Step | Hyp | Ref
| Expression |
1 | | is2ndc 22597 |
. . 3
⊢ (𝐽 ∈ 2ndω
↔ ∃𝑥 ∈
TopBases (𝑥 ≼ ω
∧ (topGen‘𝑥) =
𝐽)) |
2 | | df-rex 3070 |
. . . 4
⊢
(∃𝑥 ∈
TopBases (𝑥 ≼ ω
∧ (topGen‘𝑥) =
𝐽) ↔ ∃𝑥(𝑥 ∈ TopBases ∧ (𝑥 ≼ ω ∧ (topGen‘𝑥) = 𝐽))) |
3 | | simprl 768 |
. . . . . 6
⊢ ((𝑥 ∈ TopBases ∧ (𝑥 ≼ ω ∧
(topGen‘𝑥) = 𝐽)) → 𝑥 ≼ ω) |
4 | | ssfii 9178 |
. . . . . . . 8
⊢ (𝑥 ∈ TopBases → 𝑥 ⊆ (fi‘𝑥)) |
5 | | fvex 6787 |
. . . . . . . . . 10
⊢
(topGen‘𝑥)
∈ V |
6 | | bastg 22116 |
. . . . . . . . . . 11
⊢ (𝑥 ∈ TopBases → 𝑥 ⊆ (topGen‘𝑥)) |
7 | 6 | adantr 481 |
. . . . . . . . . 10
⊢ ((𝑥 ∈ TopBases ∧ (𝑥 ≼ ω ∧
(topGen‘𝑥) = 𝐽)) → 𝑥 ⊆ (topGen‘𝑥)) |
8 | | fiss 9183 |
. . . . . . . . . 10
⊢
(((topGen‘𝑥)
∈ V ∧ 𝑥 ⊆
(topGen‘𝑥)) →
(fi‘𝑥) ⊆
(fi‘(topGen‘𝑥))) |
9 | 5, 7, 8 | sylancr 587 |
. . . . . . . . 9
⊢ ((𝑥 ∈ TopBases ∧ (𝑥 ≼ ω ∧
(topGen‘𝑥) = 𝐽)) → (fi‘𝑥) ⊆
(fi‘(topGen‘𝑥))) |
10 | | tgcl 22119 |
. . . . . . . . . . 11
⊢ (𝑥 ∈ TopBases →
(topGen‘𝑥) ∈
Top) |
11 | 10 | adantr 481 |
. . . . . . . . . 10
⊢ ((𝑥 ∈ TopBases ∧ (𝑥 ≼ ω ∧
(topGen‘𝑥) = 𝐽)) → (topGen‘𝑥) ∈ Top) |
12 | | fitop 22049 |
. . . . . . . . . 10
⊢
((topGen‘𝑥)
∈ Top → (fi‘(topGen‘𝑥)) = (topGen‘𝑥)) |
13 | 11, 12 | syl 17 |
. . . . . . . . 9
⊢ ((𝑥 ∈ TopBases ∧ (𝑥 ≼ ω ∧
(topGen‘𝑥) = 𝐽)) →
(fi‘(topGen‘𝑥))
= (topGen‘𝑥)) |
14 | 9, 13 | sseqtrd 3961 |
. . . . . . . 8
⊢ ((𝑥 ∈ TopBases ∧ (𝑥 ≼ ω ∧
(topGen‘𝑥) = 𝐽)) → (fi‘𝑥) ⊆ (topGen‘𝑥)) |
15 | | 2basgen 22140 |
. . . . . . . 8
⊢ ((𝑥 ⊆ (fi‘𝑥) ∧ (fi‘𝑥) ⊆ (topGen‘𝑥)) → (topGen‘𝑥) =
(topGen‘(fi‘𝑥))) |
16 | 4, 14, 15 | syl2an2r 682 |
. . . . . . 7
⊢ ((𝑥 ∈ TopBases ∧ (𝑥 ≼ ω ∧
(topGen‘𝑥) = 𝐽)) → (topGen‘𝑥) =
(topGen‘(fi‘𝑥))) |
17 | | simprr 770 |
. . . . . . 7
⊢ ((𝑥 ∈ TopBases ∧ (𝑥 ≼ ω ∧
(topGen‘𝑥) = 𝐽)) → (topGen‘𝑥) = 𝐽) |
18 | 16, 17 | eqtr3d 2780 |
. . . . . 6
⊢ ((𝑥 ∈ TopBases ∧ (𝑥 ≼ ω ∧
(topGen‘𝑥) = 𝐽)) →
(topGen‘(fi‘𝑥))
= 𝐽) |
19 | 3, 18 | jca 512 |
. . . . 5
⊢ ((𝑥 ∈ TopBases ∧ (𝑥 ≼ ω ∧
(topGen‘𝑥) = 𝐽)) → (𝑥 ≼ ω ∧
(topGen‘(fi‘𝑥))
= 𝐽)) |
20 | 19 | eximi 1837 |
. . . 4
⊢
(∃𝑥(𝑥 ∈ TopBases ∧ (𝑥 ≼ ω ∧
(topGen‘𝑥) = 𝐽)) → ∃𝑥(𝑥 ≼ ω ∧
(topGen‘(fi‘𝑥))
= 𝐽)) |
21 | 2, 20 | sylbi 216 |
. . 3
⊢
(∃𝑥 ∈
TopBases (𝑥 ≼ ω
∧ (topGen‘𝑥) =
𝐽) → ∃𝑥(𝑥 ≼ ω ∧
(topGen‘(fi‘𝑥))
= 𝐽)) |
22 | 1, 21 | sylbi 216 |
. 2
⊢ (𝐽 ∈ 2ndω
→ ∃𝑥(𝑥 ≼ ω ∧
(topGen‘(fi‘𝑥))
= 𝐽)) |
23 | | fibas 22127 |
. . . . 5
⊢
(fi‘𝑥) ∈
TopBases |
24 | | simpl 483 |
. . . . . . 7
⊢ ((𝑥 ≼ ω ∧
(topGen‘(fi‘𝑥))
= 𝐽) → 𝑥 ≼
ω) |
25 | | fictb 10001 |
. . . . . . . 8
⊢ (𝑥 ∈ V → (𝑥 ≼ ω ↔
(fi‘𝑥) ≼
ω)) |
26 | 25 | elv 3438 |
. . . . . . 7
⊢ (𝑥 ≼ ω ↔
(fi‘𝑥) ≼
ω) |
27 | 24, 26 | sylib 217 |
. . . . . 6
⊢ ((𝑥 ≼ ω ∧
(topGen‘(fi‘𝑥))
= 𝐽) → (fi‘𝑥) ≼
ω) |
28 | | simpr 485 |
. . . . . 6
⊢ ((𝑥 ≼ ω ∧
(topGen‘(fi‘𝑥))
= 𝐽) →
(topGen‘(fi‘𝑥))
= 𝐽) |
29 | 27, 28 | jca 512 |
. . . . 5
⊢ ((𝑥 ≼ ω ∧
(topGen‘(fi‘𝑥))
= 𝐽) →
((fi‘𝑥) ≼
ω ∧ (topGen‘(fi‘𝑥)) = 𝐽)) |
30 | | breq1 5077 |
. . . . . . 7
⊢ (𝑦 = (fi‘𝑥) → (𝑦 ≼ ω ↔ (fi‘𝑥) ≼
ω)) |
31 | | fveqeq2 6783 |
. . . . . . 7
⊢ (𝑦 = (fi‘𝑥) → ((topGen‘𝑦) = 𝐽 ↔ (topGen‘(fi‘𝑥)) = 𝐽)) |
32 | 30, 31 | anbi12d 631 |
. . . . . 6
⊢ (𝑦 = (fi‘𝑥) → ((𝑦 ≼ ω ∧ (topGen‘𝑦) = 𝐽) ↔ ((fi‘𝑥) ≼ ω ∧
(topGen‘(fi‘𝑥))
= 𝐽))) |
33 | 32 | rspcev 3561 |
. . . . 5
⊢
(((fi‘𝑥)
∈ TopBases ∧ ((fi‘𝑥) ≼ ω ∧
(topGen‘(fi‘𝑥))
= 𝐽)) → ∃𝑦 ∈ TopBases (𝑦 ≼ ω ∧
(topGen‘𝑦) = 𝐽)) |
34 | 23, 29, 33 | sylancr 587 |
. . . 4
⊢ ((𝑥 ≼ ω ∧
(topGen‘(fi‘𝑥))
= 𝐽) → ∃𝑦 ∈ TopBases (𝑦 ≼ ω ∧
(topGen‘𝑦) = 𝐽)) |
35 | | is2ndc 22597 |
. . . 4
⊢ (𝐽 ∈ 2ndω
↔ ∃𝑦 ∈
TopBases (𝑦 ≼ ω
∧ (topGen‘𝑦) =
𝐽)) |
36 | 34, 35 | sylibr 233 |
. . 3
⊢ ((𝑥 ≼ ω ∧
(topGen‘(fi‘𝑥))
= 𝐽) → 𝐽 ∈
2ndω) |
37 | 36 | exlimiv 1933 |
. 2
⊢
(∃𝑥(𝑥 ≼ ω ∧
(topGen‘(fi‘𝑥))
= 𝐽) → 𝐽 ∈
2ndω) |
38 | 22, 37 | impbii 208 |
1
⊢ (𝐽 ∈ 2ndω
↔ ∃𝑥(𝑥 ≼ ω ∧
(topGen‘(fi‘𝑥))
= 𝐽)) |