| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > re2ndc | Structured version Visualization version GIF version | ||
| Description: The standard topology on the reals is second-countable. (Contributed by Mario Carneiro, 21-Mar-2015.) |
| Ref | Expression |
|---|---|
| re2ndc | ⊢ (topGen‘ran (,)) ∈ 2ndω |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2731 | . . 3 ⊢ (topGen‘((,) “ (ℚ × ℚ))) = (topGen‘((,) “ (ℚ × ℚ))) | |
| 2 | 1 | tgqioo 24715 | . 2 ⊢ (topGen‘ran (,)) = (topGen‘((,) “ (ℚ × ℚ))) |
| 3 | qtopbas 24674 | . . 3 ⊢ ((,) “ (ℚ × ℚ)) ∈ TopBases | |
| 4 | omelon 9536 | . . . . . 6 ⊢ ω ∈ On | |
| 5 | qnnen 16122 | . . . . . . . . 9 ⊢ ℚ ≈ ℕ | |
| 6 | xpen 9053 | . . . . . . . . 9 ⊢ ((ℚ ≈ ℕ ∧ ℚ ≈ ℕ) → (ℚ × ℚ) ≈ (ℕ × ℕ)) | |
| 7 | 5, 5, 6 | mp2an 692 | . . . . . . . 8 ⊢ (ℚ × ℚ) ≈ (ℕ × ℕ) |
| 8 | xpnnen 16120 | . . . . . . . 8 ⊢ (ℕ × ℕ) ≈ ℕ | |
| 9 | 7, 8 | entri 8930 | . . . . . . 7 ⊢ (ℚ × ℚ) ≈ ℕ |
| 10 | nnenom 13887 | . . . . . . 7 ⊢ ℕ ≈ ω | |
| 11 | 9, 10 | entr2i 8931 | . . . . . 6 ⊢ ω ≈ (ℚ × ℚ) |
| 12 | isnumi 9839 | . . . . . 6 ⊢ ((ω ∈ On ∧ ω ≈ (ℚ × ℚ)) → (ℚ × ℚ) ∈ dom card) | |
| 13 | 4, 11, 12 | mp2an 692 | . . . . 5 ⊢ (ℚ × ℚ) ∈ dom card |
| 14 | ioof 13347 | . . . . . . 7 ⊢ (,):(ℝ* × ℝ*)⟶𝒫 ℝ | |
| 15 | ffun 6654 | . . . . . . 7 ⊢ ((,):(ℝ* × ℝ*)⟶𝒫 ℝ → Fun (,)) | |
| 16 | 14, 15 | ax-mp 5 | . . . . . 6 ⊢ Fun (,) |
| 17 | qssre 12857 | . . . . . . . . 9 ⊢ ℚ ⊆ ℝ | |
| 18 | ressxr 11156 | . . . . . . . . 9 ⊢ ℝ ⊆ ℝ* | |
| 19 | 17, 18 | sstri 3939 | . . . . . . . 8 ⊢ ℚ ⊆ ℝ* |
| 20 | xpss12 5629 | . . . . . . . 8 ⊢ ((ℚ ⊆ ℝ* ∧ ℚ ⊆ ℝ*) → (ℚ × ℚ) ⊆ (ℝ* × ℝ*)) | |
| 21 | 19, 19, 20 | mp2an 692 | . . . . . . 7 ⊢ (ℚ × ℚ) ⊆ (ℝ* × ℝ*) |
| 22 | 14 | fdmi 6662 | . . . . . . 7 ⊢ dom (,) = (ℝ* × ℝ*) |
| 23 | 21, 22 | sseqtrri 3979 | . . . . . 6 ⊢ (ℚ × ℚ) ⊆ dom (,) |
| 24 | fores 6745 | . . . . . 6 ⊢ ((Fun (,) ∧ (ℚ × ℚ) ⊆ dom (,)) → ((,) ↾ (ℚ × ℚ)):(ℚ × ℚ)–onto→((,) “ (ℚ × ℚ))) | |
| 25 | 16, 23, 24 | mp2an 692 | . . . . 5 ⊢ ((,) ↾ (ℚ × ℚ)):(ℚ × ℚ)–onto→((,) “ (ℚ × ℚ)) |
| 26 | fodomnum 9948 | . . . . 5 ⊢ ((ℚ × ℚ) ∈ dom card → (((,) ↾ (ℚ × ℚ)):(ℚ × ℚ)–onto→((,) “ (ℚ × ℚ)) → ((,) “ (ℚ × ℚ)) ≼ (ℚ × ℚ))) | |
| 27 | 13, 25, 26 | mp2 9 | . . . 4 ⊢ ((,) “ (ℚ × ℚ)) ≼ (ℚ × ℚ) |
| 28 | 9, 10 | entri 8930 | . . . 4 ⊢ (ℚ × ℚ) ≈ ω |
| 29 | domentr 8935 | . . . 4 ⊢ ((((,) “ (ℚ × ℚ)) ≼ (ℚ × ℚ) ∧ (ℚ × ℚ) ≈ ω) → ((,) “ (ℚ × ℚ)) ≼ ω) | |
| 30 | 27, 28, 29 | mp2an 692 | . . 3 ⊢ ((,) “ (ℚ × ℚ)) ≼ ω |
| 31 | 2ndci 23363 | . . 3 ⊢ ((((,) “ (ℚ × ℚ)) ∈ TopBases ∧ ((,) “ (ℚ × ℚ)) ≼ ω) → (topGen‘((,) “ (ℚ × ℚ))) ∈ 2ndω) | |
| 32 | 3, 30, 31 | mp2an 692 | . 2 ⊢ (topGen‘((,) “ (ℚ × ℚ))) ∈ 2ndω |
| 33 | 2, 32 | eqeltri 2827 | 1 ⊢ (topGen‘ran (,)) ∈ 2ndω |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2111 ⊆ wss 3897 𝒫 cpw 4547 class class class wbr 5089 × cxp 5612 dom cdm 5614 ran crn 5615 ↾ cres 5616 “ cima 5617 Oncon0 6306 Fun wfun 6475 ⟶wf 6477 –onto→wfo 6479 ‘cfv 6481 ωcom 7796 ≈ cen 8866 ≼ cdom 8867 cardccrd 9828 ℝcr 11005 ℝ*cxr 11145 ℕcn 12125 ℚcq 12846 (,)cioo 13245 topGenctg 17341 TopBasesctb 22860 2ndωc2ndc 23353 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 ax-inf2 9531 ax-cnex 11062 ax-resscn 11063 ax-1cn 11064 ax-icn 11065 ax-addcl 11066 ax-addrcl 11067 ax-mulcl 11068 ax-mulrcl 11069 ax-mulcom 11070 ax-addass 11071 ax-mulass 11072 ax-distr 11073 ax-i2m1 11074 ax-1ne0 11075 ax-1rid 11076 ax-rnegex 11077 ax-rrecex 11078 ax-cnre 11079 ax-pre-lttri 11080 ax-pre-lttrn 11081 ax-pre-ltadd 11082 ax-pre-mulgt0 11083 ax-pre-sup 11084 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-int 4896 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-se 5568 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-isom 6490 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-1st 7921 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-1o 8385 df-oadd 8389 df-omul 8390 df-er 8622 df-map 8752 df-en 8870 df-dom 8871 df-sdom 8872 df-fin 8873 df-sup 9326 df-inf 9327 df-oi 9396 df-card 9832 df-acn 9835 df-pnf 11148 df-mnf 11149 df-xr 11150 df-ltxr 11151 df-le 11152 df-sub 11346 df-neg 11347 df-div 11775 df-nn 12126 df-n0 12382 df-z 12469 df-uz 12733 df-q 12847 df-ioo 13249 df-topgen 17347 df-bases 22861 df-2ndc 23355 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |