![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > re2ndc | Structured version Visualization version GIF version |
Description: The standard topology on the reals is second-countable. (Contributed by Mario Carneiro, 21-Mar-2015.) |
Ref | Expression |
---|---|
re2ndc | ⊢ (topGen‘ran (,)) ∈ 2ndω |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2740 | . . 3 ⊢ (topGen‘((,) “ (ℚ × ℚ))) = (topGen‘((,) “ (ℚ × ℚ))) | |
2 | 1 | tgqioo 24841 | . 2 ⊢ (topGen‘ran (,)) = (topGen‘((,) “ (ℚ × ℚ))) |
3 | qtopbas 24801 | . . 3 ⊢ ((,) “ (ℚ × ℚ)) ∈ TopBases | |
4 | omelon 9715 | . . . . . 6 ⊢ ω ∈ On | |
5 | qnnen 16261 | . . . . . . . . 9 ⊢ ℚ ≈ ℕ | |
6 | xpen 9206 | . . . . . . . . 9 ⊢ ((ℚ ≈ ℕ ∧ ℚ ≈ ℕ) → (ℚ × ℚ) ≈ (ℕ × ℕ)) | |
7 | 5, 5, 6 | mp2an 691 | . . . . . . . 8 ⊢ (ℚ × ℚ) ≈ (ℕ × ℕ) |
8 | xpnnen 16259 | . . . . . . . 8 ⊢ (ℕ × ℕ) ≈ ℕ | |
9 | 7, 8 | entri 9068 | . . . . . . 7 ⊢ (ℚ × ℚ) ≈ ℕ |
10 | nnenom 14031 | . . . . . . 7 ⊢ ℕ ≈ ω | |
11 | 9, 10 | entr2i 9069 | . . . . . 6 ⊢ ω ≈ (ℚ × ℚ) |
12 | isnumi 10015 | . . . . . 6 ⊢ ((ω ∈ On ∧ ω ≈ (ℚ × ℚ)) → (ℚ × ℚ) ∈ dom card) | |
13 | 4, 11, 12 | mp2an 691 | . . . . 5 ⊢ (ℚ × ℚ) ∈ dom card |
14 | ioof 13507 | . . . . . . 7 ⊢ (,):(ℝ* × ℝ*)⟶𝒫 ℝ | |
15 | ffun 6750 | . . . . . . 7 ⊢ ((,):(ℝ* × ℝ*)⟶𝒫 ℝ → Fun (,)) | |
16 | 14, 15 | ax-mp 5 | . . . . . 6 ⊢ Fun (,) |
17 | qssre 13024 | . . . . . . . . 9 ⊢ ℚ ⊆ ℝ | |
18 | ressxr 11334 | . . . . . . . . 9 ⊢ ℝ ⊆ ℝ* | |
19 | 17, 18 | sstri 4018 | . . . . . . . 8 ⊢ ℚ ⊆ ℝ* |
20 | xpss12 5715 | . . . . . . . 8 ⊢ ((ℚ ⊆ ℝ* ∧ ℚ ⊆ ℝ*) → (ℚ × ℚ) ⊆ (ℝ* × ℝ*)) | |
21 | 19, 19, 20 | mp2an 691 | . . . . . . 7 ⊢ (ℚ × ℚ) ⊆ (ℝ* × ℝ*) |
22 | 14 | fdmi 6758 | . . . . . . 7 ⊢ dom (,) = (ℝ* × ℝ*) |
23 | 21, 22 | sseqtrri 4046 | . . . . . 6 ⊢ (ℚ × ℚ) ⊆ dom (,) |
24 | fores 6844 | . . . . . 6 ⊢ ((Fun (,) ∧ (ℚ × ℚ) ⊆ dom (,)) → ((,) ↾ (ℚ × ℚ)):(ℚ × ℚ)–onto→((,) “ (ℚ × ℚ))) | |
25 | 16, 23, 24 | mp2an 691 | . . . . 5 ⊢ ((,) ↾ (ℚ × ℚ)):(ℚ × ℚ)–onto→((,) “ (ℚ × ℚ)) |
26 | fodomnum 10126 | . . . . 5 ⊢ ((ℚ × ℚ) ∈ dom card → (((,) ↾ (ℚ × ℚ)):(ℚ × ℚ)–onto→((,) “ (ℚ × ℚ)) → ((,) “ (ℚ × ℚ)) ≼ (ℚ × ℚ))) | |
27 | 13, 25, 26 | mp2 9 | . . . 4 ⊢ ((,) “ (ℚ × ℚ)) ≼ (ℚ × ℚ) |
28 | 9, 10 | entri 9068 | . . . 4 ⊢ (ℚ × ℚ) ≈ ω |
29 | domentr 9073 | . . . 4 ⊢ ((((,) “ (ℚ × ℚ)) ≼ (ℚ × ℚ) ∧ (ℚ × ℚ) ≈ ω) → ((,) “ (ℚ × ℚ)) ≼ ω) | |
30 | 27, 28, 29 | mp2an 691 | . . 3 ⊢ ((,) “ (ℚ × ℚ)) ≼ ω |
31 | 2ndci 23477 | . . 3 ⊢ ((((,) “ (ℚ × ℚ)) ∈ TopBases ∧ ((,) “ (ℚ × ℚ)) ≼ ω) → (topGen‘((,) “ (ℚ × ℚ))) ∈ 2ndω) | |
32 | 3, 30, 31 | mp2an 691 | . 2 ⊢ (topGen‘((,) “ (ℚ × ℚ))) ∈ 2ndω |
33 | 2, 32 | eqeltri 2840 | 1 ⊢ (topGen‘ran (,)) ∈ 2ndω |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2108 ⊆ wss 3976 𝒫 cpw 4622 class class class wbr 5166 × cxp 5698 dom cdm 5700 ran crn 5701 ↾ cres 5702 “ cima 5703 Oncon0 6395 Fun wfun 6567 ⟶wf 6569 –onto→wfo 6571 ‘cfv 6573 ωcom 7903 ≈ cen 9000 ≼ cdom 9001 cardccrd 10004 ℝcr 11183 ℝ*cxr 11323 ℕcn 12293 ℚcq 13013 (,)cioo 13407 topGenctg 17497 TopBasesctb 22973 2ndωc2ndc 23467 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-inf2 9710 ax-cnex 11240 ax-resscn 11241 ax-1cn 11242 ax-icn 11243 ax-addcl 11244 ax-addrcl 11245 ax-mulcl 11246 ax-mulrcl 11247 ax-mulcom 11248 ax-addass 11249 ax-mulass 11250 ax-distr 11251 ax-i2m1 11252 ax-1ne0 11253 ax-1rid 11254 ax-rnegex 11255 ax-rrecex 11256 ax-cnre 11257 ax-pre-lttri 11258 ax-pre-lttrn 11259 ax-pre-ltadd 11260 ax-pre-mulgt0 11261 ax-pre-sup 11262 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-int 4971 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-se 5653 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-isom 6582 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-om 7904 df-1st 8030 df-2nd 8031 df-frecs 8322 df-wrecs 8353 df-recs 8427 df-rdg 8466 df-1o 8522 df-oadd 8526 df-omul 8527 df-er 8763 df-map 8886 df-en 9004 df-dom 9005 df-sdom 9006 df-fin 9007 df-sup 9511 df-inf 9512 df-oi 9579 df-card 10008 df-acn 10011 df-pnf 11326 df-mnf 11327 df-xr 11328 df-ltxr 11329 df-le 11330 df-sub 11522 df-neg 11523 df-div 11948 df-nn 12294 df-n0 12554 df-z 12640 df-uz 12904 df-q 13014 df-ioo 13411 df-topgen 17503 df-bases 22974 df-2ndc 23469 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |