| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 2ndcrest | Structured version Visualization version GIF version | ||
| Description: A subspace of a second-countable space is second-countable. (Contributed by Mario Carneiro, 21-Mar-2015.) |
| Ref | Expression |
|---|---|
| 2ndcrest | ⊢ ((𝐽 ∈ 2ndω ∧ 𝐴 ∈ 𝑉) → (𝐽 ↾t 𝐴) ∈ 2ndω) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | is2ndc 23350 | . . 3 ⊢ (𝐽 ∈ 2ndω ↔ ∃𝑥 ∈ TopBases (𝑥 ≼ ω ∧ (topGen‘𝑥) = 𝐽)) | |
| 2 | simplr 768 | . . . . . . . 8 ⊢ (((𝐴 ∈ 𝑉 ∧ 𝑥 ∈ TopBases) ∧ 𝑥 ≼ ω) → 𝑥 ∈ TopBases) | |
| 3 | simpll 766 | . . . . . . . 8 ⊢ (((𝐴 ∈ 𝑉 ∧ 𝑥 ∈ TopBases) ∧ 𝑥 ≼ ω) → 𝐴 ∈ 𝑉) | |
| 4 | tgrest 23063 | . . . . . . . 8 ⊢ ((𝑥 ∈ TopBases ∧ 𝐴 ∈ 𝑉) → (topGen‘(𝑥 ↾t 𝐴)) = ((topGen‘𝑥) ↾t 𝐴)) | |
| 5 | 2, 3, 4 | syl2anc 584 | . . . . . . 7 ⊢ (((𝐴 ∈ 𝑉 ∧ 𝑥 ∈ TopBases) ∧ 𝑥 ≼ ω) → (topGen‘(𝑥 ↾t 𝐴)) = ((topGen‘𝑥) ↾t 𝐴)) |
| 6 | restbas 23062 | . . . . . . . . 9 ⊢ (𝑥 ∈ TopBases → (𝑥 ↾t 𝐴) ∈ TopBases) | |
| 7 | 6 | ad2antlr 727 | . . . . . . . 8 ⊢ (((𝐴 ∈ 𝑉 ∧ 𝑥 ∈ TopBases) ∧ 𝑥 ≼ ω) → (𝑥 ↾t 𝐴) ∈ TopBases) |
| 8 | restval 17349 | . . . . . . . . . 10 ⊢ ((𝑥 ∈ TopBases ∧ 𝐴 ∈ 𝑉) → (𝑥 ↾t 𝐴) = ran (𝑦 ∈ 𝑥 ↦ (𝑦 ∩ 𝐴))) | |
| 9 | 2, 3, 8 | syl2anc 584 | . . . . . . . . 9 ⊢ (((𝐴 ∈ 𝑉 ∧ 𝑥 ∈ TopBases) ∧ 𝑥 ≼ ω) → (𝑥 ↾t 𝐴) = ran (𝑦 ∈ 𝑥 ↦ (𝑦 ∩ 𝐴))) |
| 10 | 1stcrestlem 23356 | . . . . . . . . . 10 ⊢ (𝑥 ≼ ω → ran (𝑦 ∈ 𝑥 ↦ (𝑦 ∩ 𝐴)) ≼ ω) | |
| 11 | 10 | adantl 481 | . . . . . . . . 9 ⊢ (((𝐴 ∈ 𝑉 ∧ 𝑥 ∈ TopBases) ∧ 𝑥 ≼ ω) → ran (𝑦 ∈ 𝑥 ↦ (𝑦 ∩ 𝐴)) ≼ ω) |
| 12 | 9, 11 | eqbrtrd 5117 | . . . . . . . 8 ⊢ (((𝐴 ∈ 𝑉 ∧ 𝑥 ∈ TopBases) ∧ 𝑥 ≼ ω) → (𝑥 ↾t 𝐴) ≼ ω) |
| 13 | 2ndci 23352 | . . . . . . . 8 ⊢ (((𝑥 ↾t 𝐴) ∈ TopBases ∧ (𝑥 ↾t 𝐴) ≼ ω) → (topGen‘(𝑥 ↾t 𝐴)) ∈ 2ndω) | |
| 14 | 7, 12, 13 | syl2anc 584 | . . . . . . 7 ⊢ (((𝐴 ∈ 𝑉 ∧ 𝑥 ∈ TopBases) ∧ 𝑥 ≼ ω) → (topGen‘(𝑥 ↾t 𝐴)) ∈ 2ndω) |
| 15 | 5, 14 | eqeltrrd 2829 | . . . . . 6 ⊢ (((𝐴 ∈ 𝑉 ∧ 𝑥 ∈ TopBases) ∧ 𝑥 ≼ ω) → ((topGen‘𝑥) ↾t 𝐴) ∈ 2ndω) |
| 16 | oveq1 7360 | . . . . . . 7 ⊢ ((topGen‘𝑥) = 𝐽 → ((topGen‘𝑥) ↾t 𝐴) = (𝐽 ↾t 𝐴)) | |
| 17 | 16 | eleq1d 2813 | . . . . . 6 ⊢ ((topGen‘𝑥) = 𝐽 → (((topGen‘𝑥) ↾t 𝐴) ∈ 2ndω ↔ (𝐽 ↾t 𝐴) ∈ 2ndω)) |
| 18 | 15, 17 | syl5ibcom 245 | . . . . 5 ⊢ (((𝐴 ∈ 𝑉 ∧ 𝑥 ∈ TopBases) ∧ 𝑥 ≼ ω) → ((topGen‘𝑥) = 𝐽 → (𝐽 ↾t 𝐴) ∈ 2ndω)) |
| 19 | 18 | expimpd 453 | . . . 4 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑥 ∈ TopBases) → ((𝑥 ≼ ω ∧ (topGen‘𝑥) = 𝐽) → (𝐽 ↾t 𝐴) ∈ 2ndω)) |
| 20 | 19 | rexlimdva 3130 | . . 3 ⊢ (𝐴 ∈ 𝑉 → (∃𝑥 ∈ TopBases (𝑥 ≼ ω ∧ (topGen‘𝑥) = 𝐽) → (𝐽 ↾t 𝐴) ∈ 2ndω)) |
| 21 | 1, 20 | biimtrid 242 | . 2 ⊢ (𝐴 ∈ 𝑉 → (𝐽 ∈ 2ndω → (𝐽 ↾t 𝐴) ∈ 2ndω)) |
| 22 | 21 | impcom 407 | 1 ⊢ ((𝐽 ∈ 2ndω ∧ 𝐴 ∈ 𝑉) → (𝐽 ↾t 𝐴) ∈ 2ndω) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∃wrex 3053 ∩ cin 3904 class class class wbr 5095 ↦ cmpt 5176 ran crn 5624 ‘cfv 6486 (class class class)co 7353 ωcom 7806 ≼ cdom 8877 ↾t crest 17343 topGenctg 17360 TopBasesctb 22849 2ndωc2ndc 23342 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rmo 3345 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-pss 3925 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-int 4900 df-iun 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5518 df-eprel 5523 df-po 5531 df-so 5532 df-fr 5576 df-se 5577 df-we 5578 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-isom 6495 df-riota 7310 df-ov 7356 df-oprab 7357 df-mpo 7358 df-om 7807 df-1st 7931 df-2nd 7932 df-frecs 8221 df-wrecs 8252 df-recs 8301 df-er 8632 df-map 8762 df-en 8880 df-dom 8881 df-fin 8883 df-fi 9320 df-card 9854 df-acn 9857 df-rest 17345 df-topgen 17366 df-bases 22850 df-2ndc 23344 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |