Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 2ndcrest | Structured version Visualization version GIF version |
Description: A subspace of a second-countable space is second-countable. (Contributed by Mario Carneiro, 21-Mar-2015.) |
Ref | Expression |
---|---|
2ndcrest | ⊢ ((𝐽 ∈ 2ndω ∧ 𝐴 ∈ 𝑉) → (𝐽 ↾t 𝐴) ∈ 2ndω) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | is2ndc 22505 | . . 3 ⊢ (𝐽 ∈ 2ndω ↔ ∃𝑥 ∈ TopBases (𝑥 ≼ ω ∧ (topGen‘𝑥) = 𝐽)) | |
2 | simplr 765 | . . . . . . . 8 ⊢ (((𝐴 ∈ 𝑉 ∧ 𝑥 ∈ TopBases) ∧ 𝑥 ≼ ω) → 𝑥 ∈ TopBases) | |
3 | simpll 763 | . . . . . . . 8 ⊢ (((𝐴 ∈ 𝑉 ∧ 𝑥 ∈ TopBases) ∧ 𝑥 ≼ ω) → 𝐴 ∈ 𝑉) | |
4 | tgrest 22218 | . . . . . . . 8 ⊢ ((𝑥 ∈ TopBases ∧ 𝐴 ∈ 𝑉) → (topGen‘(𝑥 ↾t 𝐴)) = ((topGen‘𝑥) ↾t 𝐴)) | |
5 | 2, 3, 4 | syl2anc 583 | . . . . . . 7 ⊢ (((𝐴 ∈ 𝑉 ∧ 𝑥 ∈ TopBases) ∧ 𝑥 ≼ ω) → (topGen‘(𝑥 ↾t 𝐴)) = ((topGen‘𝑥) ↾t 𝐴)) |
6 | restbas 22217 | . . . . . . . . 9 ⊢ (𝑥 ∈ TopBases → (𝑥 ↾t 𝐴) ∈ TopBases) | |
7 | 6 | ad2antlr 723 | . . . . . . . 8 ⊢ (((𝐴 ∈ 𝑉 ∧ 𝑥 ∈ TopBases) ∧ 𝑥 ≼ ω) → (𝑥 ↾t 𝐴) ∈ TopBases) |
8 | restval 17054 | . . . . . . . . . 10 ⊢ ((𝑥 ∈ TopBases ∧ 𝐴 ∈ 𝑉) → (𝑥 ↾t 𝐴) = ran (𝑦 ∈ 𝑥 ↦ (𝑦 ∩ 𝐴))) | |
9 | 2, 3, 8 | syl2anc 583 | . . . . . . . . 9 ⊢ (((𝐴 ∈ 𝑉 ∧ 𝑥 ∈ TopBases) ∧ 𝑥 ≼ ω) → (𝑥 ↾t 𝐴) = ran (𝑦 ∈ 𝑥 ↦ (𝑦 ∩ 𝐴))) |
10 | 1stcrestlem 22511 | . . . . . . . . . 10 ⊢ (𝑥 ≼ ω → ran (𝑦 ∈ 𝑥 ↦ (𝑦 ∩ 𝐴)) ≼ ω) | |
11 | 10 | adantl 481 | . . . . . . . . 9 ⊢ (((𝐴 ∈ 𝑉 ∧ 𝑥 ∈ TopBases) ∧ 𝑥 ≼ ω) → ran (𝑦 ∈ 𝑥 ↦ (𝑦 ∩ 𝐴)) ≼ ω) |
12 | 9, 11 | eqbrtrd 5092 | . . . . . . . 8 ⊢ (((𝐴 ∈ 𝑉 ∧ 𝑥 ∈ TopBases) ∧ 𝑥 ≼ ω) → (𝑥 ↾t 𝐴) ≼ ω) |
13 | 2ndci 22507 | . . . . . . . 8 ⊢ (((𝑥 ↾t 𝐴) ∈ TopBases ∧ (𝑥 ↾t 𝐴) ≼ ω) → (topGen‘(𝑥 ↾t 𝐴)) ∈ 2ndω) | |
14 | 7, 12, 13 | syl2anc 583 | . . . . . . 7 ⊢ (((𝐴 ∈ 𝑉 ∧ 𝑥 ∈ TopBases) ∧ 𝑥 ≼ ω) → (topGen‘(𝑥 ↾t 𝐴)) ∈ 2ndω) |
15 | 5, 14 | eqeltrrd 2840 | . . . . . 6 ⊢ (((𝐴 ∈ 𝑉 ∧ 𝑥 ∈ TopBases) ∧ 𝑥 ≼ ω) → ((topGen‘𝑥) ↾t 𝐴) ∈ 2ndω) |
16 | oveq1 7262 | . . . . . . 7 ⊢ ((topGen‘𝑥) = 𝐽 → ((topGen‘𝑥) ↾t 𝐴) = (𝐽 ↾t 𝐴)) | |
17 | 16 | eleq1d 2823 | . . . . . 6 ⊢ ((topGen‘𝑥) = 𝐽 → (((topGen‘𝑥) ↾t 𝐴) ∈ 2ndω ↔ (𝐽 ↾t 𝐴) ∈ 2ndω)) |
18 | 15, 17 | syl5ibcom 244 | . . . . 5 ⊢ (((𝐴 ∈ 𝑉 ∧ 𝑥 ∈ TopBases) ∧ 𝑥 ≼ ω) → ((topGen‘𝑥) = 𝐽 → (𝐽 ↾t 𝐴) ∈ 2ndω)) |
19 | 18 | expimpd 453 | . . . 4 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑥 ∈ TopBases) → ((𝑥 ≼ ω ∧ (topGen‘𝑥) = 𝐽) → (𝐽 ↾t 𝐴) ∈ 2ndω)) |
20 | 19 | rexlimdva 3212 | . . 3 ⊢ (𝐴 ∈ 𝑉 → (∃𝑥 ∈ TopBases (𝑥 ≼ ω ∧ (topGen‘𝑥) = 𝐽) → (𝐽 ↾t 𝐴) ∈ 2ndω)) |
21 | 1, 20 | syl5bi 241 | . 2 ⊢ (𝐴 ∈ 𝑉 → (𝐽 ∈ 2ndω → (𝐽 ↾t 𝐴) ∈ 2ndω)) |
22 | 21 | impcom 407 | 1 ⊢ ((𝐽 ∈ 2ndω ∧ 𝐴 ∈ 𝑉) → (𝐽 ↾t 𝐴) ∈ 2ndω) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2108 ∃wrex 3064 ∩ cin 3882 class class class wbr 5070 ↦ cmpt 5153 ran crn 5581 ‘cfv 6418 (class class class)co 7255 ωcom 7687 ≼ cdom 8689 ↾t crest 17048 topGenctg 17065 TopBasesctb 22003 2ndωc2ndc 22497 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-int 4877 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-se 5536 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-isom 6427 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-om 7688 df-1st 7804 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-er 8456 df-map 8575 df-en 8692 df-dom 8693 df-fin 8695 df-fi 9100 df-card 9628 df-acn 9631 df-rest 17050 df-topgen 17071 df-bases 22004 df-2ndc 22499 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |