MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  2ndcsb Structured version   Visualization version   GIF version

Theorem 2ndcsb 22508
Description: Having a countable subbase is a sufficient condition for second-countability. (Contributed by Jeff Hankins, 17-Jan-2010.) (Proof shortened by Mario Carneiro, 21-Mar-2015.)
Assertion
Ref Expression
2ndcsb (𝐽 ∈ 2ndω ↔ ∃𝑥(𝑥 ≼ ω ∧ (topGen‘(fi‘𝑥)) = 𝐽))
Distinct variable group:   𝑥,𝐽

Proof of Theorem 2ndcsb
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 is2ndc 22505 . . 3 (𝐽 ∈ 2ndω ↔ ∃𝑥 ∈ TopBases (𝑥 ≼ ω ∧ (topGen‘𝑥) = 𝐽))
2 df-rex 3069 . . . 4 (∃𝑥 ∈ TopBases (𝑥 ≼ ω ∧ (topGen‘𝑥) = 𝐽) ↔ ∃𝑥(𝑥 ∈ TopBases ∧ (𝑥 ≼ ω ∧ (topGen‘𝑥) = 𝐽)))
3 simprl 767 . . . . . 6 ((𝑥 ∈ TopBases ∧ (𝑥 ≼ ω ∧ (topGen‘𝑥) = 𝐽)) → 𝑥 ≼ ω)
4 ssfii 9108 . . . . . . . 8 (𝑥 ∈ TopBases → 𝑥 ⊆ (fi‘𝑥))
5 fvex 6769 . . . . . . . . . 10 (topGen‘𝑥) ∈ V
6 bastg 22024 . . . . . . . . . . 11 (𝑥 ∈ TopBases → 𝑥 ⊆ (topGen‘𝑥))
76adantr 480 . . . . . . . . . 10 ((𝑥 ∈ TopBases ∧ (𝑥 ≼ ω ∧ (topGen‘𝑥) = 𝐽)) → 𝑥 ⊆ (topGen‘𝑥))
8 fiss 9113 . . . . . . . . . 10 (((topGen‘𝑥) ∈ V ∧ 𝑥 ⊆ (topGen‘𝑥)) → (fi‘𝑥) ⊆ (fi‘(topGen‘𝑥)))
95, 7, 8sylancr 586 . . . . . . . . 9 ((𝑥 ∈ TopBases ∧ (𝑥 ≼ ω ∧ (topGen‘𝑥) = 𝐽)) → (fi‘𝑥) ⊆ (fi‘(topGen‘𝑥)))
10 tgcl 22027 . . . . . . . . . . 11 (𝑥 ∈ TopBases → (topGen‘𝑥) ∈ Top)
1110adantr 480 . . . . . . . . . 10 ((𝑥 ∈ TopBases ∧ (𝑥 ≼ ω ∧ (topGen‘𝑥) = 𝐽)) → (topGen‘𝑥) ∈ Top)
12 fitop 21957 . . . . . . . . . 10 ((topGen‘𝑥) ∈ Top → (fi‘(topGen‘𝑥)) = (topGen‘𝑥))
1311, 12syl 17 . . . . . . . . 9 ((𝑥 ∈ TopBases ∧ (𝑥 ≼ ω ∧ (topGen‘𝑥) = 𝐽)) → (fi‘(topGen‘𝑥)) = (topGen‘𝑥))
149, 13sseqtrd 3957 . . . . . . . 8 ((𝑥 ∈ TopBases ∧ (𝑥 ≼ ω ∧ (topGen‘𝑥) = 𝐽)) → (fi‘𝑥) ⊆ (topGen‘𝑥))
15 2basgen 22048 . . . . . . . 8 ((𝑥 ⊆ (fi‘𝑥) ∧ (fi‘𝑥) ⊆ (topGen‘𝑥)) → (topGen‘𝑥) = (topGen‘(fi‘𝑥)))
164, 14, 15syl2an2r 681 . . . . . . 7 ((𝑥 ∈ TopBases ∧ (𝑥 ≼ ω ∧ (topGen‘𝑥) = 𝐽)) → (topGen‘𝑥) = (topGen‘(fi‘𝑥)))
17 simprr 769 . . . . . . 7 ((𝑥 ∈ TopBases ∧ (𝑥 ≼ ω ∧ (topGen‘𝑥) = 𝐽)) → (topGen‘𝑥) = 𝐽)
1816, 17eqtr3d 2780 . . . . . 6 ((𝑥 ∈ TopBases ∧ (𝑥 ≼ ω ∧ (topGen‘𝑥) = 𝐽)) → (topGen‘(fi‘𝑥)) = 𝐽)
193, 18jca 511 . . . . 5 ((𝑥 ∈ TopBases ∧ (𝑥 ≼ ω ∧ (topGen‘𝑥) = 𝐽)) → (𝑥 ≼ ω ∧ (topGen‘(fi‘𝑥)) = 𝐽))
2019eximi 1838 . . . 4 (∃𝑥(𝑥 ∈ TopBases ∧ (𝑥 ≼ ω ∧ (topGen‘𝑥) = 𝐽)) → ∃𝑥(𝑥 ≼ ω ∧ (topGen‘(fi‘𝑥)) = 𝐽))
212, 20sylbi 216 . . 3 (∃𝑥 ∈ TopBases (𝑥 ≼ ω ∧ (topGen‘𝑥) = 𝐽) → ∃𝑥(𝑥 ≼ ω ∧ (topGen‘(fi‘𝑥)) = 𝐽))
221, 21sylbi 216 . 2 (𝐽 ∈ 2ndω → ∃𝑥(𝑥 ≼ ω ∧ (topGen‘(fi‘𝑥)) = 𝐽))
23 fibas 22035 . . . . 5 (fi‘𝑥) ∈ TopBases
24 simpl 482 . . . . . . 7 ((𝑥 ≼ ω ∧ (topGen‘(fi‘𝑥)) = 𝐽) → 𝑥 ≼ ω)
25 fictb 9932 . . . . . . . 8 (𝑥 ∈ V → (𝑥 ≼ ω ↔ (fi‘𝑥) ≼ ω))
2625elv 3428 . . . . . . 7 (𝑥 ≼ ω ↔ (fi‘𝑥) ≼ ω)
2724, 26sylib 217 . . . . . 6 ((𝑥 ≼ ω ∧ (topGen‘(fi‘𝑥)) = 𝐽) → (fi‘𝑥) ≼ ω)
28 simpr 484 . . . . . 6 ((𝑥 ≼ ω ∧ (topGen‘(fi‘𝑥)) = 𝐽) → (topGen‘(fi‘𝑥)) = 𝐽)
2927, 28jca 511 . . . . 5 ((𝑥 ≼ ω ∧ (topGen‘(fi‘𝑥)) = 𝐽) → ((fi‘𝑥) ≼ ω ∧ (topGen‘(fi‘𝑥)) = 𝐽))
30 breq1 5073 . . . . . . 7 (𝑦 = (fi‘𝑥) → (𝑦 ≼ ω ↔ (fi‘𝑥) ≼ ω))
31 fveqeq2 6765 . . . . . . 7 (𝑦 = (fi‘𝑥) → ((topGen‘𝑦) = 𝐽 ↔ (topGen‘(fi‘𝑥)) = 𝐽))
3230, 31anbi12d 630 . . . . . 6 (𝑦 = (fi‘𝑥) → ((𝑦 ≼ ω ∧ (topGen‘𝑦) = 𝐽) ↔ ((fi‘𝑥) ≼ ω ∧ (topGen‘(fi‘𝑥)) = 𝐽)))
3332rspcev 3552 . . . . 5 (((fi‘𝑥) ∈ TopBases ∧ ((fi‘𝑥) ≼ ω ∧ (topGen‘(fi‘𝑥)) = 𝐽)) → ∃𝑦 ∈ TopBases (𝑦 ≼ ω ∧ (topGen‘𝑦) = 𝐽))
3423, 29, 33sylancr 586 . . . 4 ((𝑥 ≼ ω ∧ (topGen‘(fi‘𝑥)) = 𝐽) → ∃𝑦 ∈ TopBases (𝑦 ≼ ω ∧ (topGen‘𝑦) = 𝐽))
35 is2ndc 22505 . . . 4 (𝐽 ∈ 2ndω ↔ ∃𝑦 ∈ TopBases (𝑦 ≼ ω ∧ (topGen‘𝑦) = 𝐽))
3634, 35sylibr 233 . . 3 ((𝑥 ≼ ω ∧ (topGen‘(fi‘𝑥)) = 𝐽) → 𝐽 ∈ 2ndω)
3736exlimiv 1934 . 2 (∃𝑥(𝑥 ≼ ω ∧ (topGen‘(fi‘𝑥)) = 𝐽) → 𝐽 ∈ 2ndω)
3822, 37impbii 208 1 (𝐽 ∈ 2ndω ↔ ∃𝑥(𝑥 ≼ ω ∧ (topGen‘(fi‘𝑥)) = 𝐽))
Colors of variables: wff setvar class
Syntax hints:  wb 205  wa 395   = wceq 1539  wex 1783  wcel 2108  wrex 3064  Vcvv 3422  wss 3883   class class class wbr 5070  cfv 6418  ωcom 7687  cdom 8689  ficfi 9099  topGenctg 17065  Topctop 21950  TopBasesctb 22003  2ndωc2ndc 22497
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-se 5536  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-isom 6427  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-2o 8268  df-oadd 8271  df-er 8456  df-map 8575  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-fi 9100  df-dju 9590  df-card 9628  df-acn 9631  df-topgen 17071  df-top 21951  df-bases 22004  df-2ndc 22499
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator