| Step | Hyp | Ref
| Expression |
| 1 | | is2ndc 23389 |
. . 3
⊢ (𝐽 ∈ 2ndω
↔ ∃𝑥 ∈
TopBases (𝑥 ≼ ω
∧ (topGen‘𝑥) =
𝐽)) |
| 2 | | df-rex 3062 |
. . . 4
⊢
(∃𝑥 ∈
TopBases (𝑥 ≼ ω
∧ (topGen‘𝑥) =
𝐽) ↔ ∃𝑥(𝑥 ∈ TopBases ∧ (𝑥 ≼ ω ∧ (topGen‘𝑥) = 𝐽))) |
| 3 | | simprl 770 |
. . . . . 6
⊢ ((𝑥 ∈ TopBases ∧ (𝑥 ≼ ω ∧
(topGen‘𝑥) = 𝐽)) → 𝑥 ≼ ω) |
| 4 | | ssfii 9436 |
. . . . . . . 8
⊢ (𝑥 ∈ TopBases → 𝑥 ⊆ (fi‘𝑥)) |
| 5 | | fvex 6894 |
. . . . . . . . . 10
⊢
(topGen‘𝑥)
∈ V |
| 6 | | bastg 22909 |
. . . . . . . . . . 11
⊢ (𝑥 ∈ TopBases → 𝑥 ⊆ (topGen‘𝑥)) |
| 7 | 6 | adantr 480 |
. . . . . . . . . 10
⊢ ((𝑥 ∈ TopBases ∧ (𝑥 ≼ ω ∧
(topGen‘𝑥) = 𝐽)) → 𝑥 ⊆ (topGen‘𝑥)) |
| 8 | | fiss 9441 |
. . . . . . . . . 10
⊢
(((topGen‘𝑥)
∈ V ∧ 𝑥 ⊆
(topGen‘𝑥)) →
(fi‘𝑥) ⊆
(fi‘(topGen‘𝑥))) |
| 9 | 5, 7, 8 | sylancr 587 |
. . . . . . . . 9
⊢ ((𝑥 ∈ TopBases ∧ (𝑥 ≼ ω ∧
(topGen‘𝑥) = 𝐽)) → (fi‘𝑥) ⊆
(fi‘(topGen‘𝑥))) |
| 10 | | tgcl 22912 |
. . . . . . . . . . 11
⊢ (𝑥 ∈ TopBases →
(topGen‘𝑥) ∈
Top) |
| 11 | 10 | adantr 480 |
. . . . . . . . . 10
⊢ ((𝑥 ∈ TopBases ∧ (𝑥 ≼ ω ∧
(topGen‘𝑥) = 𝐽)) → (topGen‘𝑥) ∈ Top) |
| 12 | | fitop 22843 |
. . . . . . . . . 10
⊢
((topGen‘𝑥)
∈ Top → (fi‘(topGen‘𝑥)) = (topGen‘𝑥)) |
| 13 | 11, 12 | syl 17 |
. . . . . . . . 9
⊢ ((𝑥 ∈ TopBases ∧ (𝑥 ≼ ω ∧
(topGen‘𝑥) = 𝐽)) →
(fi‘(topGen‘𝑥))
= (topGen‘𝑥)) |
| 14 | 9, 13 | sseqtrd 4000 |
. . . . . . . 8
⊢ ((𝑥 ∈ TopBases ∧ (𝑥 ≼ ω ∧
(topGen‘𝑥) = 𝐽)) → (fi‘𝑥) ⊆ (topGen‘𝑥)) |
| 15 | | 2basgen 22933 |
. . . . . . . 8
⊢ ((𝑥 ⊆ (fi‘𝑥) ∧ (fi‘𝑥) ⊆ (topGen‘𝑥)) → (topGen‘𝑥) =
(topGen‘(fi‘𝑥))) |
| 16 | 4, 14, 15 | syl2an2r 685 |
. . . . . . 7
⊢ ((𝑥 ∈ TopBases ∧ (𝑥 ≼ ω ∧
(topGen‘𝑥) = 𝐽)) → (topGen‘𝑥) =
(topGen‘(fi‘𝑥))) |
| 17 | | simprr 772 |
. . . . . . 7
⊢ ((𝑥 ∈ TopBases ∧ (𝑥 ≼ ω ∧
(topGen‘𝑥) = 𝐽)) → (topGen‘𝑥) = 𝐽) |
| 18 | 16, 17 | eqtr3d 2773 |
. . . . . 6
⊢ ((𝑥 ∈ TopBases ∧ (𝑥 ≼ ω ∧
(topGen‘𝑥) = 𝐽)) →
(topGen‘(fi‘𝑥))
= 𝐽) |
| 19 | 3, 18 | jca 511 |
. . . . 5
⊢ ((𝑥 ∈ TopBases ∧ (𝑥 ≼ ω ∧
(topGen‘𝑥) = 𝐽)) → (𝑥 ≼ ω ∧
(topGen‘(fi‘𝑥))
= 𝐽)) |
| 20 | 19 | eximi 1835 |
. . . 4
⊢
(∃𝑥(𝑥 ∈ TopBases ∧ (𝑥 ≼ ω ∧
(topGen‘𝑥) = 𝐽)) → ∃𝑥(𝑥 ≼ ω ∧
(topGen‘(fi‘𝑥))
= 𝐽)) |
| 21 | 2, 20 | sylbi 217 |
. . 3
⊢
(∃𝑥 ∈
TopBases (𝑥 ≼ ω
∧ (topGen‘𝑥) =
𝐽) → ∃𝑥(𝑥 ≼ ω ∧
(topGen‘(fi‘𝑥))
= 𝐽)) |
| 22 | 1, 21 | sylbi 217 |
. 2
⊢ (𝐽 ∈ 2ndω
→ ∃𝑥(𝑥 ≼ ω ∧
(topGen‘(fi‘𝑥))
= 𝐽)) |
| 23 | | fibas 22920 |
. . . . 5
⊢
(fi‘𝑥) ∈
TopBases |
| 24 | | simpl 482 |
. . . . . . 7
⊢ ((𝑥 ≼ ω ∧
(topGen‘(fi‘𝑥))
= 𝐽) → 𝑥 ≼
ω) |
| 25 | | fictb 10263 |
. . . . . . . 8
⊢ (𝑥 ∈ V → (𝑥 ≼ ω ↔
(fi‘𝑥) ≼
ω)) |
| 26 | 25 | elv 3469 |
. . . . . . 7
⊢ (𝑥 ≼ ω ↔
(fi‘𝑥) ≼
ω) |
| 27 | 24, 26 | sylib 218 |
. . . . . 6
⊢ ((𝑥 ≼ ω ∧
(topGen‘(fi‘𝑥))
= 𝐽) → (fi‘𝑥) ≼
ω) |
| 28 | | simpr 484 |
. . . . . 6
⊢ ((𝑥 ≼ ω ∧
(topGen‘(fi‘𝑥))
= 𝐽) →
(topGen‘(fi‘𝑥))
= 𝐽) |
| 29 | 27, 28 | jca 511 |
. . . . 5
⊢ ((𝑥 ≼ ω ∧
(topGen‘(fi‘𝑥))
= 𝐽) →
((fi‘𝑥) ≼
ω ∧ (topGen‘(fi‘𝑥)) = 𝐽)) |
| 30 | | breq1 5127 |
. . . . . . 7
⊢ (𝑦 = (fi‘𝑥) → (𝑦 ≼ ω ↔ (fi‘𝑥) ≼
ω)) |
| 31 | | fveqeq2 6890 |
. . . . . . 7
⊢ (𝑦 = (fi‘𝑥) → ((topGen‘𝑦) = 𝐽 ↔ (topGen‘(fi‘𝑥)) = 𝐽)) |
| 32 | 30, 31 | anbi12d 632 |
. . . . . 6
⊢ (𝑦 = (fi‘𝑥) → ((𝑦 ≼ ω ∧ (topGen‘𝑦) = 𝐽) ↔ ((fi‘𝑥) ≼ ω ∧
(topGen‘(fi‘𝑥))
= 𝐽))) |
| 33 | 32 | rspcev 3606 |
. . . . 5
⊢
(((fi‘𝑥)
∈ TopBases ∧ ((fi‘𝑥) ≼ ω ∧
(topGen‘(fi‘𝑥))
= 𝐽)) → ∃𝑦 ∈ TopBases (𝑦 ≼ ω ∧
(topGen‘𝑦) = 𝐽)) |
| 34 | 23, 29, 33 | sylancr 587 |
. . . 4
⊢ ((𝑥 ≼ ω ∧
(topGen‘(fi‘𝑥))
= 𝐽) → ∃𝑦 ∈ TopBases (𝑦 ≼ ω ∧
(topGen‘𝑦) = 𝐽)) |
| 35 | | is2ndc 23389 |
. . . 4
⊢ (𝐽 ∈ 2ndω
↔ ∃𝑦 ∈
TopBases (𝑦 ≼ ω
∧ (topGen‘𝑦) =
𝐽)) |
| 36 | 34, 35 | sylibr 234 |
. . 3
⊢ ((𝑥 ≼ ω ∧
(topGen‘(fi‘𝑥))
= 𝐽) → 𝐽 ∈
2ndω) |
| 37 | 36 | exlimiv 1930 |
. 2
⊢
(∃𝑥(𝑥 ≼ ω ∧
(topGen‘(fi‘𝑥))
= 𝐽) → 𝐽 ∈
2ndω) |
| 38 | 22, 37 | impbii 209 |
1
⊢ (𝐽 ∈ 2ndω
↔ ∃𝑥(𝑥 ≼ ω ∧
(topGen‘(fi‘𝑥))
= 𝐽)) |