![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 2ndcrest | Structured version Visualization version GIF version |
Description: A subspace of a second-countable space is second-countable. (Contributed by Mario Carneiro, 21-Mar-2015.) |
Ref | Expression |
---|---|
2ndcrest | ⊢ ((𝐽 ∈ 2ndω ∧ 𝐴 ∈ 𝑉) → (𝐽 ↾t 𝐴) ∈ 2ndω) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | is2ndc 23470 | . . 3 ⊢ (𝐽 ∈ 2ndω ↔ ∃𝑥 ∈ TopBases (𝑥 ≼ ω ∧ (topGen‘𝑥) = 𝐽)) | |
2 | simplr 769 | . . . . . . . 8 ⊢ (((𝐴 ∈ 𝑉 ∧ 𝑥 ∈ TopBases) ∧ 𝑥 ≼ ω) → 𝑥 ∈ TopBases) | |
3 | simpll 767 | . . . . . . . 8 ⊢ (((𝐴 ∈ 𝑉 ∧ 𝑥 ∈ TopBases) ∧ 𝑥 ≼ ω) → 𝐴 ∈ 𝑉) | |
4 | tgrest 23183 | . . . . . . . 8 ⊢ ((𝑥 ∈ TopBases ∧ 𝐴 ∈ 𝑉) → (topGen‘(𝑥 ↾t 𝐴)) = ((topGen‘𝑥) ↾t 𝐴)) | |
5 | 2, 3, 4 | syl2anc 584 | . . . . . . 7 ⊢ (((𝐴 ∈ 𝑉 ∧ 𝑥 ∈ TopBases) ∧ 𝑥 ≼ ω) → (topGen‘(𝑥 ↾t 𝐴)) = ((topGen‘𝑥) ↾t 𝐴)) |
6 | restbas 23182 | . . . . . . . . 9 ⊢ (𝑥 ∈ TopBases → (𝑥 ↾t 𝐴) ∈ TopBases) | |
7 | 6 | ad2antlr 727 | . . . . . . . 8 ⊢ (((𝐴 ∈ 𝑉 ∧ 𝑥 ∈ TopBases) ∧ 𝑥 ≼ ω) → (𝑥 ↾t 𝐴) ∈ TopBases) |
8 | restval 17473 | . . . . . . . . . 10 ⊢ ((𝑥 ∈ TopBases ∧ 𝐴 ∈ 𝑉) → (𝑥 ↾t 𝐴) = ran (𝑦 ∈ 𝑥 ↦ (𝑦 ∩ 𝐴))) | |
9 | 2, 3, 8 | syl2anc 584 | . . . . . . . . 9 ⊢ (((𝐴 ∈ 𝑉 ∧ 𝑥 ∈ TopBases) ∧ 𝑥 ≼ ω) → (𝑥 ↾t 𝐴) = ran (𝑦 ∈ 𝑥 ↦ (𝑦 ∩ 𝐴))) |
10 | 1stcrestlem 23476 | . . . . . . . . . 10 ⊢ (𝑥 ≼ ω → ran (𝑦 ∈ 𝑥 ↦ (𝑦 ∩ 𝐴)) ≼ ω) | |
11 | 10 | adantl 481 | . . . . . . . . 9 ⊢ (((𝐴 ∈ 𝑉 ∧ 𝑥 ∈ TopBases) ∧ 𝑥 ≼ ω) → ran (𝑦 ∈ 𝑥 ↦ (𝑦 ∩ 𝐴)) ≼ ω) |
12 | 9, 11 | eqbrtrd 5170 | . . . . . . . 8 ⊢ (((𝐴 ∈ 𝑉 ∧ 𝑥 ∈ TopBases) ∧ 𝑥 ≼ ω) → (𝑥 ↾t 𝐴) ≼ ω) |
13 | 2ndci 23472 | . . . . . . . 8 ⊢ (((𝑥 ↾t 𝐴) ∈ TopBases ∧ (𝑥 ↾t 𝐴) ≼ ω) → (topGen‘(𝑥 ↾t 𝐴)) ∈ 2ndω) | |
14 | 7, 12, 13 | syl2anc 584 | . . . . . . 7 ⊢ (((𝐴 ∈ 𝑉 ∧ 𝑥 ∈ TopBases) ∧ 𝑥 ≼ ω) → (topGen‘(𝑥 ↾t 𝐴)) ∈ 2ndω) |
15 | 5, 14 | eqeltrrd 2840 | . . . . . 6 ⊢ (((𝐴 ∈ 𝑉 ∧ 𝑥 ∈ TopBases) ∧ 𝑥 ≼ ω) → ((topGen‘𝑥) ↾t 𝐴) ∈ 2ndω) |
16 | oveq1 7438 | . . . . . . 7 ⊢ ((topGen‘𝑥) = 𝐽 → ((topGen‘𝑥) ↾t 𝐴) = (𝐽 ↾t 𝐴)) | |
17 | 16 | eleq1d 2824 | . . . . . 6 ⊢ ((topGen‘𝑥) = 𝐽 → (((topGen‘𝑥) ↾t 𝐴) ∈ 2ndω ↔ (𝐽 ↾t 𝐴) ∈ 2ndω)) |
18 | 15, 17 | syl5ibcom 245 | . . . . 5 ⊢ (((𝐴 ∈ 𝑉 ∧ 𝑥 ∈ TopBases) ∧ 𝑥 ≼ ω) → ((topGen‘𝑥) = 𝐽 → (𝐽 ↾t 𝐴) ∈ 2ndω)) |
19 | 18 | expimpd 453 | . . . 4 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑥 ∈ TopBases) → ((𝑥 ≼ ω ∧ (topGen‘𝑥) = 𝐽) → (𝐽 ↾t 𝐴) ∈ 2ndω)) |
20 | 19 | rexlimdva 3153 | . . 3 ⊢ (𝐴 ∈ 𝑉 → (∃𝑥 ∈ TopBases (𝑥 ≼ ω ∧ (topGen‘𝑥) = 𝐽) → (𝐽 ↾t 𝐴) ∈ 2ndω)) |
21 | 1, 20 | biimtrid 242 | . 2 ⊢ (𝐴 ∈ 𝑉 → (𝐽 ∈ 2ndω → (𝐽 ↾t 𝐴) ∈ 2ndω)) |
22 | 21 | impcom 407 | 1 ⊢ ((𝐽 ∈ 2ndω ∧ 𝐴 ∈ 𝑉) → (𝐽 ↾t 𝐴) ∈ 2ndω) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 ∈ wcel 2106 ∃wrex 3068 ∩ cin 3962 class class class wbr 5148 ↦ cmpt 5231 ran crn 5690 ‘cfv 6563 (class class class)co 7431 ωcom 7887 ≼ cdom 8982 ↾t crest 17467 topGenctg 17484 TopBasesctb 22968 2ndωc2ndc 23462 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-rep 5285 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-ral 3060 df-rex 3069 df-rmo 3378 df-reu 3379 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-pss 3983 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-int 4952 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5583 df-eprel 5589 df-po 5597 df-so 5598 df-fr 5641 df-se 5642 df-we 5643 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-pred 6323 df-ord 6389 df-on 6390 df-lim 6391 df-suc 6392 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 df-isom 6572 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-om 7888 df-1st 8013 df-2nd 8014 df-frecs 8305 df-wrecs 8336 df-recs 8410 df-er 8744 df-map 8867 df-en 8985 df-dom 8986 df-fin 8988 df-fi 9449 df-card 9977 df-acn 9980 df-rest 17469 df-topgen 17490 df-bases 22969 df-2ndc 23464 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |