![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > is2ndc | Structured version Visualization version GIF version |
Description: The property of being second-countable. (Contributed by Jeff Hankins, 17-Jan-2010.) (Revised by Mario Carneiro, 21-Mar-2015.) |
Ref | Expression |
---|---|
is2ndc | ⊢ (𝐽 ∈ 2ndω ↔ ∃𝑥 ∈ TopBases (𝑥 ≼ ω ∧ (topGen‘𝑥) = 𝐽)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-2ndc 23464 | . . 3 ⊢ 2ndω = {𝑗 ∣ ∃𝑥 ∈ TopBases (𝑥 ≼ ω ∧ (topGen‘𝑥) = 𝑗)} | |
2 | 1 | eleq2i 2831 | . 2 ⊢ (𝐽 ∈ 2ndω ↔ 𝐽 ∈ {𝑗 ∣ ∃𝑥 ∈ TopBases (𝑥 ≼ ω ∧ (topGen‘𝑥) = 𝑗)}) |
3 | simpr 484 | . . . . 5 ⊢ ((𝑥 ≼ ω ∧ (topGen‘𝑥) = 𝐽) → (topGen‘𝑥) = 𝐽) | |
4 | fvex 6920 | . . . . 5 ⊢ (topGen‘𝑥) ∈ V | |
5 | 3, 4 | eqeltrrdi 2848 | . . . 4 ⊢ ((𝑥 ≼ ω ∧ (topGen‘𝑥) = 𝐽) → 𝐽 ∈ V) |
6 | 5 | rexlimivw 3149 | . . 3 ⊢ (∃𝑥 ∈ TopBases (𝑥 ≼ ω ∧ (topGen‘𝑥) = 𝐽) → 𝐽 ∈ V) |
7 | eqeq2 2747 | . . . . 5 ⊢ (𝑗 = 𝐽 → ((topGen‘𝑥) = 𝑗 ↔ (topGen‘𝑥) = 𝐽)) | |
8 | 7 | anbi2d 630 | . . . 4 ⊢ (𝑗 = 𝐽 → ((𝑥 ≼ ω ∧ (topGen‘𝑥) = 𝑗) ↔ (𝑥 ≼ ω ∧ (topGen‘𝑥) = 𝐽))) |
9 | 8 | rexbidv 3177 | . . 3 ⊢ (𝑗 = 𝐽 → (∃𝑥 ∈ TopBases (𝑥 ≼ ω ∧ (topGen‘𝑥) = 𝑗) ↔ ∃𝑥 ∈ TopBases (𝑥 ≼ ω ∧ (topGen‘𝑥) = 𝐽))) |
10 | 6, 9 | elab3 3689 | . 2 ⊢ (𝐽 ∈ {𝑗 ∣ ∃𝑥 ∈ TopBases (𝑥 ≼ ω ∧ (topGen‘𝑥) = 𝑗)} ↔ ∃𝑥 ∈ TopBases (𝑥 ≼ ω ∧ (topGen‘𝑥) = 𝐽)) |
11 | 2, 10 | bitri 275 | 1 ⊢ (𝐽 ∈ 2ndω ↔ ∃𝑥 ∈ TopBases (𝑥 ≼ ω ∧ (topGen‘𝑥) = 𝐽)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 206 ∧ wa 395 = wceq 1537 ∈ wcel 2106 {cab 2712 ∃wrex 3068 Vcvv 3478 class class class wbr 5148 ‘cfv 6563 ωcom 7887 ≼ cdom 8982 topGenctg 17484 TopBasesctb 22968 2ndωc2ndc 23462 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-ext 2706 ax-nul 5312 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1540 df-fal 1550 df-ex 1777 df-sb 2063 df-clab 2713 df-cleq 2727 df-clel 2814 df-ne 2939 df-rex 3069 df-v 3480 df-dif 3966 df-un 3968 df-ss 3980 df-nul 4340 df-sn 4632 df-pr 4634 df-uni 4913 df-iota 6516 df-fv 6571 df-2ndc 23464 |
This theorem is referenced by: 2ndctop 23471 2ndci 23472 2ndcsb 23473 2ndcredom 23474 2ndc1stc 23475 2ndcrest 23478 2ndcctbss 23479 2ndcdisj 23480 2ndcomap 23482 2ndcsep 23483 dis2ndc 23484 tx2ndc 23675 |
Copyright terms: Public domain | W3C validator |