Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > re2ndc | Structured version Visualization version GIF version |
Description: The standard topology on the reals is second-countable. (Contributed by Mario Carneiro, 21-Mar-2015.) |
Ref | Expression |
---|---|
re2ndc | ⊢ (topGen‘ran (,)) ∈ 2ndω |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2737 | . . 3 ⊢ (topGen‘((,) “ (ℚ × ℚ))) = (topGen‘((,) “ (ℚ × ℚ))) | |
2 | 1 | tgqioo 23697 | . 2 ⊢ (topGen‘ran (,)) = (topGen‘((,) “ (ℚ × ℚ))) |
3 | qtopbas 23657 | . . 3 ⊢ ((,) “ (ℚ × ℚ)) ∈ TopBases | |
4 | omelon 9261 | . . . . . 6 ⊢ ω ∈ On | |
5 | qnnen 15774 | . . . . . . . . 9 ⊢ ℚ ≈ ℕ | |
6 | xpen 8809 | . . . . . . . . 9 ⊢ ((ℚ ≈ ℕ ∧ ℚ ≈ ℕ) → (ℚ × ℚ) ≈ (ℕ × ℕ)) | |
7 | 5, 5, 6 | mp2an 692 | . . . . . . . 8 ⊢ (ℚ × ℚ) ≈ (ℕ × ℕ) |
8 | xpnnen 15772 | . . . . . . . 8 ⊢ (ℕ × ℕ) ≈ ℕ | |
9 | 7, 8 | entri 8682 | . . . . . . 7 ⊢ (ℚ × ℚ) ≈ ℕ |
10 | nnenom 13553 | . . . . . . 7 ⊢ ℕ ≈ ω | |
11 | 9, 10 | entr2i 8683 | . . . . . 6 ⊢ ω ≈ (ℚ × ℚ) |
12 | isnumi 9562 | . . . . . 6 ⊢ ((ω ∈ On ∧ ω ≈ (ℚ × ℚ)) → (ℚ × ℚ) ∈ dom card) | |
13 | 4, 11, 12 | mp2an 692 | . . . . 5 ⊢ (ℚ × ℚ) ∈ dom card |
14 | ioof 13035 | . . . . . . 7 ⊢ (,):(ℝ* × ℝ*)⟶𝒫 ℝ | |
15 | ffun 6548 | . . . . . . 7 ⊢ ((,):(ℝ* × ℝ*)⟶𝒫 ℝ → Fun (,)) | |
16 | 14, 15 | ax-mp 5 | . . . . . 6 ⊢ Fun (,) |
17 | qssre 12555 | . . . . . . . . 9 ⊢ ℚ ⊆ ℝ | |
18 | ressxr 10877 | . . . . . . . . 9 ⊢ ℝ ⊆ ℝ* | |
19 | 17, 18 | sstri 3910 | . . . . . . . 8 ⊢ ℚ ⊆ ℝ* |
20 | xpss12 5566 | . . . . . . . 8 ⊢ ((ℚ ⊆ ℝ* ∧ ℚ ⊆ ℝ*) → (ℚ × ℚ) ⊆ (ℝ* × ℝ*)) | |
21 | 19, 19, 20 | mp2an 692 | . . . . . . 7 ⊢ (ℚ × ℚ) ⊆ (ℝ* × ℝ*) |
22 | 14 | fdmi 6557 | . . . . . . 7 ⊢ dom (,) = (ℝ* × ℝ*) |
23 | 21, 22 | sseqtrri 3938 | . . . . . 6 ⊢ (ℚ × ℚ) ⊆ dom (,) |
24 | fores 6643 | . . . . . 6 ⊢ ((Fun (,) ∧ (ℚ × ℚ) ⊆ dom (,)) → ((,) ↾ (ℚ × ℚ)):(ℚ × ℚ)–onto→((,) “ (ℚ × ℚ))) | |
25 | 16, 23, 24 | mp2an 692 | . . . . 5 ⊢ ((,) ↾ (ℚ × ℚ)):(ℚ × ℚ)–onto→((,) “ (ℚ × ℚ)) |
26 | fodomnum 9671 | . . . . 5 ⊢ ((ℚ × ℚ) ∈ dom card → (((,) ↾ (ℚ × ℚ)):(ℚ × ℚ)–onto→((,) “ (ℚ × ℚ)) → ((,) “ (ℚ × ℚ)) ≼ (ℚ × ℚ))) | |
27 | 13, 25, 26 | mp2 9 | . . . 4 ⊢ ((,) “ (ℚ × ℚ)) ≼ (ℚ × ℚ) |
28 | 9, 10 | entri 8682 | . . . 4 ⊢ (ℚ × ℚ) ≈ ω |
29 | domentr 8687 | . . . 4 ⊢ ((((,) “ (ℚ × ℚ)) ≼ (ℚ × ℚ) ∧ (ℚ × ℚ) ≈ ω) → ((,) “ (ℚ × ℚ)) ≼ ω) | |
30 | 27, 28, 29 | mp2an 692 | . . 3 ⊢ ((,) “ (ℚ × ℚ)) ≼ ω |
31 | 2ndci 22345 | . . 3 ⊢ ((((,) “ (ℚ × ℚ)) ∈ TopBases ∧ ((,) “ (ℚ × ℚ)) ≼ ω) → (topGen‘((,) “ (ℚ × ℚ))) ∈ 2ndω) | |
32 | 3, 30, 31 | mp2an 692 | . 2 ⊢ (topGen‘((,) “ (ℚ × ℚ))) ∈ 2ndω |
33 | 2, 32 | eqeltri 2834 | 1 ⊢ (topGen‘ran (,)) ∈ 2ndω |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2110 ⊆ wss 3866 𝒫 cpw 4513 class class class wbr 5053 × cxp 5549 dom cdm 5551 ran crn 5552 ↾ cres 5553 “ cima 5554 Oncon0 6213 Fun wfun 6374 ⟶wf 6376 –onto→wfo 6378 ‘cfv 6380 ωcom 7644 ≈ cen 8623 ≼ cdom 8624 cardccrd 9551 ℝcr 10728 ℝ*cxr 10866 ℕcn 11830 ℚcq 12544 (,)cioo 12935 topGenctg 16942 TopBasesctb 21842 2ndωc2ndc 22335 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2708 ax-rep 5179 ax-sep 5192 ax-nul 5199 ax-pow 5258 ax-pr 5322 ax-un 7523 ax-inf2 9256 ax-cnex 10785 ax-resscn 10786 ax-1cn 10787 ax-icn 10788 ax-addcl 10789 ax-addrcl 10790 ax-mulcl 10791 ax-mulrcl 10792 ax-mulcom 10793 ax-addass 10794 ax-mulass 10795 ax-distr 10796 ax-i2m1 10797 ax-1ne0 10798 ax-1rid 10799 ax-rnegex 10800 ax-rrecex 10801 ax-cnre 10802 ax-pre-lttri 10803 ax-pre-lttrn 10804 ax-pre-ltadd 10805 ax-pre-mulgt0 10806 ax-pre-sup 10807 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3or 1090 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2071 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2886 df-ne 2941 df-nel 3047 df-ral 3066 df-rex 3067 df-reu 3068 df-rmo 3069 df-rab 3070 df-v 3410 df-sbc 3695 df-csb 3812 df-dif 3869 df-un 3871 df-in 3873 df-ss 3883 df-pss 3885 df-nul 4238 df-if 4440 df-pw 4515 df-sn 4542 df-pr 4544 df-tp 4546 df-op 4548 df-uni 4820 df-int 4860 df-iun 4906 df-br 5054 df-opab 5116 df-mpt 5136 df-tr 5162 df-id 5455 df-eprel 5460 df-po 5468 df-so 5469 df-fr 5509 df-se 5510 df-we 5511 df-xp 5557 df-rel 5558 df-cnv 5559 df-co 5560 df-dm 5561 df-rn 5562 df-res 5563 df-ima 5564 df-pred 6160 df-ord 6216 df-on 6217 df-lim 6218 df-suc 6219 df-iota 6338 df-fun 6382 df-fn 6383 df-f 6384 df-f1 6385 df-fo 6386 df-f1o 6387 df-fv 6388 df-isom 6389 df-riota 7170 df-ov 7216 df-oprab 7217 df-mpo 7218 df-om 7645 df-1st 7761 df-2nd 7762 df-wrecs 8047 df-recs 8108 df-rdg 8146 df-1o 8202 df-oadd 8206 df-omul 8207 df-er 8391 df-map 8510 df-en 8627 df-dom 8628 df-sdom 8629 df-fin 8630 df-sup 9058 df-inf 9059 df-oi 9126 df-card 9555 df-acn 9558 df-pnf 10869 df-mnf 10870 df-xr 10871 df-ltxr 10872 df-le 10873 df-sub 11064 df-neg 11065 df-div 11490 df-nn 11831 df-n0 12091 df-z 12177 df-uz 12439 df-q 12545 df-ioo 12939 df-topgen 16948 df-bases 21843 df-2ndc 22337 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |