MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  is2ndc Structured version   Visualization version   GIF version

Theorem is2ndc 23389
Description: The property of being second-countable. (Contributed by Jeff Hankins, 17-Jan-2010.) (Revised by Mario Carneiro, 21-Mar-2015.)
Assertion
Ref Expression
is2ndc (𝐽 ∈ 2ndω ↔ ∃𝑥 ∈ TopBases (𝑥 ≼ ω ∧ (topGen‘𝑥) = 𝐽))
Distinct variable group:   𝑥,𝐽

Proof of Theorem is2ndc
Dummy variable 𝑗 is distinct from all other variables.
StepHypRef Expression
1 df-2ndc 23383 . . 3 2ndω = {𝑗 ∣ ∃𝑥 ∈ TopBases (𝑥 ≼ ω ∧ (topGen‘𝑥) = 𝑗)}
21eleq2i 2827 . 2 (𝐽 ∈ 2ndω ↔ 𝐽 ∈ {𝑗 ∣ ∃𝑥 ∈ TopBases (𝑥 ≼ ω ∧ (topGen‘𝑥) = 𝑗)})
3 simpr 484 . . . . 5 ((𝑥 ≼ ω ∧ (topGen‘𝑥) = 𝐽) → (topGen‘𝑥) = 𝐽)
4 fvex 6894 . . . . 5 (topGen‘𝑥) ∈ V
53, 4eqeltrrdi 2844 . . . 4 ((𝑥 ≼ ω ∧ (topGen‘𝑥) = 𝐽) → 𝐽 ∈ V)
65rexlimivw 3138 . . 3 (∃𝑥 ∈ TopBases (𝑥 ≼ ω ∧ (topGen‘𝑥) = 𝐽) → 𝐽 ∈ V)
7 eqeq2 2748 . . . . 5 (𝑗 = 𝐽 → ((topGen‘𝑥) = 𝑗 ↔ (topGen‘𝑥) = 𝐽))
87anbi2d 630 . . . 4 (𝑗 = 𝐽 → ((𝑥 ≼ ω ∧ (topGen‘𝑥) = 𝑗) ↔ (𝑥 ≼ ω ∧ (topGen‘𝑥) = 𝐽)))
98rexbidv 3165 . . 3 (𝑗 = 𝐽 → (∃𝑥 ∈ TopBases (𝑥 ≼ ω ∧ (topGen‘𝑥) = 𝑗) ↔ ∃𝑥 ∈ TopBases (𝑥 ≼ ω ∧ (topGen‘𝑥) = 𝐽)))
106, 9elab3 3670 . 2 (𝐽 ∈ {𝑗 ∣ ∃𝑥 ∈ TopBases (𝑥 ≼ ω ∧ (topGen‘𝑥) = 𝑗)} ↔ ∃𝑥 ∈ TopBases (𝑥 ≼ ω ∧ (topGen‘𝑥) = 𝐽))
112, 10bitri 275 1 (𝐽 ∈ 2ndω ↔ ∃𝑥 ∈ TopBases (𝑥 ≼ ω ∧ (topGen‘𝑥) = 𝐽))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395   = wceq 1540  wcel 2109  {cab 2714  wrex 3061  Vcvv 3464   class class class wbr 5124  cfv 6536  ωcom 7866  cdom 8962  topGenctg 17456  TopBasesctb 22888  2ndωc2ndc 23381
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2708  ax-nul 5281
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2715  df-cleq 2728  df-clel 2810  df-ne 2934  df-rex 3062  df-v 3466  df-dif 3934  df-un 3936  df-ss 3948  df-nul 4314  df-sn 4607  df-pr 4609  df-uni 4889  df-iota 6489  df-fv 6544  df-2ndc 23383
This theorem is referenced by:  2ndctop  23390  2ndci  23391  2ndcsb  23392  2ndcredom  23393  2ndc1stc  23394  2ndcrest  23397  2ndcctbss  23398  2ndcdisj  23399  2ndcomap  23401  2ndcsep  23402  dis2ndc  23403  tx2ndc  23594
  Copyright terms: Public domain W3C validator