| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > re2ndc | Structured version Visualization version GIF version | ||
| Description: The standard topology on the reals is second-countable. (Contributed by Mario Carneiro, 21-Mar-2015.) |
| Ref | Expression |
|---|---|
| re2ndc | ⊢ (topGen‘ran (,)) ∈ 2ndω |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2729 | . . 3 ⊢ (topGen‘((,) “ (ℚ × ℚ))) = (topGen‘((,) “ (ℚ × ℚ))) | |
| 2 | 1 | tgqioo 24688 | . 2 ⊢ (topGen‘ran (,)) = (topGen‘((,) “ (ℚ × ℚ))) |
| 3 | qtopbas 24647 | . . 3 ⊢ ((,) “ (ℚ × ℚ)) ∈ TopBases | |
| 4 | omelon 9599 | . . . . . 6 ⊢ ω ∈ On | |
| 5 | qnnen 16181 | . . . . . . . . 9 ⊢ ℚ ≈ ℕ | |
| 6 | xpen 9104 | . . . . . . . . 9 ⊢ ((ℚ ≈ ℕ ∧ ℚ ≈ ℕ) → (ℚ × ℚ) ≈ (ℕ × ℕ)) | |
| 7 | 5, 5, 6 | mp2an 692 | . . . . . . . 8 ⊢ (ℚ × ℚ) ≈ (ℕ × ℕ) |
| 8 | xpnnen 16179 | . . . . . . . 8 ⊢ (ℕ × ℕ) ≈ ℕ | |
| 9 | 7, 8 | entri 8979 | . . . . . . 7 ⊢ (ℚ × ℚ) ≈ ℕ |
| 10 | nnenom 13945 | . . . . . . 7 ⊢ ℕ ≈ ω | |
| 11 | 9, 10 | entr2i 8980 | . . . . . 6 ⊢ ω ≈ (ℚ × ℚ) |
| 12 | isnumi 9899 | . . . . . 6 ⊢ ((ω ∈ On ∧ ω ≈ (ℚ × ℚ)) → (ℚ × ℚ) ∈ dom card) | |
| 13 | 4, 11, 12 | mp2an 692 | . . . . 5 ⊢ (ℚ × ℚ) ∈ dom card |
| 14 | ioof 13408 | . . . . . . 7 ⊢ (,):(ℝ* × ℝ*)⟶𝒫 ℝ | |
| 15 | ffun 6691 | . . . . . . 7 ⊢ ((,):(ℝ* × ℝ*)⟶𝒫 ℝ → Fun (,)) | |
| 16 | 14, 15 | ax-mp 5 | . . . . . 6 ⊢ Fun (,) |
| 17 | qssre 12918 | . . . . . . . . 9 ⊢ ℚ ⊆ ℝ | |
| 18 | ressxr 11218 | . . . . . . . . 9 ⊢ ℝ ⊆ ℝ* | |
| 19 | 17, 18 | sstri 3956 | . . . . . . . 8 ⊢ ℚ ⊆ ℝ* |
| 20 | xpss12 5653 | . . . . . . . 8 ⊢ ((ℚ ⊆ ℝ* ∧ ℚ ⊆ ℝ*) → (ℚ × ℚ) ⊆ (ℝ* × ℝ*)) | |
| 21 | 19, 19, 20 | mp2an 692 | . . . . . . 7 ⊢ (ℚ × ℚ) ⊆ (ℝ* × ℝ*) |
| 22 | 14 | fdmi 6699 | . . . . . . 7 ⊢ dom (,) = (ℝ* × ℝ*) |
| 23 | 21, 22 | sseqtrri 3996 | . . . . . 6 ⊢ (ℚ × ℚ) ⊆ dom (,) |
| 24 | fores 6782 | . . . . . 6 ⊢ ((Fun (,) ∧ (ℚ × ℚ) ⊆ dom (,)) → ((,) ↾ (ℚ × ℚ)):(ℚ × ℚ)–onto→((,) “ (ℚ × ℚ))) | |
| 25 | 16, 23, 24 | mp2an 692 | . . . . 5 ⊢ ((,) ↾ (ℚ × ℚ)):(ℚ × ℚ)–onto→((,) “ (ℚ × ℚ)) |
| 26 | fodomnum 10010 | . . . . 5 ⊢ ((ℚ × ℚ) ∈ dom card → (((,) ↾ (ℚ × ℚ)):(ℚ × ℚ)–onto→((,) “ (ℚ × ℚ)) → ((,) “ (ℚ × ℚ)) ≼ (ℚ × ℚ))) | |
| 27 | 13, 25, 26 | mp2 9 | . . . 4 ⊢ ((,) “ (ℚ × ℚ)) ≼ (ℚ × ℚ) |
| 28 | 9, 10 | entri 8979 | . . . 4 ⊢ (ℚ × ℚ) ≈ ω |
| 29 | domentr 8984 | . . . 4 ⊢ ((((,) “ (ℚ × ℚ)) ≼ (ℚ × ℚ) ∧ (ℚ × ℚ) ≈ ω) → ((,) “ (ℚ × ℚ)) ≼ ω) | |
| 30 | 27, 28, 29 | mp2an 692 | . . 3 ⊢ ((,) “ (ℚ × ℚ)) ≼ ω |
| 31 | 2ndci 23335 | . . 3 ⊢ ((((,) “ (ℚ × ℚ)) ∈ TopBases ∧ ((,) “ (ℚ × ℚ)) ≼ ω) → (topGen‘((,) “ (ℚ × ℚ))) ∈ 2ndω) | |
| 32 | 3, 30, 31 | mp2an 692 | . 2 ⊢ (topGen‘((,) “ (ℚ × ℚ))) ∈ 2ndω |
| 33 | 2, 32 | eqeltri 2824 | 1 ⊢ (topGen‘ran (,)) ∈ 2ndω |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2109 ⊆ wss 3914 𝒫 cpw 4563 class class class wbr 5107 × cxp 5636 dom cdm 5638 ran crn 5639 ↾ cres 5640 “ cima 5641 Oncon0 6332 Fun wfun 6505 ⟶wf 6507 –onto→wfo 6509 ‘cfv 6511 ωcom 7842 ≈ cen 8915 ≼ cdom 8916 cardccrd 9888 ℝcr 11067 ℝ*cxr 11207 ℕcn 12186 ℚcq 12907 (,)cioo 13306 topGenctg 17400 TopBasesctb 22832 2ndωc2ndc 23325 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-inf2 9594 ax-cnex 11124 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 ax-pre-mulgt0 11145 ax-pre-sup 11146 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3354 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-int 4911 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-se 5592 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-isom 6520 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-om 7843 df-1st 7968 df-2nd 7969 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-1o 8434 df-oadd 8438 df-omul 8439 df-er 8671 df-map 8801 df-en 8919 df-dom 8920 df-sdom 8921 df-fin 8922 df-sup 9393 df-inf 9394 df-oi 9463 df-card 9892 df-acn 9895 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-sub 11407 df-neg 11408 df-div 11836 df-nn 12187 df-n0 12443 df-z 12530 df-uz 12794 df-q 12908 df-ioo 13310 df-topgen 17406 df-bases 22833 df-2ndc 23327 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |