MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  2ndcsb Structured version   Visualization version   GIF version

Theorem 2ndcsb 22600
Description: Having a countable subbase is a sufficient condition for second-countability. (Contributed by Jeff Hankins, 17-Jan-2010.) (Proof shortened by Mario Carneiro, 21-Mar-2015.)
Assertion
Ref Expression
2ndcsb (𝐽 ∈ 2ndω ↔ ∃𝑥(𝑥 ≼ ω ∧ (topGen‘(fi‘𝑥)) = 𝐽))
Distinct variable group:   𝑥,𝐽

Proof of Theorem 2ndcsb
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 is2ndc 22597 . . 3 (𝐽 ∈ 2ndω ↔ ∃𝑥 ∈ TopBases (𝑥 ≼ ω ∧ (topGen‘𝑥) = 𝐽))
2 df-rex 3070 . . . 4 (∃𝑥 ∈ TopBases (𝑥 ≼ ω ∧ (topGen‘𝑥) = 𝐽) ↔ ∃𝑥(𝑥 ∈ TopBases ∧ (𝑥 ≼ ω ∧ (topGen‘𝑥) = 𝐽)))
3 simprl 768 . . . . . 6 ((𝑥 ∈ TopBases ∧ (𝑥 ≼ ω ∧ (topGen‘𝑥) = 𝐽)) → 𝑥 ≼ ω)
4 ssfii 9178 . . . . . . . 8 (𝑥 ∈ TopBases → 𝑥 ⊆ (fi‘𝑥))
5 fvex 6787 . . . . . . . . . 10 (topGen‘𝑥) ∈ V
6 bastg 22116 . . . . . . . . . . 11 (𝑥 ∈ TopBases → 𝑥 ⊆ (topGen‘𝑥))
76adantr 481 . . . . . . . . . 10 ((𝑥 ∈ TopBases ∧ (𝑥 ≼ ω ∧ (topGen‘𝑥) = 𝐽)) → 𝑥 ⊆ (topGen‘𝑥))
8 fiss 9183 . . . . . . . . . 10 (((topGen‘𝑥) ∈ V ∧ 𝑥 ⊆ (topGen‘𝑥)) → (fi‘𝑥) ⊆ (fi‘(topGen‘𝑥)))
95, 7, 8sylancr 587 . . . . . . . . 9 ((𝑥 ∈ TopBases ∧ (𝑥 ≼ ω ∧ (topGen‘𝑥) = 𝐽)) → (fi‘𝑥) ⊆ (fi‘(topGen‘𝑥)))
10 tgcl 22119 . . . . . . . . . . 11 (𝑥 ∈ TopBases → (topGen‘𝑥) ∈ Top)
1110adantr 481 . . . . . . . . . 10 ((𝑥 ∈ TopBases ∧ (𝑥 ≼ ω ∧ (topGen‘𝑥) = 𝐽)) → (topGen‘𝑥) ∈ Top)
12 fitop 22049 . . . . . . . . . 10 ((topGen‘𝑥) ∈ Top → (fi‘(topGen‘𝑥)) = (topGen‘𝑥))
1311, 12syl 17 . . . . . . . . 9 ((𝑥 ∈ TopBases ∧ (𝑥 ≼ ω ∧ (topGen‘𝑥) = 𝐽)) → (fi‘(topGen‘𝑥)) = (topGen‘𝑥))
149, 13sseqtrd 3961 . . . . . . . 8 ((𝑥 ∈ TopBases ∧ (𝑥 ≼ ω ∧ (topGen‘𝑥) = 𝐽)) → (fi‘𝑥) ⊆ (topGen‘𝑥))
15 2basgen 22140 . . . . . . . 8 ((𝑥 ⊆ (fi‘𝑥) ∧ (fi‘𝑥) ⊆ (topGen‘𝑥)) → (topGen‘𝑥) = (topGen‘(fi‘𝑥)))
164, 14, 15syl2an2r 682 . . . . . . 7 ((𝑥 ∈ TopBases ∧ (𝑥 ≼ ω ∧ (topGen‘𝑥) = 𝐽)) → (topGen‘𝑥) = (topGen‘(fi‘𝑥)))
17 simprr 770 . . . . . . 7 ((𝑥 ∈ TopBases ∧ (𝑥 ≼ ω ∧ (topGen‘𝑥) = 𝐽)) → (topGen‘𝑥) = 𝐽)
1816, 17eqtr3d 2780 . . . . . 6 ((𝑥 ∈ TopBases ∧ (𝑥 ≼ ω ∧ (topGen‘𝑥) = 𝐽)) → (topGen‘(fi‘𝑥)) = 𝐽)
193, 18jca 512 . . . . 5 ((𝑥 ∈ TopBases ∧ (𝑥 ≼ ω ∧ (topGen‘𝑥) = 𝐽)) → (𝑥 ≼ ω ∧ (topGen‘(fi‘𝑥)) = 𝐽))
2019eximi 1837 . . . 4 (∃𝑥(𝑥 ∈ TopBases ∧ (𝑥 ≼ ω ∧ (topGen‘𝑥) = 𝐽)) → ∃𝑥(𝑥 ≼ ω ∧ (topGen‘(fi‘𝑥)) = 𝐽))
212, 20sylbi 216 . . 3 (∃𝑥 ∈ TopBases (𝑥 ≼ ω ∧ (topGen‘𝑥) = 𝐽) → ∃𝑥(𝑥 ≼ ω ∧ (topGen‘(fi‘𝑥)) = 𝐽))
221, 21sylbi 216 . 2 (𝐽 ∈ 2ndω → ∃𝑥(𝑥 ≼ ω ∧ (topGen‘(fi‘𝑥)) = 𝐽))
23 fibas 22127 . . . . 5 (fi‘𝑥) ∈ TopBases
24 simpl 483 . . . . . . 7 ((𝑥 ≼ ω ∧ (topGen‘(fi‘𝑥)) = 𝐽) → 𝑥 ≼ ω)
25 fictb 10001 . . . . . . . 8 (𝑥 ∈ V → (𝑥 ≼ ω ↔ (fi‘𝑥) ≼ ω))
2625elv 3438 . . . . . . 7 (𝑥 ≼ ω ↔ (fi‘𝑥) ≼ ω)
2724, 26sylib 217 . . . . . 6 ((𝑥 ≼ ω ∧ (topGen‘(fi‘𝑥)) = 𝐽) → (fi‘𝑥) ≼ ω)
28 simpr 485 . . . . . 6 ((𝑥 ≼ ω ∧ (topGen‘(fi‘𝑥)) = 𝐽) → (topGen‘(fi‘𝑥)) = 𝐽)
2927, 28jca 512 . . . . 5 ((𝑥 ≼ ω ∧ (topGen‘(fi‘𝑥)) = 𝐽) → ((fi‘𝑥) ≼ ω ∧ (topGen‘(fi‘𝑥)) = 𝐽))
30 breq1 5077 . . . . . . 7 (𝑦 = (fi‘𝑥) → (𝑦 ≼ ω ↔ (fi‘𝑥) ≼ ω))
31 fveqeq2 6783 . . . . . . 7 (𝑦 = (fi‘𝑥) → ((topGen‘𝑦) = 𝐽 ↔ (topGen‘(fi‘𝑥)) = 𝐽))
3230, 31anbi12d 631 . . . . . 6 (𝑦 = (fi‘𝑥) → ((𝑦 ≼ ω ∧ (topGen‘𝑦) = 𝐽) ↔ ((fi‘𝑥) ≼ ω ∧ (topGen‘(fi‘𝑥)) = 𝐽)))
3332rspcev 3561 . . . . 5 (((fi‘𝑥) ∈ TopBases ∧ ((fi‘𝑥) ≼ ω ∧ (topGen‘(fi‘𝑥)) = 𝐽)) → ∃𝑦 ∈ TopBases (𝑦 ≼ ω ∧ (topGen‘𝑦) = 𝐽))
3423, 29, 33sylancr 587 . . . 4 ((𝑥 ≼ ω ∧ (topGen‘(fi‘𝑥)) = 𝐽) → ∃𝑦 ∈ TopBases (𝑦 ≼ ω ∧ (topGen‘𝑦) = 𝐽))
35 is2ndc 22597 . . . 4 (𝐽 ∈ 2ndω ↔ ∃𝑦 ∈ TopBases (𝑦 ≼ ω ∧ (topGen‘𝑦) = 𝐽))
3634, 35sylibr 233 . . 3 ((𝑥 ≼ ω ∧ (topGen‘(fi‘𝑥)) = 𝐽) → 𝐽 ∈ 2ndω)
3736exlimiv 1933 . 2 (∃𝑥(𝑥 ≼ ω ∧ (topGen‘(fi‘𝑥)) = 𝐽) → 𝐽 ∈ 2ndω)
3822, 37impbii 208 1 (𝐽 ∈ 2ndω ↔ ∃𝑥(𝑥 ≼ ω ∧ (topGen‘(fi‘𝑥)) = 𝐽))
Colors of variables: wff setvar class
Syntax hints:  wb 205  wa 396   = wceq 1539  wex 1782  wcel 2106  wrex 3065  Vcvv 3432  wss 3887   class class class wbr 5074  cfv 6433  ωcom 7712  cdom 8731  ficfi 9169  topGenctg 17148  Topctop 22042  TopBasesctb 22095  2ndωc2ndc 22589
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-se 5545  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-isom 6442  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1st 7831  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-2o 8298  df-oadd 8301  df-er 8498  df-map 8617  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-fi 9170  df-dju 9659  df-card 9697  df-acn 9700  df-topgen 17154  df-top 22043  df-bases 22096  df-2ndc 22591
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator