MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  is2ndc Structured version   Visualization version   GIF version

Theorem is2ndc 23301
Description: The property of being second-countable. (Contributed by Jeff Hankins, 17-Jan-2010.) (Revised by Mario Carneiro, 21-Mar-2015.)
Assertion
Ref Expression
is2ndc (𝐽 ∈ 2ndΟ‰ ↔ βˆƒπ‘₯ ∈ TopBases (π‘₯ β‰Ό Ο‰ ∧ (topGenβ€˜π‘₯) = 𝐽))
Distinct variable group:   π‘₯,𝐽

Proof of Theorem is2ndc
Dummy variable 𝑗 is distinct from all other variables.
StepHypRef Expression
1 df-2ndc 23295 . . 3 2ndΟ‰ = {𝑗 ∣ βˆƒπ‘₯ ∈ TopBases (π‘₯ β‰Ό Ο‰ ∧ (topGenβ€˜π‘₯) = 𝑗)}
21eleq2i 2819 . 2 (𝐽 ∈ 2ndΟ‰ ↔ 𝐽 ∈ {𝑗 ∣ βˆƒπ‘₯ ∈ TopBases (π‘₯ β‰Ό Ο‰ ∧ (topGenβ€˜π‘₯) = 𝑗)})
3 simpr 484 . . . . 5 ((π‘₯ β‰Ό Ο‰ ∧ (topGenβ€˜π‘₯) = 𝐽) β†’ (topGenβ€˜π‘₯) = 𝐽)
4 fvex 6897 . . . . 5 (topGenβ€˜π‘₯) ∈ V
53, 4eqeltrrdi 2836 . . . 4 ((π‘₯ β‰Ό Ο‰ ∧ (topGenβ€˜π‘₯) = 𝐽) β†’ 𝐽 ∈ V)
65rexlimivw 3145 . . 3 (βˆƒπ‘₯ ∈ TopBases (π‘₯ β‰Ό Ο‰ ∧ (topGenβ€˜π‘₯) = 𝐽) β†’ 𝐽 ∈ V)
7 eqeq2 2738 . . . . 5 (𝑗 = 𝐽 β†’ ((topGenβ€˜π‘₯) = 𝑗 ↔ (topGenβ€˜π‘₯) = 𝐽))
87anbi2d 628 . . . 4 (𝑗 = 𝐽 β†’ ((π‘₯ β‰Ό Ο‰ ∧ (topGenβ€˜π‘₯) = 𝑗) ↔ (π‘₯ β‰Ό Ο‰ ∧ (topGenβ€˜π‘₯) = 𝐽)))
98rexbidv 3172 . . 3 (𝑗 = 𝐽 β†’ (βˆƒπ‘₯ ∈ TopBases (π‘₯ β‰Ό Ο‰ ∧ (topGenβ€˜π‘₯) = 𝑗) ↔ βˆƒπ‘₯ ∈ TopBases (π‘₯ β‰Ό Ο‰ ∧ (topGenβ€˜π‘₯) = 𝐽)))
106, 9elab3 3671 . 2 (𝐽 ∈ {𝑗 ∣ βˆƒπ‘₯ ∈ TopBases (π‘₯ β‰Ό Ο‰ ∧ (topGenβ€˜π‘₯) = 𝑗)} ↔ βˆƒπ‘₯ ∈ TopBases (π‘₯ β‰Ό Ο‰ ∧ (topGenβ€˜π‘₯) = 𝐽))
112, 10bitri 275 1 (𝐽 ∈ 2ndΟ‰ ↔ βˆƒπ‘₯ ∈ TopBases (π‘₯ β‰Ό Ο‰ ∧ (topGenβ€˜π‘₯) = 𝐽))
Colors of variables: wff setvar class
Syntax hints:   ↔ wb 205   ∧ wa 395   = wceq 1533   ∈ wcel 2098  {cab 2703  βˆƒwrex 3064  Vcvv 3468   class class class wbr 5141  β€˜cfv 6536  Ο‰com 7851   β‰Ό cdom 8936  topGenctg 17390  TopBasesctb 22799  2ndΟ‰c2ndc 23293
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-ext 2697  ax-nul 5299
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-tru 1536  df-fal 1546  df-ex 1774  df-sb 2060  df-clab 2704  df-cleq 2718  df-clel 2804  df-ne 2935  df-rex 3065  df-v 3470  df-dif 3946  df-un 3948  df-in 3950  df-ss 3960  df-nul 4318  df-sn 4624  df-pr 4626  df-uni 4903  df-iota 6488  df-fv 6544  df-2ndc 23295
This theorem is referenced by:  2ndctop  23302  2ndci  23303  2ndcsb  23304  2ndcredom  23305  2ndc1stc  23306  2ndcrest  23309  2ndcctbss  23310  2ndcdisj  23311  2ndcomap  23313  2ndcsep  23314  dis2ndc  23315  tx2ndc  23506
  Copyright terms: Public domain W3C validator