| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > re2ndc | Structured version Visualization version GIF version | ||
| Description: The standard topology on the reals is second-countable. (Contributed by Mario Carneiro, 21-Mar-2015.) |
| Ref | Expression |
|---|---|
| re2ndc | ⊢ (topGen‘ran (,)) ∈ 2ndω |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2729 | . . 3 ⊢ (topGen‘((,) “ (ℚ × ℚ))) = (topGen‘((,) “ (ℚ × ℚ))) | |
| 2 | 1 | tgqioo 24686 | . 2 ⊢ (topGen‘ran (,)) = (topGen‘((,) “ (ℚ × ℚ))) |
| 3 | qtopbas 24645 | . . 3 ⊢ ((,) “ (ℚ × ℚ)) ∈ TopBases | |
| 4 | omelon 9542 | . . . . . 6 ⊢ ω ∈ On | |
| 5 | qnnen 16122 | . . . . . . . . 9 ⊢ ℚ ≈ ℕ | |
| 6 | xpen 9057 | . . . . . . . . 9 ⊢ ((ℚ ≈ ℕ ∧ ℚ ≈ ℕ) → (ℚ × ℚ) ≈ (ℕ × ℕ)) | |
| 7 | 5, 5, 6 | mp2an 692 | . . . . . . . 8 ⊢ (ℚ × ℚ) ≈ (ℕ × ℕ) |
| 8 | xpnnen 16120 | . . . . . . . 8 ⊢ (ℕ × ℕ) ≈ ℕ | |
| 9 | 7, 8 | entri 8933 | . . . . . . 7 ⊢ (ℚ × ℚ) ≈ ℕ |
| 10 | nnenom 13887 | . . . . . . 7 ⊢ ℕ ≈ ω | |
| 11 | 9, 10 | entr2i 8934 | . . . . . 6 ⊢ ω ≈ (ℚ × ℚ) |
| 12 | isnumi 9842 | . . . . . 6 ⊢ ((ω ∈ On ∧ ω ≈ (ℚ × ℚ)) → (ℚ × ℚ) ∈ dom card) | |
| 13 | 4, 11, 12 | mp2an 692 | . . . . 5 ⊢ (ℚ × ℚ) ∈ dom card |
| 14 | ioof 13350 | . . . . . . 7 ⊢ (,):(ℝ* × ℝ*)⟶𝒫 ℝ | |
| 15 | ffun 6655 | . . . . . . 7 ⊢ ((,):(ℝ* × ℝ*)⟶𝒫 ℝ → Fun (,)) | |
| 16 | 14, 15 | ax-mp 5 | . . . . . 6 ⊢ Fun (,) |
| 17 | qssre 12860 | . . . . . . . . 9 ⊢ ℚ ⊆ ℝ | |
| 18 | ressxr 11159 | . . . . . . . . 9 ⊢ ℝ ⊆ ℝ* | |
| 19 | 17, 18 | sstri 3945 | . . . . . . . 8 ⊢ ℚ ⊆ ℝ* |
| 20 | xpss12 5634 | . . . . . . . 8 ⊢ ((ℚ ⊆ ℝ* ∧ ℚ ⊆ ℝ*) → (ℚ × ℚ) ⊆ (ℝ* × ℝ*)) | |
| 21 | 19, 19, 20 | mp2an 692 | . . . . . . 7 ⊢ (ℚ × ℚ) ⊆ (ℝ* × ℝ*) |
| 22 | 14 | fdmi 6663 | . . . . . . 7 ⊢ dom (,) = (ℝ* × ℝ*) |
| 23 | 21, 22 | sseqtrri 3985 | . . . . . 6 ⊢ (ℚ × ℚ) ⊆ dom (,) |
| 24 | fores 6746 | . . . . . 6 ⊢ ((Fun (,) ∧ (ℚ × ℚ) ⊆ dom (,)) → ((,) ↾ (ℚ × ℚ)):(ℚ × ℚ)–onto→((,) “ (ℚ × ℚ))) | |
| 25 | 16, 23, 24 | mp2an 692 | . . . . 5 ⊢ ((,) ↾ (ℚ × ℚ)):(ℚ × ℚ)–onto→((,) “ (ℚ × ℚ)) |
| 26 | fodomnum 9951 | . . . . 5 ⊢ ((ℚ × ℚ) ∈ dom card → (((,) ↾ (ℚ × ℚ)):(ℚ × ℚ)–onto→((,) “ (ℚ × ℚ)) → ((,) “ (ℚ × ℚ)) ≼ (ℚ × ℚ))) | |
| 27 | 13, 25, 26 | mp2 9 | . . . 4 ⊢ ((,) “ (ℚ × ℚ)) ≼ (ℚ × ℚ) |
| 28 | 9, 10 | entri 8933 | . . . 4 ⊢ (ℚ × ℚ) ≈ ω |
| 29 | domentr 8938 | . . . 4 ⊢ ((((,) “ (ℚ × ℚ)) ≼ (ℚ × ℚ) ∧ (ℚ × ℚ) ≈ ω) → ((,) “ (ℚ × ℚ)) ≼ ω) | |
| 30 | 27, 28, 29 | mp2an 692 | . . 3 ⊢ ((,) “ (ℚ × ℚ)) ≼ ω |
| 31 | 2ndci 23333 | . . 3 ⊢ ((((,) “ (ℚ × ℚ)) ∈ TopBases ∧ ((,) “ (ℚ × ℚ)) ≼ ω) → (topGen‘((,) “ (ℚ × ℚ))) ∈ 2ndω) | |
| 32 | 3, 30, 31 | mp2an 692 | . 2 ⊢ (topGen‘((,) “ (ℚ × ℚ))) ∈ 2ndω |
| 33 | 2, 32 | eqeltri 2824 | 1 ⊢ (topGen‘ran (,)) ∈ 2ndω |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2109 ⊆ wss 3903 𝒫 cpw 4551 class class class wbr 5092 × cxp 5617 dom cdm 5619 ran crn 5620 ↾ cres 5621 “ cima 5622 Oncon0 6307 Fun wfun 6476 ⟶wf 6478 –onto→wfo 6480 ‘cfv 6482 ωcom 7799 ≈ cen 8869 ≼ cdom 8870 cardccrd 9831 ℝcr 11008 ℝ*cxr 11148 ℕcn 12128 ℚcq 12849 (,)cioo 13248 topGenctg 17341 TopBasesctb 22830 2ndωc2ndc 23323 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5218 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 ax-inf2 9537 ax-cnex 11065 ax-resscn 11066 ax-1cn 11067 ax-icn 11068 ax-addcl 11069 ax-addrcl 11070 ax-mulcl 11071 ax-mulrcl 11072 ax-mulcom 11073 ax-addass 11074 ax-mulass 11075 ax-distr 11076 ax-i2m1 11077 ax-1ne0 11078 ax-1rid 11079 ax-rnegex 11080 ax-rrecex 11081 ax-cnre 11082 ax-pre-lttri 11083 ax-pre-lttrn 11084 ax-pre-ltadd 11085 ax-pre-mulgt0 11086 ax-pre-sup 11087 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3343 df-reu 3344 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-pss 3923 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-int 4897 df-iun 4943 df-br 5093 df-opab 5155 df-mpt 5174 df-tr 5200 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-se 5573 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6249 df-ord 6310 df-on 6311 df-lim 6312 df-suc 6313 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-f1 6487 df-fo 6488 df-f1o 6489 df-fv 6490 df-isom 6491 df-riota 7306 df-ov 7352 df-oprab 7353 df-mpo 7354 df-om 7800 df-1st 7924 df-2nd 7925 df-frecs 8214 df-wrecs 8245 df-recs 8294 df-rdg 8332 df-1o 8388 df-oadd 8392 df-omul 8393 df-er 8625 df-map 8755 df-en 8873 df-dom 8874 df-sdom 8875 df-fin 8876 df-sup 9332 df-inf 9333 df-oi 9402 df-card 9835 df-acn 9838 df-pnf 11151 df-mnf 11152 df-xr 11153 df-ltxr 11154 df-le 11155 df-sub 11349 df-neg 11350 df-div 11778 df-nn 12129 df-n0 12385 df-z 12472 df-uz 12736 df-q 12850 df-ioo 13252 df-topgen 17347 df-bases 22831 df-2ndc 23325 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |