![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > re2ndc | Structured version Visualization version GIF version |
Description: The standard topology on the reals is second-countable. (Contributed by Mario Carneiro, 21-Mar-2015.) |
Ref | Expression |
---|---|
re2ndc | ⊢ (topGen‘ran (,)) ∈ 2ndω |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2730 | . . 3 ⊢ (topGen‘((,) “ (ℚ × ℚ))) = (topGen‘((,) “ (ℚ × ℚ))) | |
2 | 1 | tgqioo 24538 | . 2 ⊢ (topGen‘ran (,)) = (topGen‘((,) “ (ℚ × ℚ))) |
3 | qtopbas 24498 | . . 3 ⊢ ((,) “ (ℚ × ℚ)) ∈ TopBases | |
4 | omelon 9645 | . . . . . 6 ⊢ ω ∈ On | |
5 | qnnen 16162 | . . . . . . . . 9 ⊢ ℚ ≈ ℕ | |
6 | xpen 9144 | . . . . . . . . 9 ⊢ ((ℚ ≈ ℕ ∧ ℚ ≈ ℕ) → (ℚ × ℚ) ≈ (ℕ × ℕ)) | |
7 | 5, 5, 6 | mp2an 688 | . . . . . . . 8 ⊢ (ℚ × ℚ) ≈ (ℕ × ℕ) |
8 | xpnnen 16160 | . . . . . . . 8 ⊢ (ℕ × ℕ) ≈ ℕ | |
9 | 7, 8 | entri 9008 | . . . . . . 7 ⊢ (ℚ × ℚ) ≈ ℕ |
10 | nnenom 13951 | . . . . . . 7 ⊢ ℕ ≈ ω | |
11 | 9, 10 | entr2i 9009 | . . . . . 6 ⊢ ω ≈ (ℚ × ℚ) |
12 | isnumi 9945 | . . . . . 6 ⊢ ((ω ∈ On ∧ ω ≈ (ℚ × ℚ)) → (ℚ × ℚ) ∈ dom card) | |
13 | 4, 11, 12 | mp2an 688 | . . . . 5 ⊢ (ℚ × ℚ) ∈ dom card |
14 | ioof 13430 | . . . . . . 7 ⊢ (,):(ℝ* × ℝ*)⟶𝒫 ℝ | |
15 | ffun 6721 | . . . . . . 7 ⊢ ((,):(ℝ* × ℝ*)⟶𝒫 ℝ → Fun (,)) | |
16 | 14, 15 | ax-mp 5 | . . . . . 6 ⊢ Fun (,) |
17 | qssre 12949 | . . . . . . . . 9 ⊢ ℚ ⊆ ℝ | |
18 | ressxr 11264 | . . . . . . . . 9 ⊢ ℝ ⊆ ℝ* | |
19 | 17, 18 | sstri 3992 | . . . . . . . 8 ⊢ ℚ ⊆ ℝ* |
20 | xpss12 5692 | . . . . . . . 8 ⊢ ((ℚ ⊆ ℝ* ∧ ℚ ⊆ ℝ*) → (ℚ × ℚ) ⊆ (ℝ* × ℝ*)) | |
21 | 19, 19, 20 | mp2an 688 | . . . . . . 7 ⊢ (ℚ × ℚ) ⊆ (ℝ* × ℝ*) |
22 | 14 | fdmi 6730 | . . . . . . 7 ⊢ dom (,) = (ℝ* × ℝ*) |
23 | 21, 22 | sseqtrri 4020 | . . . . . 6 ⊢ (ℚ × ℚ) ⊆ dom (,) |
24 | fores 6816 | . . . . . 6 ⊢ ((Fun (,) ∧ (ℚ × ℚ) ⊆ dom (,)) → ((,) ↾ (ℚ × ℚ)):(ℚ × ℚ)–onto→((,) “ (ℚ × ℚ))) | |
25 | 16, 23, 24 | mp2an 688 | . . . . 5 ⊢ ((,) ↾ (ℚ × ℚ)):(ℚ × ℚ)–onto→((,) “ (ℚ × ℚ)) |
26 | fodomnum 10056 | . . . . 5 ⊢ ((ℚ × ℚ) ∈ dom card → (((,) ↾ (ℚ × ℚ)):(ℚ × ℚ)–onto→((,) “ (ℚ × ℚ)) → ((,) “ (ℚ × ℚ)) ≼ (ℚ × ℚ))) | |
27 | 13, 25, 26 | mp2 9 | . . . 4 ⊢ ((,) “ (ℚ × ℚ)) ≼ (ℚ × ℚ) |
28 | 9, 10 | entri 9008 | . . . 4 ⊢ (ℚ × ℚ) ≈ ω |
29 | domentr 9013 | . . . 4 ⊢ ((((,) “ (ℚ × ℚ)) ≼ (ℚ × ℚ) ∧ (ℚ × ℚ) ≈ ω) → ((,) “ (ℚ × ℚ)) ≼ ω) | |
30 | 27, 28, 29 | mp2an 688 | . . 3 ⊢ ((,) “ (ℚ × ℚ)) ≼ ω |
31 | 2ndci 23174 | . . 3 ⊢ ((((,) “ (ℚ × ℚ)) ∈ TopBases ∧ ((,) “ (ℚ × ℚ)) ≼ ω) → (topGen‘((,) “ (ℚ × ℚ))) ∈ 2ndω) | |
32 | 3, 30, 31 | mp2an 688 | . 2 ⊢ (topGen‘((,) “ (ℚ × ℚ))) ∈ 2ndω |
33 | 2, 32 | eqeltri 2827 | 1 ⊢ (topGen‘ran (,)) ∈ 2ndω |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2104 ⊆ wss 3949 𝒫 cpw 4603 class class class wbr 5149 × cxp 5675 dom cdm 5677 ran crn 5678 ↾ cres 5679 “ cima 5680 Oncon0 6365 Fun wfun 6538 ⟶wf 6540 –onto→wfo 6542 ‘cfv 6544 ωcom 7859 ≈ cen 8940 ≼ cdom 8941 cardccrd 9934 ℝcr 11113 ℝ*cxr 11253 ℕcn 12218 ℚcq 12938 (,)cioo 13330 topGenctg 17389 TopBasesctb 22670 2ndωc2ndc 23164 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2701 ax-rep 5286 ax-sep 5300 ax-nul 5307 ax-pow 5364 ax-pr 5428 ax-un 7729 ax-inf2 9640 ax-cnex 11170 ax-resscn 11171 ax-1cn 11172 ax-icn 11173 ax-addcl 11174 ax-addrcl 11175 ax-mulcl 11176 ax-mulrcl 11177 ax-mulcom 11178 ax-addass 11179 ax-mulass 11180 ax-distr 11181 ax-i2m1 11182 ax-1ne0 11183 ax-1rid 11184 ax-rnegex 11185 ax-rrecex 11186 ax-cnre 11187 ax-pre-lttri 11188 ax-pre-lttrn 11189 ax-pre-ltadd 11190 ax-pre-mulgt0 11191 ax-pre-sup 11192 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2532 df-eu 2561 df-clab 2708 df-cleq 2722 df-clel 2808 df-nfc 2883 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-rmo 3374 df-reu 3375 df-rab 3431 df-v 3474 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-pss 3968 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-int 4952 df-iun 5000 df-br 5150 df-opab 5212 df-mpt 5233 df-tr 5267 df-id 5575 df-eprel 5581 df-po 5589 df-so 5590 df-fr 5632 df-se 5633 df-we 5634 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-pred 6301 df-ord 6368 df-on 6369 df-lim 6370 df-suc 6371 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-f1 6549 df-fo 6550 df-f1o 6551 df-fv 6552 df-isom 6553 df-riota 7369 df-ov 7416 df-oprab 7417 df-mpo 7418 df-om 7860 df-1st 7979 df-2nd 7980 df-frecs 8270 df-wrecs 8301 df-recs 8375 df-rdg 8414 df-1o 8470 df-oadd 8474 df-omul 8475 df-er 8707 df-map 8826 df-en 8944 df-dom 8945 df-sdom 8946 df-fin 8947 df-sup 9441 df-inf 9442 df-oi 9509 df-card 9938 df-acn 9941 df-pnf 11256 df-mnf 11257 df-xr 11258 df-ltxr 11259 df-le 11260 df-sub 11452 df-neg 11453 df-div 11878 df-nn 12219 df-n0 12479 df-z 12565 df-uz 12829 df-q 12939 df-ioo 13334 df-topgen 17395 df-bases 22671 df-2ndc 23166 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |