Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 2ndcrest | Structured version Visualization version GIF version |
Description: A subspace of a second-countable space is second-countable. (Contributed by Mario Carneiro, 21-Mar-2015.) |
Ref | Expression |
---|---|
2ndcrest | ⊢ ((𝐽 ∈ 2ndω ∧ 𝐴 ∈ 𝑉) → (𝐽 ↾t 𝐴) ∈ 2ndω) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | is2ndc 22151 | . . 3 ⊢ (𝐽 ∈ 2ndω ↔ ∃𝑥 ∈ TopBases (𝑥 ≼ ω ∧ (topGen‘𝑥) = 𝐽)) | |
2 | simplr 768 | . . . . . . . 8 ⊢ (((𝐴 ∈ 𝑉 ∧ 𝑥 ∈ TopBases) ∧ 𝑥 ≼ ω) → 𝑥 ∈ TopBases) | |
3 | simpll 766 | . . . . . . . 8 ⊢ (((𝐴 ∈ 𝑉 ∧ 𝑥 ∈ TopBases) ∧ 𝑥 ≼ ω) → 𝐴 ∈ 𝑉) | |
4 | tgrest 21864 | . . . . . . . 8 ⊢ ((𝑥 ∈ TopBases ∧ 𝐴 ∈ 𝑉) → (topGen‘(𝑥 ↾t 𝐴)) = ((topGen‘𝑥) ↾t 𝐴)) | |
5 | 2, 3, 4 | syl2anc 587 | . . . . . . 7 ⊢ (((𝐴 ∈ 𝑉 ∧ 𝑥 ∈ TopBases) ∧ 𝑥 ≼ ω) → (topGen‘(𝑥 ↾t 𝐴)) = ((topGen‘𝑥) ↾t 𝐴)) |
6 | restbas 21863 | . . . . . . . . 9 ⊢ (𝑥 ∈ TopBases → (𝑥 ↾t 𝐴) ∈ TopBases) | |
7 | 6 | ad2antlr 726 | . . . . . . . 8 ⊢ (((𝐴 ∈ 𝑉 ∧ 𝑥 ∈ TopBases) ∧ 𝑥 ≼ ω) → (𝑥 ↾t 𝐴) ∈ TopBases) |
8 | restval 16763 | . . . . . . . . . 10 ⊢ ((𝑥 ∈ TopBases ∧ 𝐴 ∈ 𝑉) → (𝑥 ↾t 𝐴) = ran (𝑦 ∈ 𝑥 ↦ (𝑦 ∩ 𝐴))) | |
9 | 2, 3, 8 | syl2anc 587 | . . . . . . . . 9 ⊢ (((𝐴 ∈ 𝑉 ∧ 𝑥 ∈ TopBases) ∧ 𝑥 ≼ ω) → (𝑥 ↾t 𝐴) = ran (𝑦 ∈ 𝑥 ↦ (𝑦 ∩ 𝐴))) |
10 | 1stcrestlem 22157 | . . . . . . . . . 10 ⊢ (𝑥 ≼ ω → ran (𝑦 ∈ 𝑥 ↦ (𝑦 ∩ 𝐴)) ≼ ω) | |
11 | 10 | adantl 485 | . . . . . . . . 9 ⊢ (((𝐴 ∈ 𝑉 ∧ 𝑥 ∈ TopBases) ∧ 𝑥 ≼ ω) → ran (𝑦 ∈ 𝑥 ↦ (𝑦 ∩ 𝐴)) ≼ ω) |
12 | 9, 11 | eqbrtrd 5057 | . . . . . . . 8 ⊢ (((𝐴 ∈ 𝑉 ∧ 𝑥 ∈ TopBases) ∧ 𝑥 ≼ ω) → (𝑥 ↾t 𝐴) ≼ ω) |
13 | 2ndci 22153 | . . . . . . . 8 ⊢ (((𝑥 ↾t 𝐴) ∈ TopBases ∧ (𝑥 ↾t 𝐴) ≼ ω) → (topGen‘(𝑥 ↾t 𝐴)) ∈ 2ndω) | |
14 | 7, 12, 13 | syl2anc 587 | . . . . . . 7 ⊢ (((𝐴 ∈ 𝑉 ∧ 𝑥 ∈ TopBases) ∧ 𝑥 ≼ ω) → (topGen‘(𝑥 ↾t 𝐴)) ∈ 2ndω) |
15 | 5, 14 | eqeltrrd 2853 | . . . . . 6 ⊢ (((𝐴 ∈ 𝑉 ∧ 𝑥 ∈ TopBases) ∧ 𝑥 ≼ ω) → ((topGen‘𝑥) ↾t 𝐴) ∈ 2ndω) |
16 | oveq1 7162 | . . . . . . 7 ⊢ ((topGen‘𝑥) = 𝐽 → ((topGen‘𝑥) ↾t 𝐴) = (𝐽 ↾t 𝐴)) | |
17 | 16 | eleq1d 2836 | . . . . . 6 ⊢ ((topGen‘𝑥) = 𝐽 → (((topGen‘𝑥) ↾t 𝐴) ∈ 2ndω ↔ (𝐽 ↾t 𝐴) ∈ 2ndω)) |
18 | 15, 17 | syl5ibcom 248 | . . . . 5 ⊢ (((𝐴 ∈ 𝑉 ∧ 𝑥 ∈ TopBases) ∧ 𝑥 ≼ ω) → ((topGen‘𝑥) = 𝐽 → (𝐽 ↾t 𝐴) ∈ 2ndω)) |
19 | 18 | expimpd 457 | . . . 4 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑥 ∈ TopBases) → ((𝑥 ≼ ω ∧ (topGen‘𝑥) = 𝐽) → (𝐽 ↾t 𝐴) ∈ 2ndω)) |
20 | 19 | rexlimdva 3208 | . . 3 ⊢ (𝐴 ∈ 𝑉 → (∃𝑥 ∈ TopBases (𝑥 ≼ ω ∧ (topGen‘𝑥) = 𝐽) → (𝐽 ↾t 𝐴) ∈ 2ndω)) |
21 | 1, 20 | syl5bi 245 | . 2 ⊢ (𝐴 ∈ 𝑉 → (𝐽 ∈ 2ndω → (𝐽 ↾t 𝐴) ∈ 2ndω)) |
22 | 21 | impcom 411 | 1 ⊢ ((𝐽 ∈ 2ndω ∧ 𝐴 ∈ 𝑉) → (𝐽 ↾t 𝐴) ∈ 2ndω) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 399 = wceq 1538 ∈ wcel 2111 ∃wrex 3071 ∩ cin 3859 class class class wbr 5035 ↦ cmpt 5115 ran crn 5528 ‘cfv 6339 (class class class)co 7155 ωcom 7584 ≼ cdom 8530 ↾t crest 16757 topGenctg 16774 TopBasesctb 21650 2ndωc2ndc 22143 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2158 ax-12 2175 ax-ext 2729 ax-rep 5159 ax-sep 5172 ax-nul 5179 ax-pow 5237 ax-pr 5301 ax-un 7464 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3or 1085 df-3an 1086 df-tru 1541 df-fal 1551 df-ex 1782 df-nf 1786 df-sb 2070 df-mo 2557 df-eu 2588 df-clab 2736 df-cleq 2750 df-clel 2830 df-nfc 2901 df-ne 2952 df-ral 3075 df-rex 3076 df-reu 3077 df-rmo 3078 df-rab 3079 df-v 3411 df-sbc 3699 df-csb 3808 df-dif 3863 df-un 3865 df-in 3867 df-ss 3877 df-pss 3879 df-nul 4228 df-if 4424 df-pw 4499 df-sn 4526 df-pr 4528 df-tp 4530 df-op 4532 df-uni 4802 df-int 4842 df-iun 4888 df-br 5036 df-opab 5098 df-mpt 5116 df-tr 5142 df-id 5433 df-eprel 5438 df-po 5446 df-so 5447 df-fr 5486 df-se 5487 df-we 5488 df-xp 5533 df-rel 5534 df-cnv 5535 df-co 5536 df-dm 5537 df-rn 5538 df-res 5539 df-ima 5540 df-pred 6130 df-ord 6176 df-on 6177 df-lim 6178 df-suc 6179 df-iota 6298 df-fun 6341 df-fn 6342 df-f 6343 df-f1 6344 df-fo 6345 df-f1o 6346 df-fv 6347 df-isom 6348 df-riota 7113 df-ov 7158 df-oprab 7159 df-mpo 7160 df-om 7585 df-1st 7698 df-2nd 7699 df-wrecs 7962 df-recs 8023 df-er 8304 df-map 8423 df-en 8533 df-dom 8534 df-fin 8536 df-fi 8913 df-card 9406 df-acn 9409 df-rest 16759 df-topgen 16780 df-bases 21651 df-2ndc 22145 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |