Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > re2ndc | Structured version Visualization version GIF version |
Description: The standard topology on the reals is second-countable. (Contributed by Mario Carneiro, 21-Mar-2015.) |
Ref | Expression |
---|---|
re2ndc | ⊢ (topGen‘ran (,)) ∈ 2ndω |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2738 | . . 3 ⊢ (topGen‘((,) “ (ℚ × ℚ))) = (topGen‘((,) “ (ℚ × ℚ))) | |
2 | 1 | tgqioo 23869 | . 2 ⊢ (topGen‘ran (,)) = (topGen‘((,) “ (ℚ × ℚ))) |
3 | qtopbas 23829 | . . 3 ⊢ ((,) “ (ℚ × ℚ)) ∈ TopBases | |
4 | omelon 9334 | . . . . . 6 ⊢ ω ∈ On | |
5 | qnnen 15850 | . . . . . . . . 9 ⊢ ℚ ≈ ℕ | |
6 | xpen 8876 | . . . . . . . . 9 ⊢ ((ℚ ≈ ℕ ∧ ℚ ≈ ℕ) → (ℚ × ℚ) ≈ (ℕ × ℕ)) | |
7 | 5, 5, 6 | mp2an 688 | . . . . . . . 8 ⊢ (ℚ × ℚ) ≈ (ℕ × ℕ) |
8 | xpnnen 15848 | . . . . . . . 8 ⊢ (ℕ × ℕ) ≈ ℕ | |
9 | 7, 8 | entri 8749 | . . . . . . 7 ⊢ (ℚ × ℚ) ≈ ℕ |
10 | nnenom 13628 | . . . . . . 7 ⊢ ℕ ≈ ω | |
11 | 9, 10 | entr2i 8750 | . . . . . 6 ⊢ ω ≈ (ℚ × ℚ) |
12 | isnumi 9635 | . . . . . 6 ⊢ ((ω ∈ On ∧ ω ≈ (ℚ × ℚ)) → (ℚ × ℚ) ∈ dom card) | |
13 | 4, 11, 12 | mp2an 688 | . . . . 5 ⊢ (ℚ × ℚ) ∈ dom card |
14 | ioof 13108 | . . . . . . 7 ⊢ (,):(ℝ* × ℝ*)⟶𝒫 ℝ | |
15 | ffun 6587 | . . . . . . 7 ⊢ ((,):(ℝ* × ℝ*)⟶𝒫 ℝ → Fun (,)) | |
16 | 14, 15 | ax-mp 5 | . . . . . 6 ⊢ Fun (,) |
17 | qssre 12628 | . . . . . . . . 9 ⊢ ℚ ⊆ ℝ | |
18 | ressxr 10950 | . . . . . . . . 9 ⊢ ℝ ⊆ ℝ* | |
19 | 17, 18 | sstri 3926 | . . . . . . . 8 ⊢ ℚ ⊆ ℝ* |
20 | xpss12 5595 | . . . . . . . 8 ⊢ ((ℚ ⊆ ℝ* ∧ ℚ ⊆ ℝ*) → (ℚ × ℚ) ⊆ (ℝ* × ℝ*)) | |
21 | 19, 19, 20 | mp2an 688 | . . . . . . 7 ⊢ (ℚ × ℚ) ⊆ (ℝ* × ℝ*) |
22 | 14 | fdmi 6596 | . . . . . . 7 ⊢ dom (,) = (ℝ* × ℝ*) |
23 | 21, 22 | sseqtrri 3954 | . . . . . 6 ⊢ (ℚ × ℚ) ⊆ dom (,) |
24 | fores 6682 | . . . . . 6 ⊢ ((Fun (,) ∧ (ℚ × ℚ) ⊆ dom (,)) → ((,) ↾ (ℚ × ℚ)):(ℚ × ℚ)–onto→((,) “ (ℚ × ℚ))) | |
25 | 16, 23, 24 | mp2an 688 | . . . . 5 ⊢ ((,) ↾ (ℚ × ℚ)):(ℚ × ℚ)–onto→((,) “ (ℚ × ℚ)) |
26 | fodomnum 9744 | . . . . 5 ⊢ ((ℚ × ℚ) ∈ dom card → (((,) ↾ (ℚ × ℚ)):(ℚ × ℚ)–onto→((,) “ (ℚ × ℚ)) → ((,) “ (ℚ × ℚ)) ≼ (ℚ × ℚ))) | |
27 | 13, 25, 26 | mp2 9 | . . . 4 ⊢ ((,) “ (ℚ × ℚ)) ≼ (ℚ × ℚ) |
28 | 9, 10 | entri 8749 | . . . 4 ⊢ (ℚ × ℚ) ≈ ω |
29 | domentr 8754 | . . . 4 ⊢ ((((,) “ (ℚ × ℚ)) ≼ (ℚ × ℚ) ∧ (ℚ × ℚ) ≈ ω) → ((,) “ (ℚ × ℚ)) ≼ ω) | |
30 | 27, 28, 29 | mp2an 688 | . . 3 ⊢ ((,) “ (ℚ × ℚ)) ≼ ω |
31 | 2ndci 22507 | . . 3 ⊢ ((((,) “ (ℚ × ℚ)) ∈ TopBases ∧ ((,) “ (ℚ × ℚ)) ≼ ω) → (topGen‘((,) “ (ℚ × ℚ))) ∈ 2ndω) | |
32 | 3, 30, 31 | mp2an 688 | . 2 ⊢ (topGen‘((,) “ (ℚ × ℚ))) ∈ 2ndω |
33 | 2, 32 | eqeltri 2835 | 1 ⊢ (topGen‘ran (,)) ∈ 2ndω |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2108 ⊆ wss 3883 𝒫 cpw 4530 class class class wbr 5070 × cxp 5578 dom cdm 5580 ran crn 5581 ↾ cres 5582 “ cima 5583 Oncon0 6251 Fun wfun 6412 ⟶wf 6414 –onto→wfo 6416 ‘cfv 6418 ωcom 7687 ≈ cen 8688 ≼ cdom 8689 cardccrd 9624 ℝcr 10801 ℝ*cxr 10939 ℕcn 11903 ℚcq 12617 (,)cioo 13008 topGenctg 17065 TopBasesctb 22003 2ndωc2ndc 22497 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-inf2 9329 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 ax-pre-sup 10880 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-int 4877 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-se 5536 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-isom 6427 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-om 7688 df-1st 7804 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-1o 8267 df-oadd 8271 df-omul 8272 df-er 8456 df-map 8575 df-en 8692 df-dom 8693 df-sdom 8694 df-fin 8695 df-sup 9131 df-inf 9132 df-oi 9199 df-card 9628 df-acn 9631 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-div 11563 df-nn 11904 df-n0 12164 df-z 12250 df-uz 12512 df-q 12618 df-ioo 13012 df-topgen 17071 df-bases 22004 df-2ndc 22499 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |