Step | Hyp | Ref
| Expression |
1 | | methaus.1 |
. . . . 5
⊢ 𝐽 = (MetOpen‘𝐷) |
2 | 1 | mopntop 23664 |
. . . 4
⊢ (𝐷 ∈ (∞Met‘𝑋) → 𝐽 ∈ Top) |
3 | 2 | adantr 481 |
. . 3
⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐴 ⊆ 𝑋 ∧ 𝐴 ≼ ω ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) → 𝐽 ∈ Top) |
4 | | simpll 764 |
. . . . . . 7
⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐴 ⊆ 𝑋 ∧ 𝐴 ≼ ω ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) ∧ (𝑥 ∈ ℕ ∧ 𝑦 ∈ 𝐴)) → 𝐷 ∈ (∞Met‘𝑋)) |
5 | | simplr1 1214 |
. . . . . . . 8
⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐴 ⊆ 𝑋 ∧ 𝐴 ≼ ω ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) ∧ (𝑥 ∈ ℕ ∧ 𝑦 ∈ 𝐴)) → 𝐴 ⊆ 𝑋) |
6 | | simprr 770 |
. . . . . . . 8
⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐴 ⊆ 𝑋 ∧ 𝐴 ≼ ω ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) ∧ (𝑥 ∈ ℕ ∧ 𝑦 ∈ 𝐴)) → 𝑦 ∈ 𝐴) |
7 | 5, 6 | sseldd 3931 |
. . . . . . 7
⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐴 ⊆ 𝑋 ∧ 𝐴 ≼ ω ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) ∧ (𝑥 ∈ ℕ ∧ 𝑦 ∈ 𝐴)) → 𝑦 ∈ 𝑋) |
8 | | simprl 768 |
. . . . . . . . . 10
⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐴 ⊆ 𝑋 ∧ 𝐴 ≼ ω ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) ∧ (𝑥 ∈ ℕ ∧ 𝑦 ∈ 𝐴)) → 𝑥 ∈ ℕ) |
9 | 8 | nnrpd 12840 |
. . . . . . . . 9
⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐴 ⊆ 𝑋 ∧ 𝐴 ≼ ω ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) ∧ (𝑥 ∈ ℕ ∧ 𝑦 ∈ 𝐴)) → 𝑥 ∈ ℝ+) |
10 | 9 | rpreccld 12852 |
. . . . . . . 8
⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐴 ⊆ 𝑋 ∧ 𝐴 ≼ ω ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) ∧ (𝑥 ∈ ℕ ∧ 𝑦 ∈ 𝐴)) → (1 / 𝑥) ∈
ℝ+) |
11 | 10 | rpxrd 12843 |
. . . . . . 7
⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐴 ⊆ 𝑋 ∧ 𝐴 ≼ ω ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) ∧ (𝑥 ∈ ℕ ∧ 𝑦 ∈ 𝐴)) → (1 / 𝑥) ∈
ℝ*) |
12 | 1 | blopn 23727 |
. . . . . . 7
⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑦 ∈ 𝑋 ∧ (1 / 𝑥) ∈ ℝ*) → (𝑦(ball‘𝐷)(1 / 𝑥)) ∈ 𝐽) |
13 | 4, 7, 11, 12 | syl3anc 1370 |
. . . . . 6
⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐴 ⊆ 𝑋 ∧ 𝐴 ≼ ω ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) ∧ (𝑥 ∈ ℕ ∧ 𝑦 ∈ 𝐴)) → (𝑦(ball‘𝐷)(1 / 𝑥)) ∈ 𝐽) |
14 | 13 | ralrimivva 3194 |
. . . . 5
⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐴 ⊆ 𝑋 ∧ 𝐴 ≼ ω ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) → ∀𝑥 ∈ ℕ ∀𝑦 ∈ 𝐴 (𝑦(ball‘𝐷)(1 / 𝑥)) ∈ 𝐽) |
15 | | eqid 2737 |
. . . . . 6
⊢ (𝑥 ∈ ℕ, 𝑦 ∈ 𝐴 ↦ (𝑦(ball‘𝐷)(1 / 𝑥))) = (𝑥 ∈ ℕ, 𝑦 ∈ 𝐴 ↦ (𝑦(ball‘𝐷)(1 / 𝑥))) |
16 | 15 | fmpo 7951 |
. . . . 5
⊢
(∀𝑥 ∈
ℕ ∀𝑦 ∈
𝐴 (𝑦(ball‘𝐷)(1 / 𝑥)) ∈ 𝐽 ↔ (𝑥 ∈ ℕ, 𝑦 ∈ 𝐴 ↦ (𝑦(ball‘𝐷)(1 / 𝑥))):(ℕ × 𝐴)⟶𝐽) |
17 | 14, 16 | sylib 217 |
. . . 4
⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐴 ⊆ 𝑋 ∧ 𝐴 ≼ ω ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) → (𝑥 ∈ ℕ, 𝑦 ∈ 𝐴 ↦ (𝑦(ball‘𝐷)(1 / 𝑥))):(ℕ × 𝐴)⟶𝐽) |
18 | 17 | frnd 6643 |
. . 3
⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐴 ⊆ 𝑋 ∧ 𝐴 ≼ ω ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) → ran (𝑥 ∈ ℕ, 𝑦 ∈ 𝐴 ↦ (𝑦(ball‘𝐷)(1 / 𝑥))) ⊆ 𝐽) |
19 | | simpll 764 |
. . . . . 6
⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐴 ⊆ 𝑋 ∧ 𝐴 ≼ ω ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) ∧ (𝑢 ∈ 𝐽 ∧ 𝑧 ∈ 𝑢)) → 𝐷 ∈ (∞Met‘𝑋)) |
20 | | simprl 768 |
. . . . . 6
⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐴 ⊆ 𝑋 ∧ 𝐴 ≼ ω ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) ∧ (𝑢 ∈ 𝐽 ∧ 𝑧 ∈ 𝑢)) → 𝑢 ∈ 𝐽) |
21 | | simprr 770 |
. . . . . 6
⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐴 ⊆ 𝑋 ∧ 𝐴 ≼ ω ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) ∧ (𝑢 ∈ 𝐽 ∧ 𝑧 ∈ 𝑢)) → 𝑧 ∈ 𝑢) |
22 | 1 | mopni2 23720 |
. . . . . 6
⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑢 ∈ 𝐽 ∧ 𝑧 ∈ 𝑢) → ∃𝑟 ∈ ℝ+ (𝑧(ball‘𝐷)𝑟) ⊆ 𝑢) |
23 | 19, 20, 21, 22 | syl3anc 1370 |
. . . . 5
⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐴 ⊆ 𝑋 ∧ 𝐴 ≼ ω ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) ∧ (𝑢 ∈ 𝐽 ∧ 𝑧 ∈ 𝑢)) → ∃𝑟 ∈ ℝ+ (𝑧(ball‘𝐷)𝑟) ⊆ 𝑢) |
24 | | simprl 768 |
. . . . . . . 8
⊢ ((((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐴 ⊆ 𝑋 ∧ 𝐴 ≼ ω ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) ∧ (𝑢 ∈ 𝐽 ∧ 𝑧 ∈ 𝑢)) ∧ (𝑟 ∈ ℝ+ ∧ (𝑧(ball‘𝐷)𝑟) ⊆ 𝑢)) → 𝑟 ∈ ℝ+) |
25 | 24 | rphalfcld 12854 |
. . . . . . 7
⊢ ((((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐴 ⊆ 𝑋 ∧ 𝐴 ≼ ω ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) ∧ (𝑢 ∈ 𝐽 ∧ 𝑧 ∈ 𝑢)) ∧ (𝑟 ∈ ℝ+ ∧ (𝑧(ball‘𝐷)𝑟) ⊆ 𝑢)) → (𝑟 / 2) ∈
ℝ+) |
26 | | elrp 12802 |
. . . . . . . 8
⊢ ((𝑟 / 2) ∈ ℝ+
↔ ((𝑟 / 2) ∈
ℝ ∧ 0 < (𝑟 /
2))) |
27 | | nnrecl 12301 |
. . . . . . . 8
⊢ (((𝑟 / 2) ∈ ℝ ∧ 0
< (𝑟 / 2)) →
∃𝑛 ∈ ℕ (1
/ 𝑛) < (𝑟 / 2)) |
28 | 26, 27 | sylbi 216 |
. . . . . . 7
⊢ ((𝑟 / 2) ∈ ℝ+
→ ∃𝑛 ∈
ℕ (1 / 𝑛) < (𝑟 / 2)) |
29 | 25, 28 | syl 17 |
. . . . . 6
⊢ ((((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐴 ⊆ 𝑋 ∧ 𝐴 ≼ ω ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) ∧ (𝑢 ∈ 𝐽 ∧ 𝑧 ∈ 𝑢)) ∧ (𝑟 ∈ ℝ+ ∧ (𝑧(ball‘𝐷)𝑟) ⊆ 𝑢)) → ∃𝑛 ∈ ℕ (1 / 𝑛) < (𝑟 / 2)) |
30 | 3 | ad2antrr 723 |
. . . . . . . . . 10
⊢ ((((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐴 ⊆ 𝑋 ∧ 𝐴 ≼ ω ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) ∧ (𝑢 ∈ 𝐽 ∧ 𝑧 ∈ 𝑢)) ∧ ((𝑟 ∈ ℝ+ ∧ (𝑧(ball‘𝐷)𝑟) ⊆ 𝑢) ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (𝑟 / 2)))) → 𝐽 ∈ Top) |
31 | | simpr1 1193 |
. . . . . . . . . . . 12
⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐴 ⊆ 𝑋 ∧ 𝐴 ≼ ω ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) → 𝐴 ⊆ 𝑋) |
32 | 31 | ad2antrr 723 |
. . . . . . . . . . 11
⊢ ((((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐴 ⊆ 𝑋 ∧ 𝐴 ≼ ω ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) ∧ (𝑢 ∈ 𝐽 ∧ 𝑧 ∈ 𝑢)) ∧ ((𝑟 ∈ ℝ+ ∧ (𝑧(ball‘𝐷)𝑟) ⊆ 𝑢) ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (𝑟 / 2)))) → 𝐴 ⊆ 𝑋) |
33 | 1 | mopnuni 23665 |
. . . . . . . . . . . 12
⊢ (𝐷 ∈ (∞Met‘𝑋) → 𝑋 = ∪ 𝐽) |
34 | 33 | ad3antrrr 727 |
. . . . . . . . . . 11
⊢ ((((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐴 ⊆ 𝑋 ∧ 𝐴 ≼ ω ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) ∧ (𝑢 ∈ 𝐽 ∧ 𝑧 ∈ 𝑢)) ∧ ((𝑟 ∈ ℝ+ ∧ (𝑧(ball‘𝐷)𝑟) ⊆ 𝑢) ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (𝑟 / 2)))) → 𝑋 = ∪ 𝐽) |
35 | 32, 34 | sseqtrd 3970 |
. . . . . . . . . 10
⊢ ((((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐴 ⊆ 𝑋 ∧ 𝐴 ≼ ω ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) ∧ (𝑢 ∈ 𝐽 ∧ 𝑧 ∈ 𝑢)) ∧ ((𝑟 ∈ ℝ+ ∧ (𝑧(ball‘𝐷)𝑟) ⊆ 𝑢) ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (𝑟 / 2)))) → 𝐴 ⊆ ∪ 𝐽) |
36 | | simplrr 775 |
. . . . . . . . . . . . 13
⊢ ((((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐴 ⊆ 𝑋 ∧ 𝐴 ≼ ω ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) ∧ (𝑢 ∈ 𝐽 ∧ 𝑧 ∈ 𝑢)) ∧ ((𝑟 ∈ ℝ+ ∧ (𝑧(ball‘𝐷)𝑟) ⊆ 𝑢) ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (𝑟 / 2)))) → 𝑧 ∈ 𝑢) |
37 | | simplrl 774 |
. . . . . . . . . . . . 13
⊢ ((((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐴 ⊆ 𝑋 ∧ 𝐴 ≼ ω ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) ∧ (𝑢 ∈ 𝐽 ∧ 𝑧 ∈ 𝑢)) ∧ ((𝑟 ∈ ℝ+ ∧ (𝑧(ball‘𝐷)𝑟) ⊆ 𝑢) ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (𝑟 / 2)))) → 𝑢 ∈ 𝐽) |
38 | | elunii 4853 |
. . . . . . . . . . . . 13
⊢ ((𝑧 ∈ 𝑢 ∧ 𝑢 ∈ 𝐽) → 𝑧 ∈ ∪ 𝐽) |
39 | 36, 37, 38 | syl2anc 584 |
. . . . . . . . . . . 12
⊢ ((((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐴 ⊆ 𝑋 ∧ 𝐴 ≼ ω ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) ∧ (𝑢 ∈ 𝐽 ∧ 𝑧 ∈ 𝑢)) ∧ ((𝑟 ∈ ℝ+ ∧ (𝑧(ball‘𝐷)𝑟) ⊆ 𝑢) ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (𝑟 / 2)))) → 𝑧 ∈ ∪ 𝐽) |
40 | 39, 34 | eleqtrrd 2841 |
. . . . . . . . . . 11
⊢ ((((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐴 ⊆ 𝑋 ∧ 𝐴 ≼ ω ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) ∧ (𝑢 ∈ 𝐽 ∧ 𝑧 ∈ 𝑢)) ∧ ((𝑟 ∈ ℝ+ ∧ (𝑧(ball‘𝐷)𝑟) ⊆ 𝑢) ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (𝑟 / 2)))) → 𝑧 ∈ 𝑋) |
41 | | simpr3 1195 |
. . . . . . . . . . . 12
⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐴 ⊆ 𝑋 ∧ 𝐴 ≼ ω ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) → ((cls‘𝐽)‘𝐴) = 𝑋) |
42 | 41 | ad2antrr 723 |
. . . . . . . . . . 11
⊢ ((((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐴 ⊆ 𝑋 ∧ 𝐴 ≼ ω ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) ∧ (𝑢 ∈ 𝐽 ∧ 𝑧 ∈ 𝑢)) ∧ ((𝑟 ∈ ℝ+ ∧ (𝑧(ball‘𝐷)𝑟) ⊆ 𝑢) ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (𝑟 / 2)))) → ((cls‘𝐽)‘𝐴) = 𝑋) |
43 | 40, 42 | eleqtrrd 2841 |
. . . . . . . . . 10
⊢ ((((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐴 ⊆ 𝑋 ∧ 𝐴 ≼ ω ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) ∧ (𝑢 ∈ 𝐽 ∧ 𝑧 ∈ 𝑢)) ∧ ((𝑟 ∈ ℝ+ ∧ (𝑧(ball‘𝐷)𝑟) ⊆ 𝑢) ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (𝑟 / 2)))) → 𝑧 ∈ ((cls‘𝐽)‘𝐴)) |
44 | 19 | adantr 481 |
. . . . . . . . . . 11
⊢ ((((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐴 ⊆ 𝑋 ∧ 𝐴 ≼ ω ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) ∧ (𝑢 ∈ 𝐽 ∧ 𝑧 ∈ 𝑢)) ∧ ((𝑟 ∈ ℝ+ ∧ (𝑧(ball‘𝐷)𝑟) ⊆ 𝑢) ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (𝑟 / 2)))) → 𝐷 ∈ (∞Met‘𝑋)) |
45 | | simprrl 778 |
. . . . . . . . . . . . . 14
⊢ ((((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐴 ⊆ 𝑋 ∧ 𝐴 ≼ ω ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) ∧ (𝑢 ∈ 𝐽 ∧ 𝑧 ∈ 𝑢)) ∧ ((𝑟 ∈ ℝ+ ∧ (𝑧(ball‘𝐷)𝑟) ⊆ 𝑢) ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (𝑟 / 2)))) → 𝑛 ∈ ℕ) |
46 | 45 | nnrpd 12840 |
. . . . . . . . . . . . 13
⊢ ((((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐴 ⊆ 𝑋 ∧ 𝐴 ≼ ω ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) ∧ (𝑢 ∈ 𝐽 ∧ 𝑧 ∈ 𝑢)) ∧ ((𝑟 ∈ ℝ+ ∧ (𝑧(ball‘𝐷)𝑟) ⊆ 𝑢) ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (𝑟 / 2)))) → 𝑛 ∈ ℝ+) |
47 | 46 | rpreccld 12852 |
. . . . . . . . . . . 12
⊢ ((((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐴 ⊆ 𝑋 ∧ 𝐴 ≼ ω ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) ∧ (𝑢 ∈ 𝐽 ∧ 𝑧 ∈ 𝑢)) ∧ ((𝑟 ∈ ℝ+ ∧ (𝑧(ball‘𝐷)𝑟) ⊆ 𝑢) ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (𝑟 / 2)))) → (1 / 𝑛) ∈
ℝ+) |
48 | 47 | rpxrd 12843 |
. . . . . . . . . . 11
⊢ ((((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐴 ⊆ 𝑋 ∧ 𝐴 ≼ ω ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) ∧ (𝑢 ∈ 𝐽 ∧ 𝑧 ∈ 𝑢)) ∧ ((𝑟 ∈ ℝ+ ∧ (𝑧(ball‘𝐷)𝑟) ⊆ 𝑢) ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (𝑟 / 2)))) → (1 / 𝑛) ∈
ℝ*) |
49 | 1 | blopn 23727 |
. . . . . . . . . . 11
⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑧 ∈ 𝑋 ∧ (1 / 𝑛) ∈ ℝ*) → (𝑧(ball‘𝐷)(1 / 𝑛)) ∈ 𝐽) |
50 | 44, 40, 48, 49 | syl3anc 1370 |
. . . . . . . . . 10
⊢ ((((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐴 ⊆ 𝑋 ∧ 𝐴 ≼ ω ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) ∧ (𝑢 ∈ 𝐽 ∧ 𝑧 ∈ 𝑢)) ∧ ((𝑟 ∈ ℝ+ ∧ (𝑧(ball‘𝐷)𝑟) ⊆ 𝑢) ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (𝑟 / 2)))) → (𝑧(ball‘𝐷)(1 / 𝑛)) ∈ 𝐽) |
51 | | blcntr 23637 |
. . . . . . . . . . 11
⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑧 ∈ 𝑋 ∧ (1 / 𝑛) ∈ ℝ+) → 𝑧 ∈ (𝑧(ball‘𝐷)(1 / 𝑛))) |
52 | 44, 40, 47, 51 | syl3anc 1370 |
. . . . . . . . . 10
⊢ ((((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐴 ⊆ 𝑋 ∧ 𝐴 ≼ ω ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) ∧ (𝑢 ∈ 𝐽 ∧ 𝑧 ∈ 𝑢)) ∧ ((𝑟 ∈ ℝ+ ∧ (𝑧(ball‘𝐷)𝑟) ⊆ 𝑢) ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (𝑟 / 2)))) → 𝑧 ∈ (𝑧(ball‘𝐷)(1 / 𝑛))) |
53 | | eqid 2737 |
. . . . . . . . . . 11
⊢ ∪ 𝐽 =
∪ 𝐽 |
54 | 53 | clsndisj 22297 |
. . . . . . . . . 10
⊢ (((𝐽 ∈ Top ∧ 𝐴 ⊆ ∪ 𝐽
∧ 𝑧 ∈
((cls‘𝐽)‘𝐴)) ∧ ((𝑧(ball‘𝐷)(1 / 𝑛)) ∈ 𝐽 ∧ 𝑧 ∈ (𝑧(ball‘𝐷)(1 / 𝑛)))) → ((𝑧(ball‘𝐷)(1 / 𝑛)) ∩ 𝐴) ≠ ∅) |
55 | 30, 35, 43, 50, 52, 54 | syl32anc 1377 |
. . . . . . . . 9
⊢ ((((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐴 ⊆ 𝑋 ∧ 𝐴 ≼ ω ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) ∧ (𝑢 ∈ 𝐽 ∧ 𝑧 ∈ 𝑢)) ∧ ((𝑟 ∈ ℝ+ ∧ (𝑧(ball‘𝐷)𝑟) ⊆ 𝑢) ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (𝑟 / 2)))) → ((𝑧(ball‘𝐷)(1 / 𝑛)) ∩ 𝐴) ≠ ∅) |
56 | | n0 4290 |
. . . . . . . . 9
⊢ (((𝑧(ball‘𝐷)(1 / 𝑛)) ∩ 𝐴) ≠ ∅ ↔ ∃𝑡 𝑡 ∈ ((𝑧(ball‘𝐷)(1 / 𝑛)) ∩ 𝐴)) |
57 | 55, 56 | sylib 217 |
. . . . . . . 8
⊢ ((((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐴 ⊆ 𝑋 ∧ 𝐴 ≼ ω ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) ∧ (𝑢 ∈ 𝐽 ∧ 𝑧 ∈ 𝑢)) ∧ ((𝑟 ∈ ℝ+ ∧ (𝑧(ball‘𝐷)𝑟) ⊆ 𝑢) ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (𝑟 / 2)))) → ∃𝑡 𝑡 ∈ ((𝑧(ball‘𝐷)(1 / 𝑛)) ∩ 𝐴)) |
58 | 45 | adantr 481 |
. . . . . . . . . . 11
⊢
(((((𝐷 ∈
(∞Met‘𝑋) ∧
(𝐴 ⊆ 𝑋 ∧ 𝐴 ≼ ω ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) ∧ (𝑢 ∈ 𝐽 ∧ 𝑧 ∈ 𝑢)) ∧ ((𝑟 ∈ ℝ+ ∧ (𝑧(ball‘𝐷)𝑟) ⊆ 𝑢) ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (𝑟 / 2)))) ∧ 𝑡 ∈ ((𝑧(ball‘𝐷)(1 / 𝑛)) ∩ 𝐴)) → 𝑛 ∈ ℕ) |
59 | | simpr 485 |
. . . . . . . . . . . 12
⊢
(((((𝐷 ∈
(∞Met‘𝑋) ∧
(𝐴 ⊆ 𝑋 ∧ 𝐴 ≼ ω ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) ∧ (𝑢 ∈ 𝐽 ∧ 𝑧 ∈ 𝑢)) ∧ ((𝑟 ∈ ℝ+ ∧ (𝑧(ball‘𝐷)𝑟) ⊆ 𝑢) ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (𝑟 / 2)))) ∧ 𝑡 ∈ ((𝑧(ball‘𝐷)(1 / 𝑛)) ∩ 𝐴)) → 𝑡 ∈ ((𝑧(ball‘𝐷)(1 / 𝑛)) ∩ 𝐴)) |
60 | 59 | elin2d 4143 |
. . . . . . . . . . 11
⊢
(((((𝐷 ∈
(∞Met‘𝑋) ∧
(𝐴 ⊆ 𝑋 ∧ 𝐴 ≼ ω ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) ∧ (𝑢 ∈ 𝐽 ∧ 𝑧 ∈ 𝑢)) ∧ ((𝑟 ∈ ℝ+ ∧ (𝑧(ball‘𝐷)𝑟) ⊆ 𝑢) ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (𝑟 / 2)))) ∧ 𝑡 ∈ ((𝑧(ball‘𝐷)(1 / 𝑛)) ∩ 𝐴)) → 𝑡 ∈ 𝐴) |
61 | | eqidd 2738 |
. . . . . . . . . . 11
⊢
(((((𝐷 ∈
(∞Met‘𝑋) ∧
(𝐴 ⊆ 𝑋 ∧ 𝐴 ≼ ω ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) ∧ (𝑢 ∈ 𝐽 ∧ 𝑧 ∈ 𝑢)) ∧ ((𝑟 ∈ ℝ+ ∧ (𝑧(ball‘𝐷)𝑟) ⊆ 𝑢) ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (𝑟 / 2)))) ∧ 𝑡 ∈ ((𝑧(ball‘𝐷)(1 / 𝑛)) ∩ 𝐴)) → (𝑡(ball‘𝐷)(1 / 𝑛)) = (𝑡(ball‘𝐷)(1 / 𝑛))) |
62 | | oveq2 7321 |
. . . . . . . . . . . . . 14
⊢ (𝑥 = 𝑛 → (1 / 𝑥) = (1 / 𝑛)) |
63 | 62 | oveq2d 7329 |
. . . . . . . . . . . . 13
⊢ (𝑥 = 𝑛 → (𝑦(ball‘𝐷)(1 / 𝑥)) = (𝑦(ball‘𝐷)(1 / 𝑛))) |
64 | 63 | eqeq2d 2748 |
. . . . . . . . . . . 12
⊢ (𝑥 = 𝑛 → ((𝑡(ball‘𝐷)(1 / 𝑛)) = (𝑦(ball‘𝐷)(1 / 𝑥)) ↔ (𝑡(ball‘𝐷)(1 / 𝑛)) = (𝑦(ball‘𝐷)(1 / 𝑛)))) |
65 | | oveq1 7320 |
. . . . . . . . . . . . 13
⊢ (𝑦 = 𝑡 → (𝑦(ball‘𝐷)(1 / 𝑛)) = (𝑡(ball‘𝐷)(1 / 𝑛))) |
66 | 65 | eqeq2d 2748 |
. . . . . . . . . . . 12
⊢ (𝑦 = 𝑡 → ((𝑡(ball‘𝐷)(1 / 𝑛)) = (𝑦(ball‘𝐷)(1 / 𝑛)) ↔ (𝑡(ball‘𝐷)(1 / 𝑛)) = (𝑡(ball‘𝐷)(1 / 𝑛)))) |
67 | 64, 66 | rspc2ev 3581 |
. . . . . . . . . . 11
⊢ ((𝑛 ∈ ℕ ∧ 𝑡 ∈ 𝐴 ∧ (𝑡(ball‘𝐷)(1 / 𝑛)) = (𝑡(ball‘𝐷)(1 / 𝑛))) → ∃𝑥 ∈ ℕ ∃𝑦 ∈ 𝐴 (𝑡(ball‘𝐷)(1 / 𝑛)) = (𝑦(ball‘𝐷)(1 / 𝑥))) |
68 | 58, 60, 61, 67 | syl3anc 1370 |
. . . . . . . . . 10
⊢
(((((𝐷 ∈
(∞Met‘𝑋) ∧
(𝐴 ⊆ 𝑋 ∧ 𝐴 ≼ ω ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) ∧ (𝑢 ∈ 𝐽 ∧ 𝑧 ∈ 𝑢)) ∧ ((𝑟 ∈ ℝ+ ∧ (𝑧(ball‘𝐷)𝑟) ⊆ 𝑢) ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (𝑟 / 2)))) ∧ 𝑡 ∈ ((𝑧(ball‘𝐷)(1 / 𝑛)) ∩ 𝐴)) → ∃𝑥 ∈ ℕ ∃𝑦 ∈ 𝐴 (𝑡(ball‘𝐷)(1 / 𝑛)) = (𝑦(ball‘𝐷)(1 / 𝑥))) |
69 | | ovex 7346 |
. . . . . . . . . . 11
⊢ (𝑡(ball‘𝐷)(1 / 𝑛)) ∈ V |
70 | | eqeq1 2741 |
. . . . . . . . . . . 12
⊢ (𝑧 = (𝑡(ball‘𝐷)(1 / 𝑛)) → (𝑧 = (𝑦(ball‘𝐷)(1 / 𝑥)) ↔ (𝑡(ball‘𝐷)(1 / 𝑛)) = (𝑦(ball‘𝐷)(1 / 𝑥)))) |
71 | 70 | 2rexbidv 3210 |
. . . . . . . . . . 11
⊢ (𝑧 = (𝑡(ball‘𝐷)(1 / 𝑛)) → (∃𝑥 ∈ ℕ ∃𝑦 ∈ 𝐴 𝑧 = (𝑦(ball‘𝐷)(1 / 𝑥)) ↔ ∃𝑥 ∈ ℕ ∃𝑦 ∈ 𝐴 (𝑡(ball‘𝐷)(1 / 𝑛)) = (𝑦(ball‘𝐷)(1 / 𝑥)))) |
72 | 15 | rnmpo 7445 |
. . . . . . . . . . 11
⊢ ran
(𝑥 ∈ ℕ, 𝑦 ∈ 𝐴 ↦ (𝑦(ball‘𝐷)(1 / 𝑥))) = {𝑧 ∣ ∃𝑥 ∈ ℕ ∃𝑦 ∈ 𝐴 𝑧 = (𝑦(ball‘𝐷)(1 / 𝑥))} |
73 | 69, 71, 72 | elab2 3622 |
. . . . . . . . . 10
⊢ ((𝑡(ball‘𝐷)(1 / 𝑛)) ∈ ran (𝑥 ∈ ℕ, 𝑦 ∈ 𝐴 ↦ (𝑦(ball‘𝐷)(1 / 𝑥))) ↔ ∃𝑥 ∈ ℕ ∃𝑦 ∈ 𝐴 (𝑡(ball‘𝐷)(1 / 𝑛)) = (𝑦(ball‘𝐷)(1 / 𝑥))) |
74 | 68, 73 | sylibr 233 |
. . . . . . . . 9
⊢
(((((𝐷 ∈
(∞Met‘𝑋) ∧
(𝐴 ⊆ 𝑋 ∧ 𝐴 ≼ ω ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) ∧ (𝑢 ∈ 𝐽 ∧ 𝑧 ∈ 𝑢)) ∧ ((𝑟 ∈ ℝ+ ∧ (𝑧(ball‘𝐷)𝑟) ⊆ 𝑢) ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (𝑟 / 2)))) ∧ 𝑡 ∈ ((𝑧(ball‘𝐷)(1 / 𝑛)) ∩ 𝐴)) → (𝑡(ball‘𝐷)(1 / 𝑛)) ∈ ran (𝑥 ∈ ℕ, 𝑦 ∈ 𝐴 ↦ (𝑦(ball‘𝐷)(1 / 𝑥)))) |
75 | 59 | elin1d 4142 |
. . . . . . . . . 10
⊢
(((((𝐷 ∈
(∞Met‘𝑋) ∧
(𝐴 ⊆ 𝑋 ∧ 𝐴 ≼ ω ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) ∧ (𝑢 ∈ 𝐽 ∧ 𝑧 ∈ 𝑢)) ∧ ((𝑟 ∈ ℝ+ ∧ (𝑧(ball‘𝐷)𝑟) ⊆ 𝑢) ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (𝑟 / 2)))) ∧ 𝑡 ∈ ((𝑧(ball‘𝐷)(1 / 𝑛)) ∩ 𝐴)) → 𝑡 ∈ (𝑧(ball‘𝐷)(1 / 𝑛))) |
76 | 44 | adantr 481 |
. . . . . . . . . . 11
⊢
(((((𝐷 ∈
(∞Met‘𝑋) ∧
(𝐴 ⊆ 𝑋 ∧ 𝐴 ≼ ω ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) ∧ (𝑢 ∈ 𝐽 ∧ 𝑧 ∈ 𝑢)) ∧ ((𝑟 ∈ ℝ+ ∧ (𝑧(ball‘𝐷)𝑟) ⊆ 𝑢) ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (𝑟 / 2)))) ∧ 𝑡 ∈ ((𝑧(ball‘𝐷)(1 / 𝑛)) ∩ 𝐴)) → 𝐷 ∈ (∞Met‘𝑋)) |
77 | 48 | adantr 481 |
. . . . . . . . . . 11
⊢
(((((𝐷 ∈
(∞Met‘𝑋) ∧
(𝐴 ⊆ 𝑋 ∧ 𝐴 ≼ ω ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) ∧ (𝑢 ∈ 𝐽 ∧ 𝑧 ∈ 𝑢)) ∧ ((𝑟 ∈ ℝ+ ∧ (𝑧(ball‘𝐷)𝑟) ⊆ 𝑢) ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (𝑟 / 2)))) ∧ 𝑡 ∈ ((𝑧(ball‘𝐷)(1 / 𝑛)) ∩ 𝐴)) → (1 / 𝑛) ∈
ℝ*) |
78 | 40 | adantr 481 |
. . . . . . . . . . 11
⊢
(((((𝐷 ∈
(∞Met‘𝑋) ∧
(𝐴 ⊆ 𝑋 ∧ 𝐴 ≼ ω ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) ∧ (𝑢 ∈ 𝐽 ∧ 𝑧 ∈ 𝑢)) ∧ ((𝑟 ∈ ℝ+ ∧ (𝑧(ball‘𝐷)𝑟) ⊆ 𝑢) ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (𝑟 / 2)))) ∧ 𝑡 ∈ ((𝑧(ball‘𝐷)(1 / 𝑛)) ∩ 𝐴)) → 𝑧 ∈ 𝑋) |
79 | 32 | adantr 481 |
. . . . . . . . . . . 12
⊢
(((((𝐷 ∈
(∞Met‘𝑋) ∧
(𝐴 ⊆ 𝑋 ∧ 𝐴 ≼ ω ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) ∧ (𝑢 ∈ 𝐽 ∧ 𝑧 ∈ 𝑢)) ∧ ((𝑟 ∈ ℝ+ ∧ (𝑧(ball‘𝐷)𝑟) ⊆ 𝑢) ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (𝑟 / 2)))) ∧ 𝑡 ∈ ((𝑧(ball‘𝐷)(1 / 𝑛)) ∩ 𝐴)) → 𝐴 ⊆ 𝑋) |
80 | 79, 60 | sseldd 3931 |
. . . . . . . . . . 11
⊢
(((((𝐷 ∈
(∞Met‘𝑋) ∧
(𝐴 ⊆ 𝑋 ∧ 𝐴 ≼ ω ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) ∧ (𝑢 ∈ 𝐽 ∧ 𝑧 ∈ 𝑢)) ∧ ((𝑟 ∈ ℝ+ ∧ (𝑧(ball‘𝐷)𝑟) ⊆ 𝑢) ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (𝑟 / 2)))) ∧ 𝑡 ∈ ((𝑧(ball‘𝐷)(1 / 𝑛)) ∩ 𝐴)) → 𝑡 ∈ 𝑋) |
81 | | blcom 23618 |
. . . . . . . . . . 11
⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ (1 / 𝑛) ∈ ℝ*) ∧ (𝑧 ∈ 𝑋 ∧ 𝑡 ∈ 𝑋)) → (𝑡 ∈ (𝑧(ball‘𝐷)(1 / 𝑛)) ↔ 𝑧 ∈ (𝑡(ball‘𝐷)(1 / 𝑛)))) |
82 | 76, 77, 78, 80, 81 | syl22anc 836 |
. . . . . . . . . 10
⊢
(((((𝐷 ∈
(∞Met‘𝑋) ∧
(𝐴 ⊆ 𝑋 ∧ 𝐴 ≼ ω ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) ∧ (𝑢 ∈ 𝐽 ∧ 𝑧 ∈ 𝑢)) ∧ ((𝑟 ∈ ℝ+ ∧ (𝑧(ball‘𝐷)𝑟) ⊆ 𝑢) ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (𝑟 / 2)))) ∧ 𝑡 ∈ ((𝑧(ball‘𝐷)(1 / 𝑛)) ∩ 𝐴)) → (𝑡 ∈ (𝑧(ball‘𝐷)(1 / 𝑛)) ↔ 𝑧 ∈ (𝑡(ball‘𝐷)(1 / 𝑛)))) |
83 | 75, 82 | mpbid 231 |
. . . . . . . . 9
⊢
(((((𝐷 ∈
(∞Met‘𝑋) ∧
(𝐴 ⊆ 𝑋 ∧ 𝐴 ≼ ω ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) ∧ (𝑢 ∈ 𝐽 ∧ 𝑧 ∈ 𝑢)) ∧ ((𝑟 ∈ ℝ+ ∧ (𝑧(ball‘𝐷)𝑟) ⊆ 𝑢) ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (𝑟 / 2)))) ∧ 𝑡 ∈ ((𝑧(ball‘𝐷)(1 / 𝑛)) ∩ 𝐴)) → 𝑧 ∈ (𝑡(ball‘𝐷)(1 / 𝑛))) |
84 | | simprll 776 |
. . . . . . . . . . . . . 14
⊢ ((((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐴 ⊆ 𝑋 ∧ 𝐴 ≼ ω ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) ∧ (𝑢 ∈ 𝐽 ∧ 𝑧 ∈ 𝑢)) ∧ ((𝑟 ∈ ℝ+ ∧ (𝑧(ball‘𝐷)𝑟) ⊆ 𝑢) ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (𝑟 / 2)))) → 𝑟 ∈ ℝ+) |
85 | 84 | adantr 481 |
. . . . . . . . . . . . 13
⊢
(((((𝐷 ∈
(∞Met‘𝑋) ∧
(𝐴 ⊆ 𝑋 ∧ 𝐴 ≼ ω ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) ∧ (𝑢 ∈ 𝐽 ∧ 𝑧 ∈ 𝑢)) ∧ ((𝑟 ∈ ℝ+ ∧ (𝑧(ball‘𝐷)𝑟) ⊆ 𝑢) ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (𝑟 / 2)))) ∧ 𝑡 ∈ ((𝑧(ball‘𝐷)(1 / 𝑛)) ∩ 𝐴)) → 𝑟 ∈ ℝ+) |
86 | 85 | rphalfcld 12854 |
. . . . . . . . . . . 12
⊢
(((((𝐷 ∈
(∞Met‘𝑋) ∧
(𝐴 ⊆ 𝑋 ∧ 𝐴 ≼ ω ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) ∧ (𝑢 ∈ 𝐽 ∧ 𝑧 ∈ 𝑢)) ∧ ((𝑟 ∈ ℝ+ ∧ (𝑧(ball‘𝐷)𝑟) ⊆ 𝑢) ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (𝑟 / 2)))) ∧ 𝑡 ∈ ((𝑧(ball‘𝐷)(1 / 𝑛)) ∩ 𝐴)) → (𝑟 / 2) ∈
ℝ+) |
87 | 86 | rpxrd 12843 |
. . . . . . . . . . 11
⊢
(((((𝐷 ∈
(∞Met‘𝑋) ∧
(𝐴 ⊆ 𝑋 ∧ 𝐴 ≼ ω ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) ∧ (𝑢 ∈ 𝐽 ∧ 𝑧 ∈ 𝑢)) ∧ ((𝑟 ∈ ℝ+ ∧ (𝑧(ball‘𝐷)𝑟) ⊆ 𝑢) ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (𝑟 / 2)))) ∧ 𝑡 ∈ ((𝑧(ball‘𝐷)(1 / 𝑛)) ∩ 𝐴)) → (𝑟 / 2) ∈
ℝ*) |
88 | | simprrr 779 |
. . . . . . . . . . . . 13
⊢ ((((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐴 ⊆ 𝑋 ∧ 𝐴 ≼ ω ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) ∧ (𝑢 ∈ 𝐽 ∧ 𝑧 ∈ 𝑢)) ∧ ((𝑟 ∈ ℝ+ ∧ (𝑧(ball‘𝐷)𝑟) ⊆ 𝑢) ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (𝑟 / 2)))) → (1 / 𝑛) < (𝑟 / 2)) |
89 | 84 | rphalfcld 12854 |
. . . . . . . . . . . . . 14
⊢ ((((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐴 ⊆ 𝑋 ∧ 𝐴 ≼ ω ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) ∧ (𝑢 ∈ 𝐽 ∧ 𝑧 ∈ 𝑢)) ∧ ((𝑟 ∈ ℝ+ ∧ (𝑧(ball‘𝐷)𝑟) ⊆ 𝑢) ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (𝑟 / 2)))) → (𝑟 / 2) ∈
ℝ+) |
90 | | rpre 12808 |
. . . . . . . . . . . . . . 15
⊢ ((1 /
𝑛) ∈
ℝ+ → (1 / 𝑛) ∈ ℝ) |
91 | | rpre 12808 |
. . . . . . . . . . . . . . 15
⊢ ((𝑟 / 2) ∈ ℝ+
→ (𝑟 / 2) ∈
ℝ) |
92 | | ltle 11133 |
. . . . . . . . . . . . . . 15
⊢ (((1 /
𝑛) ∈ ℝ ∧
(𝑟 / 2) ∈ ℝ)
→ ((1 / 𝑛) < (𝑟 / 2) → (1 / 𝑛) ≤ (𝑟 / 2))) |
93 | 90, 91, 92 | syl2an 596 |
. . . . . . . . . . . . . 14
⊢ (((1 /
𝑛) ∈
ℝ+ ∧ (𝑟 / 2) ∈ ℝ+) → ((1
/ 𝑛) < (𝑟 / 2) → (1 / 𝑛) ≤ (𝑟 / 2))) |
94 | 47, 89, 93 | syl2anc 584 |
. . . . . . . . . . . . 13
⊢ ((((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐴 ⊆ 𝑋 ∧ 𝐴 ≼ ω ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) ∧ (𝑢 ∈ 𝐽 ∧ 𝑧 ∈ 𝑢)) ∧ ((𝑟 ∈ ℝ+ ∧ (𝑧(ball‘𝐷)𝑟) ⊆ 𝑢) ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (𝑟 / 2)))) → ((1 / 𝑛) < (𝑟 / 2) → (1 / 𝑛) ≤ (𝑟 / 2))) |
95 | 88, 94 | mpd 15 |
. . . . . . . . . . . 12
⊢ ((((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐴 ⊆ 𝑋 ∧ 𝐴 ≼ ω ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) ∧ (𝑢 ∈ 𝐽 ∧ 𝑧 ∈ 𝑢)) ∧ ((𝑟 ∈ ℝ+ ∧ (𝑧(ball‘𝐷)𝑟) ⊆ 𝑢) ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (𝑟 / 2)))) → (1 / 𝑛) ≤ (𝑟 / 2)) |
96 | 95 | adantr 481 |
. . . . . . . . . . 11
⊢
(((((𝐷 ∈
(∞Met‘𝑋) ∧
(𝐴 ⊆ 𝑋 ∧ 𝐴 ≼ ω ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) ∧ (𝑢 ∈ 𝐽 ∧ 𝑧 ∈ 𝑢)) ∧ ((𝑟 ∈ ℝ+ ∧ (𝑧(ball‘𝐷)𝑟) ⊆ 𝑢) ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (𝑟 / 2)))) ∧ 𝑡 ∈ ((𝑧(ball‘𝐷)(1 / 𝑛)) ∩ 𝐴)) → (1 / 𝑛) ≤ (𝑟 / 2)) |
97 | | ssbl 23647 |
. . . . . . . . . . 11
⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑡 ∈ 𝑋) ∧ ((1 / 𝑛) ∈ ℝ* ∧ (𝑟 / 2) ∈
ℝ*) ∧ (1 / 𝑛) ≤ (𝑟 / 2)) → (𝑡(ball‘𝐷)(1 / 𝑛)) ⊆ (𝑡(ball‘𝐷)(𝑟 / 2))) |
98 | 76, 80, 77, 87, 96, 97 | syl221anc 1380 |
. . . . . . . . . 10
⊢
(((((𝐷 ∈
(∞Met‘𝑋) ∧
(𝐴 ⊆ 𝑋 ∧ 𝐴 ≼ ω ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) ∧ (𝑢 ∈ 𝐽 ∧ 𝑧 ∈ 𝑢)) ∧ ((𝑟 ∈ ℝ+ ∧ (𝑧(ball‘𝐷)𝑟) ⊆ 𝑢) ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (𝑟 / 2)))) ∧ 𝑡 ∈ ((𝑧(ball‘𝐷)(1 / 𝑛)) ∩ 𝐴)) → (𝑡(ball‘𝐷)(1 / 𝑛)) ⊆ (𝑡(ball‘𝐷)(𝑟 / 2))) |
99 | 85 | rpred 12842 |
. . . . . . . . . . . 12
⊢
(((((𝐷 ∈
(∞Met‘𝑋) ∧
(𝐴 ⊆ 𝑋 ∧ 𝐴 ≼ ω ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) ∧ (𝑢 ∈ 𝐽 ∧ 𝑧 ∈ 𝑢)) ∧ ((𝑟 ∈ ℝ+ ∧ (𝑧(ball‘𝐷)𝑟) ⊆ 𝑢) ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (𝑟 / 2)))) ∧ 𝑡 ∈ ((𝑧(ball‘𝐷)(1 / 𝑛)) ∩ 𝐴)) → 𝑟 ∈ ℝ) |
100 | 98, 83 | sseldd 3931 |
. . . . . . . . . . . 12
⊢
(((((𝐷 ∈
(∞Met‘𝑋) ∧
(𝐴 ⊆ 𝑋 ∧ 𝐴 ≼ ω ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) ∧ (𝑢 ∈ 𝐽 ∧ 𝑧 ∈ 𝑢)) ∧ ((𝑟 ∈ ℝ+ ∧ (𝑧(ball‘𝐷)𝑟) ⊆ 𝑢) ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (𝑟 / 2)))) ∧ 𝑡 ∈ ((𝑧(ball‘𝐷)(1 / 𝑛)) ∩ 𝐴)) → 𝑧 ∈ (𝑡(ball‘𝐷)(𝑟 / 2))) |
101 | | blhalf 23629 |
. . . . . . . . . . . 12
⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑡 ∈ 𝑋) ∧ (𝑟 ∈ ℝ ∧ 𝑧 ∈ (𝑡(ball‘𝐷)(𝑟 / 2)))) → (𝑡(ball‘𝐷)(𝑟 / 2)) ⊆ (𝑧(ball‘𝐷)𝑟)) |
102 | 76, 80, 99, 100, 101 | syl22anc 836 |
. . . . . . . . . . 11
⊢
(((((𝐷 ∈
(∞Met‘𝑋) ∧
(𝐴 ⊆ 𝑋 ∧ 𝐴 ≼ ω ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) ∧ (𝑢 ∈ 𝐽 ∧ 𝑧 ∈ 𝑢)) ∧ ((𝑟 ∈ ℝ+ ∧ (𝑧(ball‘𝐷)𝑟) ⊆ 𝑢) ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (𝑟 / 2)))) ∧ 𝑡 ∈ ((𝑧(ball‘𝐷)(1 / 𝑛)) ∩ 𝐴)) → (𝑡(ball‘𝐷)(𝑟 / 2)) ⊆ (𝑧(ball‘𝐷)𝑟)) |
103 | | simprlr 777 |
. . . . . . . . . . . 12
⊢ ((((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐴 ⊆ 𝑋 ∧ 𝐴 ≼ ω ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) ∧ (𝑢 ∈ 𝐽 ∧ 𝑧 ∈ 𝑢)) ∧ ((𝑟 ∈ ℝ+ ∧ (𝑧(ball‘𝐷)𝑟) ⊆ 𝑢) ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (𝑟 / 2)))) → (𝑧(ball‘𝐷)𝑟) ⊆ 𝑢) |
104 | 103 | adantr 481 |
. . . . . . . . . . 11
⊢
(((((𝐷 ∈
(∞Met‘𝑋) ∧
(𝐴 ⊆ 𝑋 ∧ 𝐴 ≼ ω ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) ∧ (𝑢 ∈ 𝐽 ∧ 𝑧 ∈ 𝑢)) ∧ ((𝑟 ∈ ℝ+ ∧ (𝑧(ball‘𝐷)𝑟) ⊆ 𝑢) ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (𝑟 / 2)))) ∧ 𝑡 ∈ ((𝑧(ball‘𝐷)(1 / 𝑛)) ∩ 𝐴)) → (𝑧(ball‘𝐷)𝑟) ⊆ 𝑢) |
105 | 102, 104 | sstrd 3940 |
. . . . . . . . . 10
⊢
(((((𝐷 ∈
(∞Met‘𝑋) ∧
(𝐴 ⊆ 𝑋 ∧ 𝐴 ≼ ω ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) ∧ (𝑢 ∈ 𝐽 ∧ 𝑧 ∈ 𝑢)) ∧ ((𝑟 ∈ ℝ+ ∧ (𝑧(ball‘𝐷)𝑟) ⊆ 𝑢) ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (𝑟 / 2)))) ∧ 𝑡 ∈ ((𝑧(ball‘𝐷)(1 / 𝑛)) ∩ 𝐴)) → (𝑡(ball‘𝐷)(𝑟 / 2)) ⊆ 𝑢) |
106 | 98, 105 | sstrd 3940 |
. . . . . . . . 9
⊢
(((((𝐷 ∈
(∞Met‘𝑋) ∧
(𝐴 ⊆ 𝑋 ∧ 𝐴 ≼ ω ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) ∧ (𝑢 ∈ 𝐽 ∧ 𝑧 ∈ 𝑢)) ∧ ((𝑟 ∈ ℝ+ ∧ (𝑧(ball‘𝐷)𝑟) ⊆ 𝑢) ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (𝑟 / 2)))) ∧ 𝑡 ∈ ((𝑧(ball‘𝐷)(1 / 𝑛)) ∩ 𝐴)) → (𝑡(ball‘𝐷)(1 / 𝑛)) ⊆ 𝑢) |
107 | | eleq2 2826 |
. . . . . . . . . . 11
⊢ (𝑤 = (𝑡(ball‘𝐷)(1 / 𝑛)) → (𝑧 ∈ 𝑤 ↔ 𝑧 ∈ (𝑡(ball‘𝐷)(1 / 𝑛)))) |
108 | | sseq1 3955 |
. . . . . . . . . . 11
⊢ (𝑤 = (𝑡(ball‘𝐷)(1 / 𝑛)) → (𝑤 ⊆ 𝑢 ↔ (𝑡(ball‘𝐷)(1 / 𝑛)) ⊆ 𝑢)) |
109 | 107, 108 | anbi12d 631 |
. . . . . . . . . 10
⊢ (𝑤 = (𝑡(ball‘𝐷)(1 / 𝑛)) → ((𝑧 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑢) ↔ (𝑧 ∈ (𝑡(ball‘𝐷)(1 / 𝑛)) ∧ (𝑡(ball‘𝐷)(1 / 𝑛)) ⊆ 𝑢))) |
110 | 109 | rspcev 3570 |
. . . . . . . . 9
⊢ (((𝑡(ball‘𝐷)(1 / 𝑛)) ∈ ran (𝑥 ∈ ℕ, 𝑦 ∈ 𝐴 ↦ (𝑦(ball‘𝐷)(1 / 𝑥))) ∧ (𝑧 ∈ (𝑡(ball‘𝐷)(1 / 𝑛)) ∧ (𝑡(ball‘𝐷)(1 / 𝑛)) ⊆ 𝑢)) → ∃𝑤 ∈ ran (𝑥 ∈ ℕ, 𝑦 ∈ 𝐴 ↦ (𝑦(ball‘𝐷)(1 / 𝑥)))(𝑧 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑢)) |
111 | 74, 83, 106, 110 | syl12anc 834 |
. . . . . . . 8
⊢
(((((𝐷 ∈
(∞Met‘𝑋) ∧
(𝐴 ⊆ 𝑋 ∧ 𝐴 ≼ ω ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) ∧ (𝑢 ∈ 𝐽 ∧ 𝑧 ∈ 𝑢)) ∧ ((𝑟 ∈ ℝ+ ∧ (𝑧(ball‘𝐷)𝑟) ⊆ 𝑢) ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (𝑟 / 2)))) ∧ 𝑡 ∈ ((𝑧(ball‘𝐷)(1 / 𝑛)) ∩ 𝐴)) → ∃𝑤 ∈ ran (𝑥 ∈ ℕ, 𝑦 ∈ 𝐴 ↦ (𝑦(ball‘𝐷)(1 / 𝑥)))(𝑧 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑢)) |
112 | 57, 111 | exlimddv 1937 |
. . . . . . 7
⊢ ((((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐴 ⊆ 𝑋 ∧ 𝐴 ≼ ω ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) ∧ (𝑢 ∈ 𝐽 ∧ 𝑧 ∈ 𝑢)) ∧ ((𝑟 ∈ ℝ+ ∧ (𝑧(ball‘𝐷)𝑟) ⊆ 𝑢) ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (𝑟 / 2)))) → ∃𝑤 ∈ ran (𝑥 ∈ ℕ, 𝑦 ∈ 𝐴 ↦ (𝑦(ball‘𝐷)(1 / 𝑥)))(𝑧 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑢)) |
113 | 112 | anassrs 468 |
. . . . . 6
⊢
(((((𝐷 ∈
(∞Met‘𝑋) ∧
(𝐴 ⊆ 𝑋 ∧ 𝐴 ≼ ω ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) ∧ (𝑢 ∈ 𝐽 ∧ 𝑧 ∈ 𝑢)) ∧ (𝑟 ∈ ℝ+ ∧ (𝑧(ball‘𝐷)𝑟) ⊆ 𝑢)) ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (𝑟 / 2))) → ∃𝑤 ∈ ran (𝑥 ∈ ℕ, 𝑦 ∈ 𝐴 ↦ (𝑦(ball‘𝐷)(1 / 𝑥)))(𝑧 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑢)) |
114 | 29, 113 | rexlimddv 3155 |
. . . . 5
⊢ ((((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐴 ⊆ 𝑋 ∧ 𝐴 ≼ ω ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) ∧ (𝑢 ∈ 𝐽 ∧ 𝑧 ∈ 𝑢)) ∧ (𝑟 ∈ ℝ+ ∧ (𝑧(ball‘𝐷)𝑟) ⊆ 𝑢)) → ∃𝑤 ∈ ran (𝑥 ∈ ℕ, 𝑦 ∈ 𝐴 ↦ (𝑦(ball‘𝐷)(1 / 𝑥)))(𝑧 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑢)) |
115 | 23, 114 | rexlimddv 3155 |
. . . 4
⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐴 ⊆ 𝑋 ∧ 𝐴 ≼ ω ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) ∧ (𝑢 ∈ 𝐽 ∧ 𝑧 ∈ 𝑢)) → ∃𝑤 ∈ ran (𝑥 ∈ ℕ, 𝑦 ∈ 𝐴 ↦ (𝑦(ball‘𝐷)(1 / 𝑥)))(𝑧 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑢)) |
116 | 115 | ralrimivva 3194 |
. . 3
⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐴 ⊆ 𝑋 ∧ 𝐴 ≼ ω ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) → ∀𝑢 ∈ 𝐽 ∀𝑧 ∈ 𝑢 ∃𝑤 ∈ ran (𝑥 ∈ ℕ, 𝑦 ∈ 𝐴 ↦ (𝑦(ball‘𝐷)(1 / 𝑥)))(𝑧 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑢)) |
117 | | basgen2 22210 |
. . 3
⊢ ((𝐽 ∈ Top ∧ ran (𝑥 ∈ ℕ, 𝑦 ∈ 𝐴 ↦ (𝑦(ball‘𝐷)(1 / 𝑥))) ⊆ 𝐽 ∧ ∀𝑢 ∈ 𝐽 ∀𝑧 ∈ 𝑢 ∃𝑤 ∈ ran (𝑥 ∈ ℕ, 𝑦 ∈ 𝐴 ↦ (𝑦(ball‘𝐷)(1 / 𝑥)))(𝑧 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑢)) → (topGen‘ran (𝑥 ∈ ℕ, 𝑦 ∈ 𝐴 ↦ (𝑦(ball‘𝐷)(1 / 𝑥)))) = 𝐽) |
118 | 3, 18, 116, 117 | syl3anc 1370 |
. 2
⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐴 ⊆ 𝑋 ∧ 𝐴 ≼ ω ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) → (topGen‘ran (𝑥 ∈ ℕ, 𝑦 ∈ 𝐴 ↦ (𝑦(ball‘𝐷)(1 / 𝑥)))) = 𝐽) |
119 | 118, 3 | eqeltrd 2838 |
. . . 4
⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐴 ⊆ 𝑋 ∧ 𝐴 ≼ ω ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) → (topGen‘ran (𝑥 ∈ ℕ, 𝑦 ∈ 𝐴 ↦ (𝑦(ball‘𝐷)(1 / 𝑥)))) ∈ Top) |
120 | | tgclb 22191 |
. . . 4
⊢ (ran
(𝑥 ∈ ℕ, 𝑦 ∈ 𝐴 ↦ (𝑦(ball‘𝐷)(1 / 𝑥))) ∈ TopBases ↔ (topGen‘ran
(𝑥 ∈ ℕ, 𝑦 ∈ 𝐴 ↦ (𝑦(ball‘𝐷)(1 / 𝑥)))) ∈ Top) |
121 | 119, 120 | sylibr 233 |
. . 3
⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐴 ⊆ 𝑋 ∧ 𝐴 ≼ ω ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) → ran (𝑥 ∈ ℕ, 𝑦 ∈ 𝐴 ↦ (𝑦(ball‘𝐷)(1 / 𝑥))) ∈ TopBases) |
122 | | omelon 9472 |
. . . . . 6
⊢ ω
∈ On |
123 | | simpr2 1194 |
. . . . . . . 8
⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐴 ⊆ 𝑋 ∧ 𝐴 ≼ ω ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) → 𝐴 ≼ ω) |
124 | | nnex 12049 |
. . . . . . . . 9
⊢ ℕ
∈ V |
125 | 124 | xpdom2 8907 |
. . . . . . . 8
⊢ (𝐴 ≼ ω → (ℕ
× 𝐴) ≼ (ℕ
× ω)) |
126 | 123, 125 | syl 17 |
. . . . . . 7
⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐴 ⊆ 𝑋 ∧ 𝐴 ≼ ω ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) → (ℕ × 𝐴) ≼ (ℕ ×
ω)) |
127 | | nnenom 13770 |
. . . . . . . . 9
⊢ ℕ
≈ ω |
128 | | omex 9469 |
. . . . . . . . . 10
⊢ ω
∈ V |
129 | 128 | enref 8821 |
. . . . . . . . 9
⊢ ω
≈ ω |
130 | | xpen 8980 |
. . . . . . . . 9
⊢ ((ℕ
≈ ω ∧ ω ≈ ω) → (ℕ × ω)
≈ (ω × ω)) |
131 | 127, 129,
130 | mp2an 689 |
. . . . . . . 8
⊢ (ℕ
× ω) ≈ (ω × ω) |
132 | | xpomen 9841 |
. . . . . . . 8
⊢ (ω
× ω) ≈ ω |
133 | 131, 132 | entri 8844 |
. . . . . . 7
⊢ (ℕ
× ω) ≈ ω |
134 | | domentr 8849 |
. . . . . . 7
⊢
(((ℕ × 𝐴) ≼ (ℕ × ω) ∧
(ℕ × ω) ≈ ω) → (ℕ × 𝐴) ≼
ω) |
135 | 126, 133,
134 | sylancl 586 |
. . . . . 6
⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐴 ⊆ 𝑋 ∧ 𝐴 ≼ ω ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) → (ℕ × 𝐴) ≼ ω) |
136 | | ondomen 9863 |
. . . . . 6
⊢ ((ω
∈ On ∧ (ℕ × 𝐴) ≼ ω) → (ℕ ×
𝐴) ∈ dom
card) |
137 | 122, 135,
136 | sylancr 587 |
. . . . 5
⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐴 ⊆ 𝑋 ∧ 𝐴 ≼ ω ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) → (ℕ × 𝐴) ∈ dom card) |
138 | 17 | ffnd 6636 |
. . . . . 6
⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐴 ⊆ 𝑋 ∧ 𝐴 ≼ ω ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) → (𝑥 ∈ ℕ, 𝑦 ∈ 𝐴 ↦ (𝑦(ball‘𝐷)(1 / 𝑥))) Fn (ℕ × 𝐴)) |
139 | | dffn4 6729 |
. . . . . 6
⊢ ((𝑥 ∈ ℕ, 𝑦 ∈ 𝐴 ↦ (𝑦(ball‘𝐷)(1 / 𝑥))) Fn (ℕ × 𝐴) ↔ (𝑥 ∈ ℕ, 𝑦 ∈ 𝐴 ↦ (𝑦(ball‘𝐷)(1 / 𝑥))):(ℕ × 𝐴)–onto→ran (𝑥 ∈ ℕ, 𝑦 ∈ 𝐴 ↦ (𝑦(ball‘𝐷)(1 / 𝑥)))) |
140 | 138, 139 | sylib 217 |
. . . . 5
⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐴 ⊆ 𝑋 ∧ 𝐴 ≼ ω ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) → (𝑥 ∈ ℕ, 𝑦 ∈ 𝐴 ↦ (𝑦(ball‘𝐷)(1 / 𝑥))):(ℕ × 𝐴)–onto→ran (𝑥 ∈ ℕ, 𝑦 ∈ 𝐴 ↦ (𝑦(ball‘𝐷)(1 / 𝑥)))) |
141 | | fodomnum 9883 |
. . . . 5
⊢ ((ℕ
× 𝐴) ∈ dom card
→ ((𝑥 ∈ ℕ,
𝑦 ∈ 𝐴 ↦ (𝑦(ball‘𝐷)(1 / 𝑥))):(ℕ × 𝐴)–onto→ran (𝑥 ∈ ℕ, 𝑦 ∈ 𝐴 ↦ (𝑦(ball‘𝐷)(1 / 𝑥))) → ran (𝑥 ∈ ℕ, 𝑦 ∈ 𝐴 ↦ (𝑦(ball‘𝐷)(1 / 𝑥))) ≼ (ℕ × 𝐴))) |
142 | 137, 140,
141 | sylc 65 |
. . . 4
⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐴 ⊆ 𝑋 ∧ 𝐴 ≼ ω ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) → ran (𝑥 ∈ ℕ, 𝑦 ∈ 𝐴 ↦ (𝑦(ball‘𝐷)(1 / 𝑥))) ≼ (ℕ × 𝐴)) |
143 | | domtr 8843 |
. . . 4
⊢ ((ran
(𝑥 ∈ ℕ, 𝑦 ∈ 𝐴 ↦ (𝑦(ball‘𝐷)(1 / 𝑥))) ≼ (ℕ × 𝐴) ∧ (ℕ × 𝐴) ≼ ω) → ran
(𝑥 ∈ ℕ, 𝑦 ∈ 𝐴 ↦ (𝑦(ball‘𝐷)(1 / 𝑥))) ≼ ω) |
144 | 142, 135,
143 | syl2anc 584 |
. . 3
⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐴 ⊆ 𝑋 ∧ 𝐴 ≼ ω ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) → ran (𝑥 ∈ ℕ, 𝑦 ∈ 𝐴 ↦ (𝑦(ball‘𝐷)(1 / 𝑥))) ≼ ω) |
145 | | 2ndci 22670 |
. . 3
⊢ ((ran
(𝑥 ∈ ℕ, 𝑦 ∈ 𝐴 ↦ (𝑦(ball‘𝐷)(1 / 𝑥))) ∈ TopBases ∧ ran (𝑥 ∈ ℕ, 𝑦 ∈ 𝐴 ↦ (𝑦(ball‘𝐷)(1 / 𝑥))) ≼ ω) → (topGen‘ran
(𝑥 ∈ ℕ, 𝑦 ∈ 𝐴 ↦ (𝑦(ball‘𝐷)(1 / 𝑥)))) ∈
2ndω) |
146 | 121, 144,
145 | syl2anc 584 |
. 2
⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐴 ⊆ 𝑋 ∧ 𝐴 ≼ ω ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) → (topGen‘ran (𝑥 ∈ ℕ, 𝑦 ∈ 𝐴 ↦ (𝑦(ball‘𝐷)(1 / 𝑥)))) ∈
2ndω) |
147 | 118, 146 | eqeltrrd 2839 |
1
⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐴 ⊆ 𝑋 ∧ 𝐴 ≼ ω ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) → 𝐽 ∈
2ndω) |