| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > re2ndc | Structured version Visualization version GIF version | ||
| Description: The standard topology on the reals is second-countable. (Contributed by Mario Carneiro, 21-Mar-2015.) |
| Ref | Expression |
|---|---|
| re2ndc | ⊢ (topGen‘ran (,)) ∈ 2ndω |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2730 | . . 3 ⊢ (topGen‘((,) “ (ℚ × ℚ))) = (topGen‘((,) “ (ℚ × ℚ))) | |
| 2 | 1 | tgqioo 24695 | . 2 ⊢ (topGen‘ran (,)) = (topGen‘((,) “ (ℚ × ℚ))) |
| 3 | qtopbas 24654 | . . 3 ⊢ ((,) “ (ℚ × ℚ)) ∈ TopBases | |
| 4 | omelon 9606 | . . . . . 6 ⊢ ω ∈ On | |
| 5 | qnnen 16188 | . . . . . . . . 9 ⊢ ℚ ≈ ℕ | |
| 6 | xpen 9110 | . . . . . . . . 9 ⊢ ((ℚ ≈ ℕ ∧ ℚ ≈ ℕ) → (ℚ × ℚ) ≈ (ℕ × ℕ)) | |
| 7 | 5, 5, 6 | mp2an 692 | . . . . . . . 8 ⊢ (ℚ × ℚ) ≈ (ℕ × ℕ) |
| 8 | xpnnen 16186 | . . . . . . . 8 ⊢ (ℕ × ℕ) ≈ ℕ | |
| 9 | 7, 8 | entri 8982 | . . . . . . 7 ⊢ (ℚ × ℚ) ≈ ℕ |
| 10 | nnenom 13952 | . . . . . . 7 ⊢ ℕ ≈ ω | |
| 11 | 9, 10 | entr2i 8983 | . . . . . 6 ⊢ ω ≈ (ℚ × ℚ) |
| 12 | isnumi 9906 | . . . . . 6 ⊢ ((ω ∈ On ∧ ω ≈ (ℚ × ℚ)) → (ℚ × ℚ) ∈ dom card) | |
| 13 | 4, 11, 12 | mp2an 692 | . . . . 5 ⊢ (ℚ × ℚ) ∈ dom card |
| 14 | ioof 13415 | . . . . . . 7 ⊢ (,):(ℝ* × ℝ*)⟶𝒫 ℝ | |
| 15 | ffun 6694 | . . . . . . 7 ⊢ ((,):(ℝ* × ℝ*)⟶𝒫 ℝ → Fun (,)) | |
| 16 | 14, 15 | ax-mp 5 | . . . . . 6 ⊢ Fun (,) |
| 17 | qssre 12925 | . . . . . . . . 9 ⊢ ℚ ⊆ ℝ | |
| 18 | ressxr 11225 | . . . . . . . . 9 ⊢ ℝ ⊆ ℝ* | |
| 19 | 17, 18 | sstri 3959 | . . . . . . . 8 ⊢ ℚ ⊆ ℝ* |
| 20 | xpss12 5656 | . . . . . . . 8 ⊢ ((ℚ ⊆ ℝ* ∧ ℚ ⊆ ℝ*) → (ℚ × ℚ) ⊆ (ℝ* × ℝ*)) | |
| 21 | 19, 19, 20 | mp2an 692 | . . . . . . 7 ⊢ (ℚ × ℚ) ⊆ (ℝ* × ℝ*) |
| 22 | 14 | fdmi 6702 | . . . . . . 7 ⊢ dom (,) = (ℝ* × ℝ*) |
| 23 | 21, 22 | sseqtrri 3999 | . . . . . 6 ⊢ (ℚ × ℚ) ⊆ dom (,) |
| 24 | fores 6785 | . . . . . 6 ⊢ ((Fun (,) ∧ (ℚ × ℚ) ⊆ dom (,)) → ((,) ↾ (ℚ × ℚ)):(ℚ × ℚ)–onto→((,) “ (ℚ × ℚ))) | |
| 25 | 16, 23, 24 | mp2an 692 | . . . . 5 ⊢ ((,) ↾ (ℚ × ℚ)):(ℚ × ℚ)–onto→((,) “ (ℚ × ℚ)) |
| 26 | fodomnum 10017 | . . . . 5 ⊢ ((ℚ × ℚ) ∈ dom card → (((,) ↾ (ℚ × ℚ)):(ℚ × ℚ)–onto→((,) “ (ℚ × ℚ)) → ((,) “ (ℚ × ℚ)) ≼ (ℚ × ℚ))) | |
| 27 | 13, 25, 26 | mp2 9 | . . . 4 ⊢ ((,) “ (ℚ × ℚ)) ≼ (ℚ × ℚ) |
| 28 | 9, 10 | entri 8982 | . . . 4 ⊢ (ℚ × ℚ) ≈ ω |
| 29 | domentr 8987 | . . . 4 ⊢ ((((,) “ (ℚ × ℚ)) ≼ (ℚ × ℚ) ∧ (ℚ × ℚ) ≈ ω) → ((,) “ (ℚ × ℚ)) ≼ ω) | |
| 30 | 27, 28, 29 | mp2an 692 | . . 3 ⊢ ((,) “ (ℚ × ℚ)) ≼ ω |
| 31 | 2ndci 23342 | . . 3 ⊢ ((((,) “ (ℚ × ℚ)) ∈ TopBases ∧ ((,) “ (ℚ × ℚ)) ≼ ω) → (topGen‘((,) “ (ℚ × ℚ))) ∈ 2ndω) | |
| 32 | 3, 30, 31 | mp2an 692 | . 2 ⊢ (topGen‘((,) “ (ℚ × ℚ))) ∈ 2ndω |
| 33 | 2, 32 | eqeltri 2825 | 1 ⊢ (topGen‘ran (,)) ∈ 2ndω |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2109 ⊆ wss 3917 𝒫 cpw 4566 class class class wbr 5110 × cxp 5639 dom cdm 5641 ran crn 5642 ↾ cres 5643 “ cima 5644 Oncon0 6335 Fun wfun 6508 ⟶wf 6510 –onto→wfo 6512 ‘cfv 6514 ωcom 7845 ≈ cen 8918 ≼ cdom 8919 cardccrd 9895 ℝcr 11074 ℝ*cxr 11214 ℕcn 12193 ℚcq 12914 (,)cioo 13313 topGenctg 17407 TopBasesctb 22839 2ndωc2ndc 23332 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5237 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-inf2 9601 ax-cnex 11131 ax-resscn 11132 ax-1cn 11133 ax-icn 11134 ax-addcl 11135 ax-addrcl 11136 ax-mulcl 11137 ax-mulrcl 11138 ax-mulcom 11139 ax-addass 11140 ax-mulass 11141 ax-distr 11142 ax-i2m1 11143 ax-1ne0 11144 ax-1rid 11145 ax-rnegex 11146 ax-rrecex 11147 ax-cnre 11148 ax-pre-lttri 11149 ax-pre-lttrn 11150 ax-pre-ltadd 11151 ax-pre-mulgt0 11152 ax-pre-sup 11153 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-int 4914 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-se 5595 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-isom 6523 df-riota 7347 df-ov 7393 df-oprab 7394 df-mpo 7395 df-om 7846 df-1st 7971 df-2nd 7972 df-frecs 8263 df-wrecs 8294 df-recs 8343 df-rdg 8381 df-1o 8437 df-oadd 8441 df-omul 8442 df-er 8674 df-map 8804 df-en 8922 df-dom 8923 df-sdom 8924 df-fin 8925 df-sup 9400 df-inf 9401 df-oi 9470 df-card 9899 df-acn 9902 df-pnf 11217 df-mnf 11218 df-xr 11219 df-ltxr 11220 df-le 11221 df-sub 11414 df-neg 11415 df-div 11843 df-nn 12194 df-n0 12450 df-z 12537 df-uz 12801 df-q 12915 df-ioo 13317 df-topgen 17413 df-bases 22840 df-2ndc 23334 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |