![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 2ndcrest | Structured version Visualization version GIF version |
Description: A subspace of a second-countable space is second-countable. (Contributed by Mario Carneiro, 21-Mar-2015.) |
Ref | Expression |
---|---|
2ndcrest | ⊢ ((𝐽 ∈ 2ndω ∧ 𝐴 ∈ 𝑉) → (𝐽 ↾t 𝐴) ∈ 2ndω) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | is2ndc 23475 | . . 3 ⊢ (𝐽 ∈ 2ndω ↔ ∃𝑥 ∈ TopBases (𝑥 ≼ ω ∧ (topGen‘𝑥) = 𝐽)) | |
2 | simplr 768 | . . . . . . . 8 ⊢ (((𝐴 ∈ 𝑉 ∧ 𝑥 ∈ TopBases) ∧ 𝑥 ≼ ω) → 𝑥 ∈ TopBases) | |
3 | simpll 766 | . . . . . . . 8 ⊢ (((𝐴 ∈ 𝑉 ∧ 𝑥 ∈ TopBases) ∧ 𝑥 ≼ ω) → 𝐴 ∈ 𝑉) | |
4 | tgrest 23188 | . . . . . . . 8 ⊢ ((𝑥 ∈ TopBases ∧ 𝐴 ∈ 𝑉) → (topGen‘(𝑥 ↾t 𝐴)) = ((topGen‘𝑥) ↾t 𝐴)) | |
5 | 2, 3, 4 | syl2anc 583 | . . . . . . 7 ⊢ (((𝐴 ∈ 𝑉 ∧ 𝑥 ∈ TopBases) ∧ 𝑥 ≼ ω) → (topGen‘(𝑥 ↾t 𝐴)) = ((topGen‘𝑥) ↾t 𝐴)) |
6 | restbas 23187 | . . . . . . . . 9 ⊢ (𝑥 ∈ TopBases → (𝑥 ↾t 𝐴) ∈ TopBases) | |
7 | 6 | ad2antlr 726 | . . . . . . . 8 ⊢ (((𝐴 ∈ 𝑉 ∧ 𝑥 ∈ TopBases) ∧ 𝑥 ≼ ω) → (𝑥 ↾t 𝐴) ∈ TopBases) |
8 | restval 17486 | . . . . . . . . . 10 ⊢ ((𝑥 ∈ TopBases ∧ 𝐴 ∈ 𝑉) → (𝑥 ↾t 𝐴) = ran (𝑦 ∈ 𝑥 ↦ (𝑦 ∩ 𝐴))) | |
9 | 2, 3, 8 | syl2anc 583 | . . . . . . . . 9 ⊢ (((𝐴 ∈ 𝑉 ∧ 𝑥 ∈ TopBases) ∧ 𝑥 ≼ ω) → (𝑥 ↾t 𝐴) = ran (𝑦 ∈ 𝑥 ↦ (𝑦 ∩ 𝐴))) |
10 | 1stcrestlem 23481 | . . . . . . . . . 10 ⊢ (𝑥 ≼ ω → ran (𝑦 ∈ 𝑥 ↦ (𝑦 ∩ 𝐴)) ≼ ω) | |
11 | 10 | adantl 481 | . . . . . . . . 9 ⊢ (((𝐴 ∈ 𝑉 ∧ 𝑥 ∈ TopBases) ∧ 𝑥 ≼ ω) → ran (𝑦 ∈ 𝑥 ↦ (𝑦 ∩ 𝐴)) ≼ ω) |
12 | 9, 11 | eqbrtrd 5188 | . . . . . . . 8 ⊢ (((𝐴 ∈ 𝑉 ∧ 𝑥 ∈ TopBases) ∧ 𝑥 ≼ ω) → (𝑥 ↾t 𝐴) ≼ ω) |
13 | 2ndci 23477 | . . . . . . . 8 ⊢ (((𝑥 ↾t 𝐴) ∈ TopBases ∧ (𝑥 ↾t 𝐴) ≼ ω) → (topGen‘(𝑥 ↾t 𝐴)) ∈ 2ndω) | |
14 | 7, 12, 13 | syl2anc 583 | . . . . . . 7 ⊢ (((𝐴 ∈ 𝑉 ∧ 𝑥 ∈ TopBases) ∧ 𝑥 ≼ ω) → (topGen‘(𝑥 ↾t 𝐴)) ∈ 2ndω) |
15 | 5, 14 | eqeltrrd 2845 | . . . . . 6 ⊢ (((𝐴 ∈ 𝑉 ∧ 𝑥 ∈ TopBases) ∧ 𝑥 ≼ ω) → ((topGen‘𝑥) ↾t 𝐴) ∈ 2ndω) |
16 | oveq1 7455 | . . . . . . 7 ⊢ ((topGen‘𝑥) = 𝐽 → ((topGen‘𝑥) ↾t 𝐴) = (𝐽 ↾t 𝐴)) | |
17 | 16 | eleq1d 2829 | . . . . . 6 ⊢ ((topGen‘𝑥) = 𝐽 → (((topGen‘𝑥) ↾t 𝐴) ∈ 2ndω ↔ (𝐽 ↾t 𝐴) ∈ 2ndω)) |
18 | 15, 17 | syl5ibcom 245 | . . . . 5 ⊢ (((𝐴 ∈ 𝑉 ∧ 𝑥 ∈ TopBases) ∧ 𝑥 ≼ ω) → ((topGen‘𝑥) = 𝐽 → (𝐽 ↾t 𝐴) ∈ 2ndω)) |
19 | 18 | expimpd 453 | . . . 4 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑥 ∈ TopBases) → ((𝑥 ≼ ω ∧ (topGen‘𝑥) = 𝐽) → (𝐽 ↾t 𝐴) ∈ 2ndω)) |
20 | 19 | rexlimdva 3161 | . . 3 ⊢ (𝐴 ∈ 𝑉 → (∃𝑥 ∈ TopBases (𝑥 ≼ ω ∧ (topGen‘𝑥) = 𝐽) → (𝐽 ↾t 𝐴) ∈ 2ndω)) |
21 | 1, 20 | biimtrid 242 | . 2 ⊢ (𝐴 ∈ 𝑉 → (𝐽 ∈ 2ndω → (𝐽 ↾t 𝐴) ∈ 2ndω)) |
22 | 21 | impcom 407 | 1 ⊢ ((𝐽 ∈ 2ndω ∧ 𝐴 ∈ 𝑉) → (𝐽 ↾t 𝐴) ∈ 2ndω) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 ∈ wcel 2108 ∃wrex 3076 ∩ cin 3975 class class class wbr 5166 ↦ cmpt 5249 ran crn 5701 ‘cfv 6573 (class class class)co 7448 ωcom 7903 ≼ cdom 9001 ↾t crest 17480 topGenctg 17497 TopBasesctb 22973 2ndωc2ndc 23467 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-int 4971 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-se 5653 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-isom 6582 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-om 7904 df-1st 8030 df-2nd 8031 df-frecs 8322 df-wrecs 8353 df-recs 8427 df-er 8763 df-map 8886 df-en 9004 df-dom 9005 df-fin 9007 df-fi 9480 df-card 10008 df-acn 10011 df-rest 17482 df-topgen 17503 df-bases 22974 df-2ndc 23469 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |