MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  2ndcrest Structured version   Visualization version   GIF version

Theorem 2ndcrest 21537
Description: A subspace of a second-countable space is second-countable. (Contributed by Mario Carneiro, 21-Mar-2015.)
Assertion
Ref Expression
2ndcrest ((𝐽 ∈ 2nd𝜔 ∧ 𝐴𝑉) → (𝐽t 𝐴) ∈ 2nd𝜔)

Proof of Theorem 2ndcrest
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 is2ndc 21529 . . 3 (𝐽 ∈ 2nd𝜔 ↔ ∃𝑥 ∈ TopBases (𝑥 ≼ ω ∧ (topGen‘𝑥) = 𝐽))
2 simplr 785 . . . . . . . 8 (((𝐴𝑉𝑥 ∈ TopBases) ∧ 𝑥 ≼ ω) → 𝑥 ∈ TopBases)
3 simpll 783 . . . . . . . 8 (((𝐴𝑉𝑥 ∈ TopBases) ∧ 𝑥 ≼ ω) → 𝐴𝑉)
4 tgrest 21243 . . . . . . . 8 ((𝑥 ∈ TopBases ∧ 𝐴𝑉) → (topGen‘(𝑥t 𝐴)) = ((topGen‘𝑥) ↾t 𝐴))
52, 3, 4syl2anc 579 . . . . . . 7 (((𝐴𝑉𝑥 ∈ TopBases) ∧ 𝑥 ≼ ω) → (topGen‘(𝑥t 𝐴)) = ((topGen‘𝑥) ↾t 𝐴))
6 restbas 21242 . . . . . . . . 9 (𝑥 ∈ TopBases → (𝑥t 𝐴) ∈ TopBases)
76ad2antlr 718 . . . . . . . 8 (((𝐴𝑉𝑥 ∈ TopBases) ∧ 𝑥 ≼ ω) → (𝑥t 𝐴) ∈ TopBases)
8 restval 16355 . . . . . . . . . 10 ((𝑥 ∈ TopBases ∧ 𝐴𝑉) → (𝑥t 𝐴) = ran (𝑦𝑥 ↦ (𝑦𝐴)))
92, 3, 8syl2anc 579 . . . . . . . . 9 (((𝐴𝑉𝑥 ∈ TopBases) ∧ 𝑥 ≼ ω) → (𝑥t 𝐴) = ran (𝑦𝑥 ↦ (𝑦𝐴)))
10 1stcrestlem 21535 . . . . . . . . . 10 (𝑥 ≼ ω → ran (𝑦𝑥 ↦ (𝑦𝐴)) ≼ ω)
1110adantl 473 . . . . . . . . 9 (((𝐴𝑉𝑥 ∈ TopBases) ∧ 𝑥 ≼ ω) → ran (𝑦𝑥 ↦ (𝑦𝐴)) ≼ ω)
129, 11eqbrtrd 4831 . . . . . . . 8 (((𝐴𝑉𝑥 ∈ TopBases) ∧ 𝑥 ≼ ω) → (𝑥t 𝐴) ≼ ω)
13 2ndci 21531 . . . . . . . 8 (((𝑥t 𝐴) ∈ TopBases ∧ (𝑥t 𝐴) ≼ ω) → (topGen‘(𝑥t 𝐴)) ∈ 2nd𝜔)
147, 12, 13syl2anc 579 . . . . . . 7 (((𝐴𝑉𝑥 ∈ TopBases) ∧ 𝑥 ≼ ω) → (topGen‘(𝑥t 𝐴)) ∈ 2nd𝜔)
155, 14eqeltrrd 2845 . . . . . 6 (((𝐴𝑉𝑥 ∈ TopBases) ∧ 𝑥 ≼ ω) → ((topGen‘𝑥) ↾t 𝐴) ∈ 2nd𝜔)
16 oveq1 6849 . . . . . . 7 ((topGen‘𝑥) = 𝐽 → ((topGen‘𝑥) ↾t 𝐴) = (𝐽t 𝐴))
1716eleq1d 2829 . . . . . 6 ((topGen‘𝑥) = 𝐽 → (((topGen‘𝑥) ↾t 𝐴) ∈ 2nd𝜔 ↔ (𝐽t 𝐴) ∈ 2nd𝜔))
1815, 17syl5ibcom 236 . . . . 5 (((𝐴𝑉𝑥 ∈ TopBases) ∧ 𝑥 ≼ ω) → ((topGen‘𝑥) = 𝐽 → (𝐽t 𝐴) ∈ 2nd𝜔))
1918expimpd 445 . . . 4 ((𝐴𝑉𝑥 ∈ TopBases) → ((𝑥 ≼ ω ∧ (topGen‘𝑥) = 𝐽) → (𝐽t 𝐴) ∈ 2nd𝜔))
2019rexlimdva 3178 . . 3 (𝐴𝑉 → (∃𝑥 ∈ TopBases (𝑥 ≼ ω ∧ (topGen‘𝑥) = 𝐽) → (𝐽t 𝐴) ∈ 2nd𝜔))
211, 20syl5bi 233 . 2 (𝐴𝑉 → (𝐽 ∈ 2nd𝜔 → (𝐽t 𝐴) ∈ 2nd𝜔))
2221impcom 396 1 ((𝐽 ∈ 2nd𝜔 ∧ 𝐴𝑉) → (𝐽t 𝐴) ∈ 2nd𝜔)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384   = wceq 1652  wcel 2155  wrex 3056  cin 3731   class class class wbr 4809  cmpt 4888  ran crn 5278  cfv 6068  (class class class)co 6842  ωcom 7263  cdom 8158  t crest 16349  topGenctg 16366  TopBasesctb 21029  2nd𝜔c2ndc 21521
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1890  ax-4 1904  ax-5 2005  ax-6 2070  ax-7 2105  ax-8 2157  ax-9 2164  ax-10 2183  ax-11 2198  ax-12 2211  ax-13 2352  ax-ext 2743  ax-rep 4930  ax-sep 4941  ax-nul 4949  ax-pow 5001  ax-pr 5062  ax-un 7147
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 874  df-3or 1108  df-3an 1109  df-tru 1656  df-ex 1875  df-nf 1879  df-sb 2063  df-mo 2565  df-eu 2582  df-clab 2752  df-cleq 2758  df-clel 2761  df-nfc 2896  df-ne 2938  df-ral 3060  df-rex 3061  df-reu 3062  df-rmo 3063  df-rab 3064  df-v 3352  df-sbc 3597  df-csb 3692  df-dif 3735  df-un 3737  df-in 3739  df-ss 3746  df-pss 3748  df-nul 4080  df-if 4244  df-pw 4317  df-sn 4335  df-pr 4337  df-tp 4339  df-op 4341  df-uni 4595  df-int 4634  df-iun 4678  df-br 4810  df-opab 4872  df-mpt 4889  df-tr 4912  df-id 5185  df-eprel 5190  df-po 5198  df-so 5199  df-fr 5236  df-se 5237  df-we 5238  df-xp 5283  df-rel 5284  df-cnv 5285  df-co 5286  df-dm 5287  df-rn 5288  df-res 5289  df-ima 5290  df-pred 5865  df-ord 5911  df-on 5912  df-lim 5913  df-suc 5914  df-iota 6031  df-fun 6070  df-fn 6071  df-f 6072  df-f1 6073  df-fo 6074  df-f1o 6075  df-fv 6076  df-isom 6077  df-riota 6803  df-ov 6845  df-oprab 6846  df-mpt2 6847  df-om 7264  df-1st 7366  df-2nd 7367  df-wrecs 7610  df-recs 7672  df-rdg 7710  df-oadd 7768  df-er 7947  df-map 8062  df-en 8161  df-dom 8162  df-fin 8164  df-fi 8524  df-card 9016  df-acn 9019  df-rest 16351  df-topgen 16372  df-bases 21030  df-2ndc 21523
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator