 . . . 4 (𝐷 ∈ (∞Met‘𝑋) → 𝐽 ∈ Top)
32adantr 480 . . 3 ((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐴𝑋𝐴 ≼ ω ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) → 𝐽 ∈ Top)
4 simpll 766 . . . . . . 7 (((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐴𝑋𝐴 ≼ ω ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) ∧ (𝑥 ∈ ℕ ∧ 𝑦𝐴)) → 𝐷 ∈ (∞Met‘𝑋))
5 simplr1 1216 . . . . . . . 8 (((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐴𝑋𝐴 ≼ ω ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) ∧ (𝑥 ∈ ℕ ∧ 𝑦𝐴)) → 𝐴𝑋)
6 simprr 772 . . . . . . . 8 (((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐴𝑋𝐴 ≼ ω ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) ∧ (𝑥 ∈ ℕ ∧ 𝑦𝐴)) → 𝑦𝐴)
75, 6sseldd 3964 . . . . . . 7 (((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐴𝑋𝐴 ≼ ω ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) ∧ (𝑥 ∈ ℕ ∧ 𝑦𝐴)) → 𝑦𝑋)
8 simprl 770 . . . . . . . . . 10 (((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐴𝑋𝐴 ≼ ω ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) ∧ (𝑥 ∈ ℕ ∧ 𝑦𝐴)) → 𝑥 ∈ ℕ)
98nnrpd 13054 . . . . . . . . 9 (((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐴𝑋𝐴 ≼ ω ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) ∧ (𝑥 ∈ ℕ ∧ 𝑦𝐴)) → 𝑥 ∈ ℝ+)
109rpreccld 13066 . . . . . . . 8 (((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐴𝑋𝐴 ≼ ω ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) ∧ (𝑥 ∈ ℕ ∧ 𝑦𝐴)) → (1 / 𝑥) ∈ ℝ+)
1110rpxrd 13057 . . . . . . 7 (((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐴𝑋𝐴 ≼ ω ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) ∧ (𝑥 ∈ ℕ ∧ 𝑦𝐴)) → (1 / 𝑥) ∈ ℝ*)
121blopn 24444 . . . . . . 7 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑦𝑋 ∧ (1 / 𝑥) ∈ ℝ*) → (𝑦(ball‘𝐷)(1 / 𝑥)) ∈ 𝐽)
134, 7, 11, 12syl3anc 1373 . . . . . 6 (((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐴𝑋𝐴 ≼ ω ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) ∧ (𝑥 ∈ ℕ ∧ 𝑦𝐴)) → (𝑦(ball‘𝐷)(1 / 𝑥)) ∈ 𝐽)
1413ralrimivva 3188 . . . . 5 ((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐴𝑋𝐴 ≼ ω ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) → ∀𝑥 ∈ ℕ ∀𝑦𝐴 (𝑦(ball‘𝐷)(1 / 𝑥)) ∈ 𝐽)
15 eqid 2736 . . . . . 6 (𝑥 ∈ ℕ, 𝑦𝐴 ↦ (𝑦(ball‘𝐷)(1 / 𝑥))) = (𝑥 ∈ ℕ, 𝑦𝐴 ↦ (𝑦(ball‘𝐷)(1 / 𝑥)))
1615fmpo 8072 . . . . 5 (∀𝑥 ∈ ℕ ∀𝑦𝐴 (𝑦(ball‘𝐷)(1 / 𝑥)) ∈ 𝐽 ↔ (𝑥 ∈ ℕ, 𝑦𝐴 ↦ (𝑦(ball‘𝐷)(1 / 𝑥))):(ℕ × 𝐴)⟶𝐽)
1714, 16sylib 218 . . . 4 ((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐴𝑋𝐴 ≼ ω ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) → (𝑥 ∈ ℕ, 𝑦𝐴 ↦ (𝑦(ball‘𝐷)(1 / 𝑥))):(ℕ × 𝐴)⟶𝐽)
1817frnd 6719 . . 3 ((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐴𝑋𝐴 ≼ ω ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) → ran (𝑥 ∈ ℕ, 𝑦𝐴 ↦ (𝑦(ball‘𝐷)(1 / 𝑥))) ⊆ 𝐽)
19 simpll 766 . . . . . 6 (((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐴𝑋𝐴 ≼ ω ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) ∧ (𝑢𝐽𝑧𝑢)) → 𝐷 ∈ (∞Met‘𝑋))
20 simprl 770 . . . . . 6 (((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐴𝑋𝐴 ≼ ω ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) ∧ (𝑢𝐽𝑧𝑢)) → 𝑢𝐽)
21 simprr 772 . . . . . 6 (((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐴𝑋𝐴 ≼ ω ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) ∧ (𝑢𝐽𝑧𝑢)) → 𝑧𝑢)
221mopni2 24437 . . . . . 6 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑢𝐽𝑧𝑢) → ∃𝑟 ∈ ℝ+ (𝑧(ball‘𝐷)𝑟) ⊆ 𝑢)
2319, 20, 21, 22syl3anc 1373 . . . . 5 (((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐴𝑋𝐴 ≼ ω ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) ∧ (𝑢𝐽𝑧𝑢)) → ∃𝑟 ∈ ℝ+ (𝑧(ball‘𝐷)𝑟) ⊆ 𝑢)
24 simprl 770 . . . . . . . 8 ((((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐴𝑋𝐴 ≼ ω ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) ∧ (𝑢𝐽𝑧𝑢)) ∧ (𝑟 ∈ ℝ+ ∧ (𝑧(ball‘𝐷)𝑟) ⊆ 𝑢)) → 𝑟 ∈ ℝ+)
2524rphalfcld 13068 . . . . . . 7 ((((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐴𝑋𝐴 ≼ ω ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) ∧ (𝑢𝐽𝑧𝑢)) ∧ (𝑟 ∈ ℝ+ ∧ (𝑧(ball‘𝐷)𝑟) ⊆ 𝑢)) → (𝑟 / 2) ∈ ℝ+)
26 elrp 13015 . . . . . . . 8 ((𝑟 / 2) ∈ ℝ+ ↔ ((𝑟 / 2) ∈ ℝ ∧ 0 < (𝑟 / 2)))
27 nnrecl 12504 . . . . . . . 8 (((𝑟 / 2) ∈ ℝ ∧ 0 < (𝑟 / 2)) → ∃𝑛 ∈ ℕ (1 / 𝑛) < (𝑟 / 2))
2826, 27sylbi 217 . . . . . . 7 ((𝑟 / 2) ∈ ℝ+ → ∃𝑛 ∈ ℕ (1 / 𝑛) < (𝑟 / 2))
2925, 28syl 17 . . . . . 6 ((((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐴𝑋𝐴 ≼ ω ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) ∧ (𝑢𝐽𝑧𝑢)) ∧ (𝑟 ∈ ℝ+ ∧ (𝑧(ball‘𝐷)𝑟) ⊆ 𝑢)) → ∃𝑛 ∈ ℕ (1 / 𝑛) < (𝑟 / 2))
303ad2antrr 726 . . . . . . . . . 10 ((((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐴𝑋𝐴 ≼ ω ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) ∧ (𝑢𝐽𝑧𝑢)) ∧ ((𝑟 ∈ ℝ+ ∧ (𝑧(ball‘𝐷)𝑟) ⊆ 𝑢) ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (𝑟 / 2)))) → 𝐽 ∈ Top)
31 simpr1 1195 . . . . . . . . . . . 12 ((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐴𝑋𝐴 ≼ ω ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) → 𝐴𝑋)
3231ad2antrr 726 . . . . . . . . . . 11 ((((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐴𝑋𝐴 ≼ ω ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) ∧ (𝑢𝐽𝑧𝑢)) ∧ ((𝑟 ∈ ℝ+ ∧ (𝑧(ball‘𝐷)𝑟) ⊆ 𝑢) ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (𝑟 / 2)))) → 𝐴𝑋)
331mopnuni 24385 . . . . . . . . . . . 12 (𝐷 ∈ (∞Met‘𝑋) → 𝑋 = 𝐽)
3433ad3antrrr 730 . . . . . . . . . . 11 ((((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐴𝑋𝐴 ≼ ω ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) ∧ (𝑢𝐽𝑧𝑢)) ∧ ((𝑟 ∈ ℝ+ ∧ (𝑧(ball‘𝐷)𝑟) ⊆ 𝑢) ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (𝑟 / 2)))) → 𝑋 = 𝐽)
3532, 34sseqtrd 4000 . . . . . . . . . 10 ((((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐴𝑋𝐴 ≼ ω ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) ∧ (𝑢𝐽𝑧𝑢)) ∧ ((𝑟 ∈ ℝ+ ∧ (𝑧(ball‘𝐷)𝑟) ⊆ 𝑢) ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (𝑟 / 2)))) → 𝐴 𝐽)
36 simplrr 777 . . . . . . . . . . . . 13 ((((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐴𝑋𝐴 ≼ ω ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) ∧ (𝑢𝐽𝑧𝑢)) ∧ ((𝑟 ∈ ℝ+ ∧ (𝑧(ball‘𝐷)𝑟) ⊆ 𝑢) ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (𝑟 / 2)))) → 𝑧𝑢)
37 simplrl 776 . . . . . . . . . . . . 13 ((((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐴𝑋𝐴 ≼ ω ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) ∧ (𝑢𝐽𝑧𝑢)) ∧ ((𝑟 ∈ ℝ+ ∧ (𝑧(ball‘𝐷)𝑟) ⊆ 𝑢) ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (𝑟 / 2)))) → 𝑢𝐽)
38 elunii 4893 . . . . . . . . . . . . 13 ((𝑧𝑢𝑢𝐽) → 𝑧 𝐽)
3936, 37, 38syl2anc 584 . . . . . . . . . . . 12 ((((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐴𝑋𝐴 ≼ ω ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) ∧ (𝑢𝐽𝑧𝑢)) ∧ ((𝑟 ∈ ℝ+ ∧ (𝑧(ball‘𝐷)𝑟) ⊆ 𝑢) ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (𝑟 / 2)))) → 𝑧 𝐽)
4039, 34eleqtrrd 2838 . . . . . . . . . . 11 ((((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐴𝑋𝐴 ≼ ω ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) ∧ (𝑢𝐽𝑧𝑢)) ∧ ((𝑟 ∈ ℝ+ ∧ (𝑧(ball‘𝐷)𝑟) ⊆ 𝑢) ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (𝑟 / 2)))) → 𝑧𝑋)
41 simpr3 1197 . . . . . . . . . . . 12 ((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐴𝑋𝐴 ≼ ω ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) → ((cls‘𝐽)‘𝐴) = 𝑋)
4241ad2antrr 726 . . . . . . . . . . 11 ((((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐴𝑋𝐴 ≼ ω ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) ∧ (𝑢𝐽𝑧𝑢)) ∧ ((𝑟 ∈ ℝ+ ∧ (𝑧(ball‘𝐷)𝑟) ⊆ 𝑢) ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (𝑟 / 2)))) → ((cls‘𝐽)‘𝐴) = 𝑋)
4340, 42eleqtrrd 2838 . . . . . . . . . 10 ((((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐴𝑋𝐴 ≼ ω ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) ∧ (𝑢𝐽𝑧𝑢)) ∧ ((𝑟 ∈ ℝ+ ∧ (𝑧(ball‘𝐷)𝑟) ⊆ 𝑢) ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (𝑟 / 2)))) → 𝑧 ∈ ((cls‘𝐽)‘𝐴))
4419adantr 480 . . . . . . . . . . 11 ((((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐴𝑋𝐴 ≼ ω ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) ∧ (𝑢𝐽𝑧𝑢)) ∧ ((𝑟 ∈ ℝ+ ∧ (𝑧(ball‘𝐷)𝑟) ⊆ 𝑢) ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (𝑟 / 2)))) → 𝐷 ∈ (∞Met‘𝑋))
45 simprrl 780 . . . . . . . . . . . . . 14 ((((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐴𝑋𝐴 ≼ ω ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) ∧ (𝑢𝐽𝑧𝑢)) ∧ ((𝑟 ∈ ℝ+ ∧ (𝑧(ball‘𝐷)𝑟) ⊆ 𝑢) ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (𝑟 / 2)))) → 𝑛 ∈ ℕ)
4645nnrpd 13054 . . . . . . . . . . . . 13 ((((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐴𝑋𝐴 ≼ ω ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) ∧ (𝑢𝐽𝑧𝑢)) ∧ ((𝑟 ∈ ℝ+ ∧ (𝑧(ball‘𝐷)𝑟) ⊆ 𝑢) ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (𝑟 / 2)))) → 𝑛 ∈ ℝ+)
4746rpreccld 13066 . . . . . . . . . . . 12 ((((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐴𝑋𝐴 ≼ ω ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) ∧ (𝑢𝐽𝑧𝑢)) ∧ ((𝑟 ∈ ℝ+ ∧ (𝑧(ball‘𝐷)𝑟) ⊆ 𝑢) ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (𝑟 / 2)))) → (1 / 𝑛) ∈ ℝ+)
4847rpxrd 13057 . . . . . . . . . . 11 ((((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐴𝑋𝐴 ≼ ω ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) ∧ (𝑢𝐽𝑧𝑢)) ∧ ((𝑟 ∈ ℝ+ ∧ (𝑧(ball‘𝐷)𝑟) ⊆ 𝑢) ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (𝑟 / 2)))) → (1 / 𝑛) ∈ ℝ*)
491blopn 24444 . . . . . . . . . . 11 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑧𝑋 ∧ (1 / 𝑛) ∈ ℝ*) → (𝑧(ball‘𝐷)(1 / 𝑛)) ∈ 𝐽)
5044, 40, 48, 49syl3anc 1373 . . . . . . . . . 10 ((((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐴𝑋𝐴 ≼ ω ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) ∧ (𝑢𝐽𝑧𝑢)) ∧ ((𝑟 ∈ ℝ+ ∧ (𝑧(ball‘𝐷)𝑟) ⊆ 𝑢) ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (𝑟 / 2)))) → (𝑧(ball‘𝐷)(1 / 𝑛)) ∈ 𝐽)
51 blcntr 24357 . . . . . . . . . . 11 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑧𝑋 ∧ (1 / 𝑛) ∈ ℝ+) → 𝑧 ∈ (𝑧(ball‘𝐷)(1 / 𝑛)))
5244, 40, 47, 51syl3anc 1373 . . . . . . . . . 10 ((((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐴𝑋𝐴 ≼ ω ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) ∧ (𝑢𝐽𝑧𝑢)) ∧ ((𝑟 ∈ ℝ+ ∧ (𝑧(ball‘𝐷)𝑟) ⊆ 𝑢) ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (𝑟 / 2)))) → 𝑧 ∈ (𝑧(ball‘𝐷)(1 / 𝑛)))
53 eqid 2736 . . . . . . . . . . 11 𝐽 = 𝐽
5453clsndisj 23018 . . . . . . . . . 10 (((𝐽 ∈ Top ∧ 𝐴 𝐽𝑧 ∈ ((cls‘𝐽)‘𝐴)) ∧ ((𝑧(ball‘𝐷)(1 / 𝑛)) ∈ 𝐽𝑧 ∈ (𝑧(ball‘𝐷)(1 / 𝑛)))) → ((𝑧(ball‘𝐷)(1 / 𝑛)) ∩ 𝐴) ≠ ∅)
5530, 35, 43, 50, 52, 54syl32anc 1380 . . . . . . . . 9 ((((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐴𝑋𝐴 ≼ ω ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) ∧ (𝑢𝐽𝑧𝑢)) ∧ ((𝑟 ∈ ℝ+ ∧ (𝑧(ball‘𝐷)𝑟) ⊆ 𝑢) ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (𝑟 / 2)))) → ((𝑧(ball‘𝐷)(1 / 𝑛)) ∩ 𝐴) ≠ ∅)
56 n0 4333 . . . . . . . . 9 (((𝑧(ball‘𝐷)(1 / 𝑛)) ∩ 𝐴) ≠ ∅ ↔ ∃𝑡 𝑡 ∈ ((𝑧(ball‘𝐷)(1 / 𝑛)) ∩ 𝐴))
5755, 56sylib 218 . . . . . . . 8 ((((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐴𝑋𝐴 ≼ ω ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) ∧ (𝑢𝐽𝑧𝑢)) ∧ ((𝑟 ∈ ℝ+ ∧ (𝑧(ball‘𝐷)𝑟) ⊆ 𝑢) ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (𝑟 / 2)))) → ∃𝑡 𝑡 ∈ ((𝑧(ball‘𝐷)(1 / 𝑛)) ∩ 𝐴))
5845adantr 480 . . . . . . . . . . 11 (((((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐴𝑋𝐴 ≼ ω ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) ∧ (𝑢𝐽𝑧𝑢)) ∧ ((𝑟 ∈ ℝ+ ∧ (𝑧(ball‘𝐷)𝑟) ⊆ 𝑢) ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (𝑟 / 2)))) ∧ 𝑡 ∈ ((𝑧(ball‘𝐷)(1 / 𝑛)) ∩ 𝐴)) → 𝑛 ∈ ℕ)
59 simpr 484 . . . . . . . . . . . 12 (((((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐴𝑋𝐴 ≼ ω ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) ∧ (𝑢𝐽𝑧𝑢)) ∧ ((𝑟 ∈ ℝ+ ∧ (𝑧(ball‘𝐷)𝑟) ⊆ 𝑢) ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (𝑟 / 2)))) ∧ 𝑡 ∈ ((𝑧(ball‘𝐷)(1 / 𝑛)) ∩ 𝐴)) → 𝑡 ∈ ((𝑧(ball‘𝐷)(1 / 𝑛)) ∩ 𝐴))
6059elin2d 4185 . . . . . . . . . . 11 (((((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐴𝑋𝐴 ≼ ω ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) ∧ (𝑢𝐽𝑧𝑢)) ∧ ((𝑟 ∈ ℝ+ ∧ (𝑧(ball‘𝐷)𝑟) ⊆ 𝑢) ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (𝑟 / 2)))) ∧ 𝑡 ∈ ((𝑧(ball‘𝐷)(1 / 𝑛)) ∩ 𝐴)) → 𝑡𝐴)
61 eqidd 2737 . . . . . . . . . . 11 (((((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐴𝑋𝐴 ≼ ω ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) ∧ (𝑢𝐽𝑧𝑢)) ∧ ((𝑟 ∈ ℝ+ ∧ (𝑧(ball‘𝐷)𝑟) ⊆ 𝑢) ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (𝑟 / 2)))) ∧ 𝑡 ∈ ((𝑧(ball‘𝐷)(1 / 𝑛)) ∩ 𝐴)) → (𝑡(ball‘𝐷)(1 / 𝑛)) = (𝑡(ball‘𝐷)(1 / 𝑛)))
62 oveq2 7418 . . . . . . . . . . . . . 14 (𝑥 = 𝑛 → (1 / 𝑥) = (1 / 𝑛))
6362oveq2d 7426 . . . . . . . . . . . . 13 (𝑥 = 𝑛 → (𝑦(ball‘𝐷)(1 / 𝑥)) = (𝑦(ball‘𝐷)(1 / 𝑛)))
6463eqeq2d 2747 . . . . . . . . . . . 12 (𝑥 = 𝑛 → ((𝑡(ball‘𝐷)(1 / 𝑛)) = (𝑦(ball‘𝐷)(1 / 𝑥)) ↔ (𝑡(ball‘𝐷)(1 / 𝑛)) = (𝑦(ball‘𝐷)(1 / 𝑛))))
65 oveq1 7417 . . . . . . . . . . . . 13 (𝑦 = 𝑡 → (𝑦(ball‘𝐷)(1 / 𝑛)) = (𝑡(ball‘𝐷)(1 / 𝑛)))
6665eqeq2d 2747 . . . . . . . . . . . 12 (𝑦 = 𝑡 → ((𝑡(ball‘𝐷)(1 / 𝑛)) = (𝑦(ball‘𝐷)(1 / 𝑛)) ↔ (𝑡(ball‘𝐷)(1 / 𝑛)) = (𝑡(ball‘𝐷)(1 / 𝑛))))
6764, 66rspc2ev 3619 . . . . . . . . . . 11 ((𝑛 ∈ ℕ ∧ 𝑡𝐴 ∧ (𝑡(ball‘𝐷)(1 / 𝑛)) = (𝑡(ball‘𝐷)(1 / 𝑛))) → ∃𝑥 ∈ ℕ ∃𝑦𝐴 (𝑡(ball‘𝐷)(1 / 𝑛)) = (𝑦(ball‘𝐷)(1 / 𝑥)))
6858, 60, 61, 67syl3anc 1373 . . . . . . . . . 10 (((((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐴𝑋𝐴 ≼ ω ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) ∧ (𝑢𝐽𝑧𝑢)) ∧ ((𝑟 ∈ ℝ+ ∧ (𝑧(ball‘𝐷)𝑟) ⊆ 𝑢) ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (𝑟 / 2)))) ∧ 𝑡 ∈ ((𝑧(ball‘𝐷)(1 / 𝑛)) ∩ 𝐴)) → ∃𝑥 ∈ ℕ ∃𝑦𝐴 (𝑡(ball‘𝐷)(1 / 𝑛)) = (𝑦(ball‘𝐷)(1 / 𝑥)))
69 ovex 7443 . . . . . . . . . . 11 (𝑡(ball‘𝐷)(1 / 𝑛)) ∈ V
70 eqeq1 2740 . . . . . . . . . . . 12 (𝑧 = (𝑡(ball‘𝐷)(1 / 𝑛)) → (𝑧 = (𝑦(ball‘𝐷)(1 / 𝑥)) ↔ (𝑡(ball‘𝐷)(1 / 𝑛)) = (𝑦(ball‘𝐷)(1 / 𝑥))))
71702rexbidv 3210 . . . . . . . . . . 11 (𝑧 = (𝑡(ball‘𝐷)(1 / 𝑛)) → (∃𝑥 ∈ ℕ ∃𝑦𝐴 𝑧 = (𝑦(ball‘𝐷)(1 / 𝑥)) ↔ ∃𝑥 ∈ ℕ ∃𝑦𝐴 (𝑡(ball‘𝐷)(1 / 𝑛)) = (𝑦(ball‘𝐷)(1 / 𝑥))))
7215rnmpo 7545 . . . . . . . . . . 11 ran (𝑥 ∈ ℕ, 𝑦𝐴 ↦ (𝑦(ball‘𝐷)(1 / 𝑥))) = {𝑧 ∣ ∃𝑥 ∈ ℕ ∃𝑦𝐴 𝑧 = (𝑦(ball‘𝐷)(1 / 𝑥))}
7369, 71, 72elab2 3666 . . . . . . . . . 10 ((𝑡(ball‘𝐷)(1 / 𝑛)) ∈ ran (𝑥 ∈ ℕ, 𝑦𝐴 ↦ (𝑦(ball‘𝐷)(1 / 𝑥))) ↔ ∃𝑥 ∈ ℕ ∃𝑦𝐴 (𝑡(ball‘𝐷)(1 / 𝑛)) = (𝑦(ball‘𝐷)(1 / 𝑥)))
7468, 73sylibr 234 . . . . . . . . 9 (((((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐴𝑋𝐴 ≼ ω ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) ∧ (𝑢𝐽𝑧𝑢)) ∧ ((𝑟 ∈ ℝ+ ∧ (𝑧(ball‘𝐷)𝑟) ⊆ 𝑢) ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (𝑟 / 2)))) ∧ 𝑡 ∈ ((𝑧(ball‘𝐷)(1 / 𝑛)) ∩ 𝐴)) → (𝑡(ball‘𝐷)(1 / 𝑛)) ∈ ran (𝑥 ∈ ℕ, 𝑦𝐴 ↦ (𝑦(ball‘𝐷)(1 / 𝑥))))
7559elin1d 4184 . . . . . . . . . 10 (((((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐴𝑋𝐴 ≼ ω ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) ∧ (𝑢𝐽𝑧𝑢)) ∧ ((𝑟 ∈ ℝ+ ∧ (𝑧(ball‘𝐷)𝑟) ⊆ 𝑢) ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (𝑟 / 2)))) ∧ 𝑡 ∈ ((𝑧(ball‘𝐷)(1 / 𝑛)) ∩ 𝐴)) → 𝑡 ∈ (𝑧(ball‘𝐷)(1 / 𝑛)))
7644adantr 480 . . . . . . . . . . 11 (((((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐴𝑋𝐴 ≼ ω ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) ∧ (𝑢𝐽𝑧𝑢)) ∧ ((𝑟 ∈ ℝ+ ∧ (𝑧(ball‘𝐷)𝑟) ⊆ 𝑢) ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (𝑟 / 2)))) ∧ 𝑡 ∈ ((𝑧(ball‘𝐷)(1 / 𝑛)) ∩ 𝐴)) → 𝐷 ∈ (∞Met‘𝑋))
7748adantr 480 . . . . . . . . . . 11 (((((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐴𝑋𝐴 ≼ ω ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) ∧ (𝑢𝐽𝑧𝑢)) ∧ ((𝑟 ∈ ℝ+ ∧ (𝑧(ball‘𝐷)𝑟) ⊆ 𝑢) ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (𝑟 / 2)))) ∧ 𝑡 ∈ ((𝑧(ball‘𝐷)(1 / 𝑛)) ∩ 𝐴)) → (1 / 𝑛) ∈ ℝ*)
7840adantr 480 . . . . . . . . . . 11 (((((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐴𝑋𝐴 ≼ ω ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) ∧ (𝑢𝐽𝑧𝑢)) ∧ ((𝑟 ∈ ℝ+ ∧ (𝑧(ball‘𝐷)𝑟) ⊆ 𝑢) ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (𝑟 / 2)))) ∧ 𝑡 ∈ ((𝑧(ball‘𝐷)(1 / 𝑛)) ∩ 𝐴)) → 𝑧𝑋)
7932adantr 480 . . . . . . . . . . . 12 (((((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐴𝑋𝐴 ≼ ω ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) ∧ (𝑢𝐽𝑧𝑢)) ∧ ((𝑟 ∈ ℝ+ ∧ (𝑧(ball‘𝐷)𝑟) ⊆ 𝑢) ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (𝑟 / 2)))) ∧ 𝑡 ∈ ((𝑧(ball‘𝐷)(1 / 𝑛)) ∩ 𝐴)) → 𝐴𝑋)
8079, 60sseldd 3964 . . . . . . . . . . 11 (((((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐴𝑋𝐴 ≼ ω ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) ∧ (𝑢𝐽𝑧𝑢)) ∧ ((𝑟 ∈ ℝ+ ∧ (𝑧(ball‘𝐷)𝑟) ⊆ 𝑢) ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (𝑟 / 2)))) ∧ 𝑡 ∈ ((𝑧(ball‘𝐷)(1 / 𝑛)) ∩ 𝐴)) → 𝑡𝑋)
81 blcom 24338 . . . . . . . . . . 11 (((𝐷 ∈ (∞Met‘𝑋) ∧ (1 / 𝑛) ∈ ℝ*) ∧ (𝑧𝑋𝑡𝑋)) → (𝑡 ∈ (𝑧(ball‘𝐷)(1 / 𝑛)) ↔ 𝑧 ∈ (𝑡(ball‘𝐷)(1 / 𝑛))))
8276, 77, 78, 80, 81syl22anc 838 . . . . . . . . . 10 (((((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐴𝑋𝐴 ≼ ω ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) ∧ (𝑢𝐽𝑧𝑢)) ∧ ((𝑟 ∈ ℝ+ ∧ (𝑧(ball‘𝐷)𝑟) ⊆ 𝑢) ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (𝑟 / 2)))) ∧ 𝑡 ∈ ((𝑧(ball‘𝐷)(1 / 𝑛)) ∩ 𝐴)) → (𝑡 ∈ (𝑧(ball‘𝐷)(1 / 𝑛)) ↔ 𝑧 ∈ (𝑡(ball‘𝐷)(1 / 𝑛))))
8375, 82mpbid 232 . . . . . . . . 9 (((((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐴𝑋𝐴 ≼ ω ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) ∧ (𝑢𝐽𝑧𝑢)) ∧ ((𝑟 ∈ ℝ+ ∧ (𝑧(ball‘𝐷)𝑟) ⊆ 𝑢) ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (𝑟 / 2)))) ∧ 𝑡 ∈ ((𝑧(ball‘𝐷)(1 / 𝑛)) ∩ 𝐴)) → 𝑧 ∈ (𝑡(ball‘𝐷)(1 / 𝑛)))
84 simprll 778 . . . . . . . . . . . . . 14 ((((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐴𝑋𝐴 ≼ ω ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) ∧ (𝑢𝐽𝑧𝑢)) ∧ ((𝑟 ∈ ℝ+ ∧ (𝑧(ball‘𝐷)𝑟) ⊆ 𝑢) ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (𝑟 / 2)))) → 𝑟 ∈ ℝ+)
8584adantr 480 . . . . . . . . . . . . 13 (((((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐴𝑋𝐴 ≼ ω ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) ∧ (𝑢𝐽𝑧𝑢)) ∧ ((𝑟 ∈ ℝ+ ∧ (𝑧(ball‘𝐷)𝑟) ⊆ 𝑢) ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (𝑟 / 2)))) ∧ 𝑡 ∈ ((𝑧(ball‘𝐷)(1 / 𝑛)) ∩ 𝐴)) → 𝑟 ∈ ℝ+)
8685rphalfcld 13068 . . . . . . . . . . . 12 (((((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐴𝑋𝐴 ≼ ω ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) ∧ (𝑢𝐽𝑧𝑢)) ∧ ((𝑟 ∈ ℝ+ ∧ (𝑧(ball‘𝐷)𝑟) ⊆ 𝑢) ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (𝑟 / 2)))) ∧ 𝑡 ∈ ((𝑧(ball‘𝐷)(1 / 𝑛)) ∩ 𝐴)) → (𝑟 / 2) ∈ ℝ+)
8786rpxrd 13057 . . . . . . . . . . 11 (((((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐴𝑋𝐴 ≼ ω ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) ∧ (𝑢𝐽𝑧𝑢)) ∧ ((𝑟 ∈ ℝ+ ∧ (𝑧(ball‘𝐷)𝑟) ⊆ 𝑢) ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (𝑟 / 2)))) ∧ 𝑡 ∈ ((𝑧(ball‘𝐷)(1 / 𝑛)) ∩ 𝐴)) → (𝑟 / 2) ∈ ℝ*)
88 simprrr 781 . . . . . . . . . . . . 13 ((((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐴𝑋𝐴 ≼ ω ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) ∧ (𝑢𝐽𝑧𝑢)) ∧ ((𝑟 ∈ ℝ+ ∧ (𝑧(ball‘𝐷)𝑟) ⊆ 𝑢) ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (𝑟 / 2)))) → (1 / 𝑛) < (𝑟 / 2))
8984rphalfcld 13068 . . . . . . . . . . . . . 14 ((((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐴𝑋𝐴 ≼ ω ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) ∧ (𝑢𝐽𝑧𝑢)) ∧ ((𝑟 ∈ ℝ+ ∧ (𝑧(ball‘𝐷)𝑟) ⊆ 𝑢) ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (𝑟 / 2)))) → (𝑟 / 2) ∈ ℝ+)
90 rpre 13022 . . . . . . . . . . . . . . 15 ((1 / 𝑛) ∈ ℝ+ → (1 / 𝑛) ∈ ℝ)
91 rpre 13022 . . . . . . . . . . . . . . 15 ((𝑟 / 2) ∈ ℝ+ → (𝑟 / 2) ∈ ℝ)
92 ltle 11328 . . . . . . . . . . . . . . 15 (((1 / 𝑛) ∈ ℝ ∧ (𝑟 / 2) ∈ ℝ) → ((1 / 𝑛) < (𝑟 / 2) → (1 / 𝑛) ≤ (𝑟 / 2)))
9390, 91, 92syl2an 596 . . . . . . . . . . . . . 14 (((1 / 𝑛) ∈ ℝ+ ∧ (𝑟 / 2) ∈ ℝ+) → ((1 / 𝑛) < (𝑟 / 2) → (1 / 𝑛) ≤ (𝑟 / 2)))
9447, 89, 93syl2anc 584 . . . . . . . . . . . . 13 ((((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐴𝑋𝐴 ≼ ω ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) ∧ (𝑢𝐽𝑧𝑢)) ∧ ((𝑟 ∈ ℝ+ ∧ (𝑧(ball‘𝐷)𝑟) ⊆ 𝑢) ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (𝑟 / 2)))) → ((1 / 𝑛) < (𝑟 / 2) → (1 / 𝑛) ≤ (𝑟 / 2)))
9588, 94mpd 15 . . . . . . . . . . . 12 ((((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐴𝑋𝐴 ≼ ω ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) ∧ (𝑢𝐽𝑧𝑢)) ∧ ((𝑟 ∈ ℝ+ ∧ (𝑧(ball‘𝐷)𝑟) ⊆ 𝑢) ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (𝑟 / 2)))) → (1 / 𝑛) ≤ (𝑟 / 2))
9695adantr 480 . . . . . . . . . . 11 (((((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐴𝑋𝐴 ≼ ω ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) ∧ (𝑢𝐽𝑧𝑢)) ∧ ((𝑟 ∈ ℝ+ ∧ (𝑧(ball‘𝐷)𝑟) ⊆ 𝑢) ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (𝑟 / 2)))) ∧ 𝑡 ∈ ((𝑧(ball‘𝐷)(1 / 𝑛)) ∩ 𝐴)) → (1 / 𝑛) ≤ (𝑟 / 2))
97 ssbl 24367 . . . . . . . . . . 11 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑡𝑋) ∧ ((1 / 𝑛) ∈ ℝ* ∧ (𝑟 / 2) ∈ ℝ*) ∧ (1 / 𝑛) ≤ (𝑟 / 2)) → (𝑡(ball‘𝐷)(1 / 𝑛)) ⊆ (𝑡(ball‘𝐷)(𝑟 / 2)))
9876, 80, 77, 87, 96, 97syl221anc 1383 . . . . . . . . . 10 (((((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐴𝑋𝐴 ≼ ω ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) ∧ (𝑢𝐽𝑧𝑢)) ∧ ((𝑟 ∈ ℝ+ ∧ (𝑧(ball‘𝐷)𝑟) ⊆ 𝑢) ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (𝑟 / 2)))) ∧ 𝑡 ∈ ((𝑧(ball‘𝐷)(1 / 𝑛)) ∩ 𝐴)) → (𝑡(ball‘𝐷)(1 / 𝑛)) ⊆ (𝑡(ball‘𝐷)(𝑟 / 2)))
9985rpred 13056 . . . . . . . . . . . 12 (((((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐴𝑋𝐴 ≼ ω ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) ∧ (𝑢𝐽𝑧𝑢)) ∧ ((𝑟 ∈ ℝ+ ∧ (𝑧(ball‘𝐷)𝑟) ⊆ 𝑢) ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (𝑟 / 2)))) ∧ 𝑡 ∈ ((𝑧(ball‘𝐷)(1 / 𝑛)) ∩ 𝐴)) → 𝑟 ∈ ℝ)
10098, 83sseldd 3964 . . . . . . . . . . . 12 (((((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐴𝑋𝐴 ≼ ω ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) ∧ (𝑢𝐽𝑧𝑢)) ∧ ((𝑟 ∈ ℝ+ ∧ (𝑧(ball‘𝐷)𝑟) ⊆ 𝑢) ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (𝑟 / 2)))) ∧ 𝑡 ∈ ((𝑧(ball‘𝐷)(1 / 𝑛)) ∩ 𝐴)) → 𝑧 ∈ (𝑡(ball‘𝐷)(𝑟 / 2)))
101 blhalf 24349 . . . . . . . . . . . 12 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑡𝑋) ∧ (𝑟 ∈ ℝ ∧ 𝑧 ∈ (𝑡(ball‘𝐷)(𝑟 / 2)))) → (𝑡(ball‘𝐷)(𝑟 / 2)) ⊆ (𝑧(ball‘𝐷)𝑟))
10276, 80, 99, 100, 101syl22anc 838 . . . . . . . . . . 11 (((((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐴𝑋𝐴 ≼ ω ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) ∧ (𝑢𝐽𝑧𝑢)) ∧ ((𝑟 ∈ ℝ+ ∧ (𝑧(ball‘𝐷)𝑟) ⊆ 𝑢) ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (𝑟 / 2)))) ∧ 𝑡 ∈ ((𝑧(ball‘𝐷)(1 / 𝑛)) ∩ 𝐴)) → (𝑡(ball‘𝐷)(𝑟 / 2)) ⊆ (𝑧(ball‘𝐷)𝑟))
103 simprlr 779 . . . . . . . . . . . 12 ((((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐴𝑋𝐴 ≼ ω ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) ∧ (𝑢𝐽𝑧𝑢)) ∧ ((𝑟 ∈ ℝ+ ∧ (𝑧(ball‘𝐷)𝑟) ⊆ 𝑢) ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (𝑟 / 2)))) → (𝑧(ball‘𝐷)𝑟) ⊆ 𝑢)
104103adantr 480 . . . . . . . . . . 11 (((((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐴𝑋𝐴 ≼ ω ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) ∧ (𝑢𝐽𝑧𝑢)) ∧ ((𝑟 ∈ ℝ+ ∧ (𝑧(ball‘𝐷)𝑟) ⊆ 𝑢) ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (𝑟 / 2)))) ∧ 𝑡 ∈ ((𝑧(ball‘𝐷)(1 / 𝑛)) ∩ 𝐴)) → (𝑧(ball‘𝐷)𝑟) ⊆ 𝑢)
105102, 104sstrd 3974 . . . . . . . . . 10 (((((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐴𝑋𝐴 ≼ ω ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) ∧ (𝑢𝐽𝑧𝑢)) ∧ ((𝑟 ∈ ℝ+ ∧ (𝑧(ball‘𝐷)𝑟) ⊆ 𝑢) ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (𝑟 / 2)))) ∧ 𝑡 ∈ ((𝑧(ball‘𝐷)(1 / 𝑛)) ∩ 𝐴)) → (𝑡(ball‘𝐷)(𝑟 / 2)) ⊆ 𝑢)
10698, 105sstrd 3974 . . . . . . . . 9 (((((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐴𝑋𝐴 ≼ ω ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) ∧ (𝑢𝐽𝑧𝑢)) ∧ ((𝑟 ∈ ℝ+ ∧ (𝑧(ball‘𝐷)𝑟) ⊆ 𝑢) ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (𝑟 / 2)))) ∧ 𝑡 ∈ ((𝑧(ball‘𝐷)(1 / 𝑛)) ∩ 𝐴)) → (𝑡(ball‘𝐷)(1 / 𝑛)) ⊆ 𝑢)
107 eleq2 2824 . . . . . . . . . . 11 (𝑤 = (𝑡(ball‘𝐷)(1 / 𝑛)) → (𝑧𝑤𝑧 ∈ (𝑡(ball‘𝐷)(1 / 𝑛))))
108 sseq1 3989 . . . . . . . . . . 11 (𝑤 = (𝑡(ball‘𝐷)(1 / 𝑛)) → (𝑤𝑢 ↔ (𝑡(ball‘𝐷)(1 / 𝑛)) ⊆ 𝑢))
109107, 108anbi12d 632 . . . . . . . . . 10 (𝑤 = (𝑡(ball‘𝐷)(1 / 𝑛)) → ((𝑧𝑤𝑤𝑢) ↔ (𝑧 ∈ (𝑡(ball‘𝐷)(1 / 𝑛)) ∧ (𝑡(ball‘𝐷)(1 / 𝑛)) ⊆ 𝑢)))
110109rspcev 3606 . . . . . . . . 9 (((𝑡(ball‘𝐷)(1 / 𝑛)) ∈ ran (𝑥 ∈ ℕ, 𝑦𝐴 ↦ (𝑦(ball‘𝐷)(1 / 𝑥))) ∧ (𝑧 ∈ (𝑡(ball‘𝐷)(1 / 𝑛)) ∧ (𝑡(ball‘𝐷)(1 / 𝑛)) ⊆ 𝑢)) → ∃𝑤 ∈ ran (𝑥 ∈ ℕ, 𝑦𝐴 ↦ (𝑦(ball‘𝐷)(1 / 𝑥)))(𝑧𝑤𝑤𝑢))
11174, 83, 106, 110syl12anc 836 . . . . . . . 8 (((((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐴𝑋𝐴 ≼ ω ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) ∧ (𝑢𝐽𝑧𝑢)) ∧ ((𝑟 ∈ ℝ+ ∧ (𝑧(ball‘𝐷)𝑟) ⊆ 𝑢) ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (𝑟 / 2)))) ∧ 𝑡 ∈ ((𝑧(ball‘𝐷)(1 / 𝑛)) ∩ 𝐴)) → ∃𝑤 ∈ ran (𝑥 ∈ ℕ, 𝑦𝐴 ↦ (𝑦(ball‘𝐷)(1 / 𝑥)))(𝑧𝑤𝑤𝑢))
11257, 111exlimddv 1935 . . . . . . 7 ((((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐴𝑋𝐴 ≼ ω ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) ∧ (𝑢𝐽𝑧𝑢)) ∧ ((𝑟 ∈ ℝ+ ∧ (𝑧(ball‘𝐷)𝑟) ⊆ 𝑢) ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (𝑟 / 2)))) → ∃𝑤 ∈ ran (𝑥 ∈ ℕ, 𝑦𝐴 ↦ (𝑦(ball‘𝐷)(1 / 𝑥)))(𝑧𝑤𝑤𝑢))
113112anassrs 467 . . . . . 6 (((((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐴𝑋𝐴 ≼ ω ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) ∧ (𝑢𝐽𝑧𝑢)) ∧ (𝑟 ∈ ℝ+ ∧ (𝑧(ball‘𝐷)𝑟) ⊆ 𝑢)) ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (𝑟 / 2))) → ∃𝑤 ∈ ran (𝑥 ∈ ℕ, 𝑦𝐴 ↦ (𝑦(ball‘𝐷)(1 / 𝑥)))(𝑧𝑤𝑤𝑢))
11429, 113rexlimddv 3148 . . . . 5 ((((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐴𝑋𝐴 ≼ ω ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) ∧ (𝑢𝐽𝑧𝑢)) ∧ (𝑟 ∈ ℝ+ ∧ (𝑧(ball‘𝐷)𝑟) ⊆ 𝑢)) → ∃𝑤 ∈ ran (𝑥 ∈ ℕ, 𝑦𝐴 ↦ (𝑦(ball‘𝐷)(1 / 𝑥)))(𝑧𝑤𝑤𝑢))
11523, 114rexlimddv 3148 . . . 4 (((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐴𝑋𝐴 ≼ ω ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) ∧ (𝑢𝐽𝑧𝑢)) → ∃𝑤 ∈ ran (𝑥 ∈ ℕ, 𝑦𝐴 ↦ (𝑦(ball‘𝐷)(1 / 𝑥)))(𝑧𝑤𝑤𝑢))
116115ralrimivva 3188 . . 3 ((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐴𝑋𝐴 ≼ ω ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) → ∀𝑢𝐽𝑧𝑢𝑤 ∈ ran (𝑥 ∈ ℕ, 𝑦𝐴 ↦ (𝑦(ball‘𝐷)(1 / 𝑥)))(𝑧𝑤𝑤𝑢))
117 basgen2 22932 . . 3 ((𝐽 ∈ Top ∧ ran (𝑥 ∈ ℕ, 𝑦𝐴 ↦ (𝑦(ball‘𝐷)(1 / 𝑥))) ⊆ 𝐽 ∧ ∀𝑢𝐽𝑧𝑢𝑤 ∈ ran (𝑥 ∈ ℕ, 𝑦𝐴 ↦ (𝑦(ball‘𝐷)(1 / 𝑥)))(𝑧𝑤𝑤𝑢)) → (topGen‘ran (𝑥 ∈ ℕ, 𝑦𝐴 ↦ (𝑦(ball‘𝐷)(1 / 𝑥)))) = 𝐽)
1183, 18, 116, 117syl3anc 1373 . 2 ((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐴𝑋𝐴 ≼ ω ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) → (topGen‘ran (𝑥 ∈ ℕ, 𝑦𝐴 ↦ (𝑦(ball‘𝐷)(1 / 𝑥)))) = 𝐽)
119118, 3eqeltrd 2835 . . . 4 ((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐴𝑋𝐴 ≼ ω ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) → (topGen‘ran (𝑥 ∈ ℕ, 𝑦𝐴 ↦ (𝑦(ball‘𝐷)(1 / 𝑥)))) ∈ Top)
120 tgclb 22913 . . . 4 (ran (𝑥 ∈ ℕ, 𝑦𝐴 ↦ (𝑦(ball‘𝐷)(1 / 𝑥))) ∈ TopBases ↔ (topGen‘ran (𝑥 ∈ ℕ, 𝑦𝐴 ↦ (𝑦(ball‘𝐷)(1 / 𝑥)))) ∈ Top)
121119, 120sylibr 234 . . 3 ((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐴𝑋𝐴 ≼ ω ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) → ran (𝑥 ∈ ℕ, 𝑦𝐴 ↦ (𝑦(ball‘𝐷)(1 / 𝑥))) ∈ TopBases)
122 omelon 9665 . . . . . 6 ω ∈ On
123 simpr2 1196 . . . . . . . 8 ((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐴𝑋𝐴 ≼ ω ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) → 𝐴 ≼ ω)
124 nnex 12251 . . . . . . . . 9 ℕ ∈ V
125124xpdom2 9086 . . . . . . . 8 (𝐴 ≼ ω → (ℕ × 𝐴) ≼ (ℕ × ω))
126123, 125syl 17 . . . . . . 7 ((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐴𝑋𝐴 ≼ ω ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) → (ℕ × 𝐴) ≼ (ℕ × ω))
127 nnenom 14003 . . . . . . . . 9 ℕ ≈ ω
128 omex 9662 . . . . . . . . . 10 ω ∈ V
129128enref 9004 . . . . . . . . 9 ω ≈ ω
130 xpen 9159 . . . . . . . . 9 ((ℕ ≈ ω ∧ ω ≈ ω) → (ℕ × ω) ≈ (ω × ω))
131127, 129, 130mp2an 692 . . . . . . . 8 (ℕ × ω) ≈ (ω × ω)
132 xpomen 10034 . . . . . . . 8 (ω × ω) ≈ ω
133131, 132entri 9027 . . . . . . 7 (ℕ × ω) ≈ ω
134 domentr 9032 . . . . . . 7 (((ℕ × 𝐴) ≼ (ℕ × ω) ∧ (ℕ × ω) ≈ ω) → (ℕ × 𝐴) ≼ ω)
135126, 133, 134sylancl 586 . . . . . 6 ((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐴𝑋𝐴 ≼ ω ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) → (ℕ × 𝐴) ≼ ω)
136 ondomen 10056 . . . . . 6 ((ω ∈ On ∧ (ℕ × 𝐴) ≼ ω) → (ℕ × 𝐴) ∈ dom card)
137122, 135, 136sylancr 587 . . . . 5 ((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐴𝑋𝐴 ≼ ω ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) → (ℕ × 𝐴) ∈ dom card)
13817ffnd 6712 . . . . . 6 ((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐴𝑋𝐴 ≼ ω ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) → (𝑥 ∈ ℕ, 𝑦𝐴 ↦ (𝑦(ball‘𝐷)(1 / 𝑥))) Fn (ℕ × 𝐴))
139 dffn4 6801 . . . . . 6 ((𝑥 ∈ ℕ, 𝑦𝐴 ↦ (𝑦(ball‘𝐷)(1 / 𝑥))) Fn (ℕ × 𝐴) ↔ (𝑥 ∈ ℕ, 𝑦𝐴 ↦ (𝑦(ball‘𝐷)(1 / 𝑥))):(ℕ × 𝐴)–onto→ran (𝑥 ∈ ℕ, 𝑦𝐴 ↦ (𝑦(ball‘𝐷)(1 / 𝑥))))
140138, 139sylib 218 . . . . 5 ((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐴𝑋𝐴 ≼ ω ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) → (𝑥 ∈ ℕ, 𝑦𝐴 ↦ (𝑦(ball‘𝐷)(1 / 𝑥))):(ℕ × 𝐴)–onto→ran (𝑥 ∈ ℕ, 𝑦𝐴 ↦ (𝑦(ball‘𝐷)(1 / 𝑥))))
141 fodomnum 10076 . . . . 5 ((ℕ × 𝐴) ∈ dom card → ((𝑥 ∈ ℕ, 𝑦𝐴 ↦ (𝑦(ball‘𝐷)(1 / 𝑥))):(ℕ × 𝐴)–onto→ran (𝑥 ∈ ℕ, 𝑦𝐴 ↦ (𝑦(ball‘𝐷)(1 / 𝑥))) → ran (𝑥 ∈ ℕ, 𝑦𝐴 ↦ (𝑦(ball‘𝐷)(1 / 𝑥))) ≼ (ℕ × 𝐴)))
142137, 140, 141sylc 65 . . . 4 ((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐴𝑋𝐴 ≼ ω ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) → ran (𝑥 ∈ ℕ, 𝑦𝐴 ↦ (𝑦(ball‘𝐷)(1 / 𝑥))) ≼ (ℕ × 𝐴))
143 domtr 9026 . . . 4 ((ran (𝑥 ∈ ℕ, 𝑦𝐴 ↦ (𝑦(ball‘𝐷)(1 / 𝑥))) ≼ (ℕ × 𝐴) ∧ (ℕ × 𝐴) ≼ ω) → ran (𝑥 ∈ ℕ, 𝑦𝐴 ↦ (𝑦(ball‘𝐷)(1 / 𝑥))) ≼ ω)
144142, 135, 143syl2anc 584 . . 3 ((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐴𝑋𝐴 ≼ ω ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) → ran (𝑥 ∈ ℕ, 𝑦𝐴 ↦ (𝑦(ball‘𝐷)(1 / 𝑥))) ≼ ω)
145 2ndci 23391 . . 3 ((ran (𝑥 ∈ ℕ, 𝑦𝐴 ↦ (𝑦(ball‘𝐷)(1 / 𝑥))) ∈ TopBases ∧ ran (𝑥 ∈ ℕ, 𝑦𝐴 ↦ (𝑦(ball‘𝐷)(1 / 𝑥))) ≼ ω) → (topGen‘ran (𝑥 ∈ ℕ, 𝑦𝐴 ↦ (𝑦(ball‘𝐷)(1 / 𝑥)))) ∈ 2ndω)
146121, 144, 145syl2anc 584 . 2 ((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐴𝑋𝐴 ≼ ω ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) → (topGen‘ran (𝑥 ∈ ℕ, 𝑦𝐴 ↦ (𝑦(ball‘𝐷)(1 / 𝑥)))) ∈ 2ndω)
147118, 146eqeltrrd 2836 1 ((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐴𝑋𝐴 ≼ ω ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) → 𝐽 ∈ 2ndω)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wex 1779  wcel 2109  wne 2933  wral 3052  wrex 3061  cin 3930  wss 3931  c0 4313   cuni 4888   class class class wbr 5124   × cxp 5657  dom cdm 5659  ran crn 5660  Oncon0 6357   Fn wfn 6531  wf 6532  ontowfo 6534  cfv 6536  (class class class)co 7410  cmpo 7412  ωcom 7866  cen 8961  cdom 8962  cardccrd 9954  cr 11133  0cc0 11134  1c1 11135  *cxr 11273   < clt 11274  cle 11275   / cdiv 11899  cn 12245  2c2 12300  +crp 13013  topGenctg 17456  ∞Metcxmet 21305  ballcbl 21307  MetOpencmopn 21310  Topctop 22836  TopBasesctb 22888  clsccl 22961  2ndωc2ndc 23381
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-rep 5254  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734  ax-inf2 9660  ax-cnex 11190  ax-resscn 11191  ax-1cn 11192  ax-icn 11193  ax-addcl 11194  ax-addrcl 11195  ax-mulcl 11196  ax-mulrcl 11197  ax-mulcom 11198  ax-addass 11199  ax-mulass 11200  ax-distr 11201  ax-i2m1 11202  ax-1ne0 11203  ax-1rid 11204  ax-rnegex 11205  ax-rrecex 11206  ax-cnre 11207  ax-pre-lttri 11208  ax-pre-lttrn 11209  ax-pre-ltadd 11210  ax-pre-mulgt0 11211  ax-pre-sup 11212
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-nel 3038  df-ral 3053  df-rex 3062  df-rmo 3364  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-int 4928  df-iun 4974  df-iin 4975  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-se 5612  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-pred 6295  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-isom 6545  df-riota 7367  df-ov 7413  df-oprab 7414  df-mpo 7415  df-om 7867  df-1st 7993  df-2nd 7994  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-1o 8485  df-er 8724  df-map 8847  df-en 8965  df-dom 8966  df-sdom 8967  df-fin 8968  df-sup 9459  df-inf 9460  df-oi 9529  df-card 9958  df-acn 9961  df-pnf 11276  df-mnf 11277  df-xr 11278  df-ltxr 11279  df-le 11280  df-sub 11473  df-neg 11474  df-div 11900  df-nn 12246  df-2 12308  df-n0 12507  df-z 12594  df-uz 12858  df-q 12970  df-rp 13014  df-xneg 13133  df-xadd 13134  df-xmul 13135  df-topgen 17462  df-psmet 21312  df-xmet 21313  df-bl 21315  df-mopn 21316  df-top 22837  df-topon 22854  df-bases 22889  df-cld 22962  df-ntr 22963  df-cls 22964  df-2ndc 23383
This theorem is referenced by:  met2ndc  24467
  Copyright terms: Public domain W3C validator