MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  2ndcsb Structured version   Visualization version   GIF version

Theorem 2ndcsb 23336
Description: Having a countable subbase is a sufficient condition for second-countability. (Contributed by Jeff Hankins, 17-Jan-2010.) (Proof shortened by Mario Carneiro, 21-Mar-2015.)
Assertion
Ref Expression
2ndcsb (𝐽 ∈ 2ndω ↔ ∃𝑥(𝑥 ≼ ω ∧ (topGen‘(fi‘𝑥)) = 𝐽))
Distinct variable group:   𝑥,𝐽

Proof of Theorem 2ndcsb
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 is2ndc 23333 . . 3 (𝐽 ∈ 2ndω ↔ ∃𝑥 ∈ TopBases (𝑥 ≼ ω ∧ (topGen‘𝑥) = 𝐽))
2 df-rex 3054 . . . 4 (∃𝑥 ∈ TopBases (𝑥 ≼ ω ∧ (topGen‘𝑥) = 𝐽) ↔ ∃𝑥(𝑥 ∈ TopBases ∧ (𝑥 ≼ ω ∧ (topGen‘𝑥) = 𝐽)))
3 simprl 770 . . . . . 6 ((𝑥 ∈ TopBases ∧ (𝑥 ≼ ω ∧ (topGen‘𝑥) = 𝐽)) → 𝑥 ≼ ω)
4 ssfii 9370 . . . . . . . 8 (𝑥 ∈ TopBases → 𝑥 ⊆ (fi‘𝑥))
5 fvex 6871 . . . . . . . . . 10 (topGen‘𝑥) ∈ V
6 bastg 22853 . . . . . . . . . . 11 (𝑥 ∈ TopBases → 𝑥 ⊆ (topGen‘𝑥))
76adantr 480 . . . . . . . . . 10 ((𝑥 ∈ TopBases ∧ (𝑥 ≼ ω ∧ (topGen‘𝑥) = 𝐽)) → 𝑥 ⊆ (topGen‘𝑥))
8 fiss 9375 . . . . . . . . . 10 (((topGen‘𝑥) ∈ V ∧ 𝑥 ⊆ (topGen‘𝑥)) → (fi‘𝑥) ⊆ (fi‘(topGen‘𝑥)))
95, 7, 8sylancr 587 . . . . . . . . 9 ((𝑥 ∈ TopBases ∧ (𝑥 ≼ ω ∧ (topGen‘𝑥) = 𝐽)) → (fi‘𝑥) ⊆ (fi‘(topGen‘𝑥)))
10 tgcl 22856 . . . . . . . . . . 11 (𝑥 ∈ TopBases → (topGen‘𝑥) ∈ Top)
1110adantr 480 . . . . . . . . . 10 ((𝑥 ∈ TopBases ∧ (𝑥 ≼ ω ∧ (topGen‘𝑥) = 𝐽)) → (topGen‘𝑥) ∈ Top)
12 fitop 22787 . . . . . . . . . 10 ((topGen‘𝑥) ∈ Top → (fi‘(topGen‘𝑥)) = (topGen‘𝑥))
1311, 12syl 17 . . . . . . . . 9 ((𝑥 ∈ TopBases ∧ (𝑥 ≼ ω ∧ (topGen‘𝑥) = 𝐽)) → (fi‘(topGen‘𝑥)) = (topGen‘𝑥))
149, 13sseqtrd 3983 . . . . . . . 8 ((𝑥 ∈ TopBases ∧ (𝑥 ≼ ω ∧ (topGen‘𝑥) = 𝐽)) → (fi‘𝑥) ⊆ (topGen‘𝑥))
15 2basgen 22877 . . . . . . . 8 ((𝑥 ⊆ (fi‘𝑥) ∧ (fi‘𝑥) ⊆ (topGen‘𝑥)) → (topGen‘𝑥) = (topGen‘(fi‘𝑥)))
164, 14, 15syl2an2r 685 . . . . . . 7 ((𝑥 ∈ TopBases ∧ (𝑥 ≼ ω ∧ (topGen‘𝑥) = 𝐽)) → (topGen‘𝑥) = (topGen‘(fi‘𝑥)))
17 simprr 772 . . . . . . 7 ((𝑥 ∈ TopBases ∧ (𝑥 ≼ ω ∧ (topGen‘𝑥) = 𝐽)) → (topGen‘𝑥) = 𝐽)
1816, 17eqtr3d 2766 . . . . . 6 ((𝑥 ∈ TopBases ∧ (𝑥 ≼ ω ∧ (topGen‘𝑥) = 𝐽)) → (topGen‘(fi‘𝑥)) = 𝐽)
193, 18jca 511 . . . . 5 ((𝑥 ∈ TopBases ∧ (𝑥 ≼ ω ∧ (topGen‘𝑥) = 𝐽)) → (𝑥 ≼ ω ∧ (topGen‘(fi‘𝑥)) = 𝐽))
2019eximi 1835 . . . 4 (∃𝑥(𝑥 ∈ TopBases ∧ (𝑥 ≼ ω ∧ (topGen‘𝑥) = 𝐽)) → ∃𝑥(𝑥 ≼ ω ∧ (topGen‘(fi‘𝑥)) = 𝐽))
212, 20sylbi 217 . . 3 (∃𝑥 ∈ TopBases (𝑥 ≼ ω ∧ (topGen‘𝑥) = 𝐽) → ∃𝑥(𝑥 ≼ ω ∧ (topGen‘(fi‘𝑥)) = 𝐽))
221, 21sylbi 217 . 2 (𝐽 ∈ 2ndω → ∃𝑥(𝑥 ≼ ω ∧ (topGen‘(fi‘𝑥)) = 𝐽))
23 fibas 22864 . . . . 5 (fi‘𝑥) ∈ TopBases
24 simpl 482 . . . . . . 7 ((𝑥 ≼ ω ∧ (topGen‘(fi‘𝑥)) = 𝐽) → 𝑥 ≼ ω)
25 fictb 10197 . . . . . . . 8 (𝑥 ∈ V → (𝑥 ≼ ω ↔ (fi‘𝑥) ≼ ω))
2625elv 3452 . . . . . . 7 (𝑥 ≼ ω ↔ (fi‘𝑥) ≼ ω)
2724, 26sylib 218 . . . . . 6 ((𝑥 ≼ ω ∧ (topGen‘(fi‘𝑥)) = 𝐽) → (fi‘𝑥) ≼ ω)
28 simpr 484 . . . . . 6 ((𝑥 ≼ ω ∧ (topGen‘(fi‘𝑥)) = 𝐽) → (topGen‘(fi‘𝑥)) = 𝐽)
2927, 28jca 511 . . . . 5 ((𝑥 ≼ ω ∧ (topGen‘(fi‘𝑥)) = 𝐽) → ((fi‘𝑥) ≼ ω ∧ (topGen‘(fi‘𝑥)) = 𝐽))
30 breq1 5110 . . . . . . 7 (𝑦 = (fi‘𝑥) → (𝑦 ≼ ω ↔ (fi‘𝑥) ≼ ω))
31 fveqeq2 6867 . . . . . . 7 (𝑦 = (fi‘𝑥) → ((topGen‘𝑦) = 𝐽 ↔ (topGen‘(fi‘𝑥)) = 𝐽))
3230, 31anbi12d 632 . . . . . 6 (𝑦 = (fi‘𝑥) → ((𝑦 ≼ ω ∧ (topGen‘𝑦) = 𝐽) ↔ ((fi‘𝑥) ≼ ω ∧ (topGen‘(fi‘𝑥)) = 𝐽)))
3332rspcev 3588 . . . . 5 (((fi‘𝑥) ∈ TopBases ∧ ((fi‘𝑥) ≼ ω ∧ (topGen‘(fi‘𝑥)) = 𝐽)) → ∃𝑦 ∈ TopBases (𝑦 ≼ ω ∧ (topGen‘𝑦) = 𝐽))
3423, 29, 33sylancr 587 . . . 4 ((𝑥 ≼ ω ∧ (topGen‘(fi‘𝑥)) = 𝐽) → ∃𝑦 ∈ TopBases (𝑦 ≼ ω ∧ (topGen‘𝑦) = 𝐽))
35 is2ndc 23333 . . . 4 (𝐽 ∈ 2ndω ↔ ∃𝑦 ∈ TopBases (𝑦 ≼ ω ∧ (topGen‘𝑦) = 𝐽))
3634, 35sylibr 234 . . 3 ((𝑥 ≼ ω ∧ (topGen‘(fi‘𝑥)) = 𝐽) → 𝐽 ∈ 2ndω)
3736exlimiv 1930 . 2 (∃𝑥(𝑥 ≼ ω ∧ (topGen‘(fi‘𝑥)) = 𝐽) → 𝐽 ∈ 2ndω)
3822, 37impbii 209 1 (𝐽 ∈ 2ndω ↔ ∃𝑥(𝑥 ≼ ω ∧ (topGen‘(fi‘𝑥)) = 𝐽))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395   = wceq 1540  wex 1779  wcel 2109  wrex 3053  Vcvv 3447  wss 3914   class class class wbr 5107  cfv 6511  ωcom 7842  cdom 8916  ficfi 9361  topGenctg 17400  Topctop 22780  TopBasesctb 22832  2ndωc2ndc 23325
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-se 5592  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-isom 6520  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-1st 7968  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-2o 8435  df-oadd 8438  df-er 8671  df-map 8801  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-fi 9362  df-dju 9854  df-card 9892  df-acn 9895  df-topgen 17406  df-top 22781  df-bases 22833  df-2ndc 23327
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator