MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  2ndcrest Structured version   Visualization version   GIF version

Theorem 2ndcrest 23364
Description: A subspace of a second-countable space is second-countable. (Contributed by Mario Carneiro, 21-Mar-2015.)
Assertion
Ref Expression
2ndcrest ((𝐽 ∈ 2ndω ∧ 𝐴𝑉) → (𝐽t 𝐴) ∈ 2ndω)

Proof of Theorem 2ndcrest
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 is2ndc 23356 . . 3 (𝐽 ∈ 2ndω ↔ ∃𝑥 ∈ TopBases (𝑥 ≼ ω ∧ (topGen‘𝑥) = 𝐽))
2 simplr 768 . . . . . . . 8 (((𝐴𝑉𝑥 ∈ TopBases) ∧ 𝑥 ≼ ω) → 𝑥 ∈ TopBases)
3 simpll 766 . . . . . . . 8 (((𝐴𝑉𝑥 ∈ TopBases) ∧ 𝑥 ≼ ω) → 𝐴𝑉)
4 tgrest 23069 . . . . . . . 8 ((𝑥 ∈ TopBases ∧ 𝐴𝑉) → (topGen‘(𝑥t 𝐴)) = ((topGen‘𝑥) ↾t 𝐴))
52, 3, 4syl2anc 584 . . . . . . 7 (((𝐴𝑉𝑥 ∈ TopBases) ∧ 𝑥 ≼ ω) → (topGen‘(𝑥t 𝐴)) = ((topGen‘𝑥) ↾t 𝐴))
6 restbas 23068 . . . . . . . . 9 (𝑥 ∈ TopBases → (𝑥t 𝐴) ∈ TopBases)
76ad2antlr 727 . . . . . . . 8 (((𝐴𝑉𝑥 ∈ TopBases) ∧ 𝑥 ≼ ω) → (𝑥t 𝐴) ∈ TopBases)
8 restval 17325 . . . . . . . . . 10 ((𝑥 ∈ TopBases ∧ 𝐴𝑉) → (𝑥t 𝐴) = ran (𝑦𝑥 ↦ (𝑦𝐴)))
92, 3, 8syl2anc 584 . . . . . . . . 9 (((𝐴𝑉𝑥 ∈ TopBases) ∧ 𝑥 ≼ ω) → (𝑥t 𝐴) = ran (𝑦𝑥 ↦ (𝑦𝐴)))
10 1stcrestlem 23362 . . . . . . . . . 10 (𝑥 ≼ ω → ran (𝑦𝑥 ↦ (𝑦𝐴)) ≼ ω)
1110adantl 481 . . . . . . . . 9 (((𝐴𝑉𝑥 ∈ TopBases) ∧ 𝑥 ≼ ω) → ran (𝑦𝑥 ↦ (𝑦𝐴)) ≼ ω)
129, 11eqbrtrd 5108 . . . . . . . 8 (((𝐴𝑉𝑥 ∈ TopBases) ∧ 𝑥 ≼ ω) → (𝑥t 𝐴) ≼ ω)
13 2ndci 23358 . . . . . . . 8 (((𝑥t 𝐴) ∈ TopBases ∧ (𝑥t 𝐴) ≼ ω) → (topGen‘(𝑥t 𝐴)) ∈ 2ndω)
147, 12, 13syl2anc 584 . . . . . . 7 (((𝐴𝑉𝑥 ∈ TopBases) ∧ 𝑥 ≼ ω) → (topGen‘(𝑥t 𝐴)) ∈ 2ndω)
155, 14eqeltrrd 2832 . . . . . 6 (((𝐴𝑉𝑥 ∈ TopBases) ∧ 𝑥 ≼ ω) → ((topGen‘𝑥) ↾t 𝐴) ∈ 2ndω)
16 oveq1 7348 . . . . . . 7 ((topGen‘𝑥) = 𝐽 → ((topGen‘𝑥) ↾t 𝐴) = (𝐽t 𝐴))
1716eleq1d 2816 . . . . . 6 ((topGen‘𝑥) = 𝐽 → (((topGen‘𝑥) ↾t 𝐴) ∈ 2ndω ↔ (𝐽t 𝐴) ∈ 2ndω))
1815, 17syl5ibcom 245 . . . . 5 (((𝐴𝑉𝑥 ∈ TopBases) ∧ 𝑥 ≼ ω) → ((topGen‘𝑥) = 𝐽 → (𝐽t 𝐴) ∈ 2ndω))
1918expimpd 453 . . . 4 ((𝐴𝑉𝑥 ∈ TopBases) → ((𝑥 ≼ ω ∧ (topGen‘𝑥) = 𝐽) → (𝐽t 𝐴) ∈ 2ndω))
2019rexlimdva 3133 . . 3 (𝐴𝑉 → (∃𝑥 ∈ TopBases (𝑥 ≼ ω ∧ (topGen‘𝑥) = 𝐽) → (𝐽t 𝐴) ∈ 2ndω))
211, 20biimtrid 242 . 2 (𝐴𝑉 → (𝐽 ∈ 2ndω → (𝐽t 𝐴) ∈ 2ndω))
2221impcom 407 1 ((𝐽 ∈ 2ndω ∧ 𝐴𝑉) → (𝐽t 𝐴) ∈ 2ndω)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2111  wrex 3056  cin 3896   class class class wbr 5086  cmpt 5167  ran crn 5612  cfv 6476  (class class class)co 7341  ωcom 7791  cdom 8862  t crest 17319  topGenctg 17336  TopBasesctb 22855  2ndωc2ndc 23348
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5212  ax-sep 5229  ax-nul 5239  ax-pow 5298  ax-pr 5365  ax-un 7663
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4279  df-if 4471  df-pw 4547  df-sn 4572  df-pr 4574  df-op 4578  df-uni 4855  df-int 4893  df-iun 4938  df-br 5087  df-opab 5149  df-mpt 5168  df-tr 5194  df-id 5506  df-eprel 5511  df-po 5519  df-so 5520  df-fr 5564  df-se 5565  df-we 5566  df-xp 5617  df-rel 5618  df-cnv 5619  df-co 5620  df-dm 5621  df-rn 5622  df-res 5623  df-ima 5624  df-pred 6243  df-ord 6304  df-on 6305  df-lim 6306  df-suc 6307  df-iota 6432  df-fun 6478  df-fn 6479  df-f 6480  df-f1 6481  df-fo 6482  df-f1o 6483  df-fv 6484  df-isom 6485  df-riota 7298  df-ov 7344  df-oprab 7345  df-mpo 7346  df-om 7792  df-1st 7916  df-2nd 7917  df-frecs 8206  df-wrecs 8237  df-recs 8286  df-er 8617  df-map 8747  df-en 8865  df-dom 8866  df-fin 8868  df-fi 9290  df-card 9827  df-acn 9830  df-rest 17321  df-topgen 17342  df-bases 22856  df-2ndc 23350
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator