![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > is2ndc | Structured version Visualization version GIF version |
Description: The property of being second-countable. (Contributed by Jeff Hankins, 17-Jan-2010.) (Revised by Mario Carneiro, 21-Mar-2015.) |
Ref | Expression |
---|---|
is2ndc | β’ (π½ β 2ndΟ β βπ₯ β TopBases (π₯ βΌ Ο β§ (topGenβπ₯) = π½)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-2ndc 23295 | . . 3 β’ 2ndΟ = {π β£ βπ₯ β TopBases (π₯ βΌ Ο β§ (topGenβπ₯) = π)} | |
2 | 1 | eleq2i 2819 | . 2 β’ (π½ β 2ndΟ β π½ β {π β£ βπ₯ β TopBases (π₯ βΌ Ο β§ (topGenβπ₯) = π)}) |
3 | simpr 484 | . . . . 5 β’ ((π₯ βΌ Ο β§ (topGenβπ₯) = π½) β (topGenβπ₯) = π½) | |
4 | fvex 6897 | . . . . 5 β’ (topGenβπ₯) β V | |
5 | 3, 4 | eqeltrrdi 2836 | . . . 4 β’ ((π₯ βΌ Ο β§ (topGenβπ₯) = π½) β π½ β V) |
6 | 5 | rexlimivw 3145 | . . 3 β’ (βπ₯ β TopBases (π₯ βΌ Ο β§ (topGenβπ₯) = π½) β π½ β V) |
7 | eqeq2 2738 | . . . . 5 β’ (π = π½ β ((topGenβπ₯) = π β (topGenβπ₯) = π½)) | |
8 | 7 | anbi2d 628 | . . . 4 β’ (π = π½ β ((π₯ βΌ Ο β§ (topGenβπ₯) = π) β (π₯ βΌ Ο β§ (topGenβπ₯) = π½))) |
9 | 8 | rexbidv 3172 | . . 3 β’ (π = π½ β (βπ₯ β TopBases (π₯ βΌ Ο β§ (topGenβπ₯) = π) β βπ₯ β TopBases (π₯ βΌ Ο β§ (topGenβπ₯) = π½))) |
10 | 6, 9 | elab3 3671 | . 2 β’ (π½ β {π β£ βπ₯ β TopBases (π₯ βΌ Ο β§ (topGenβπ₯) = π)} β βπ₯ β TopBases (π₯ βΌ Ο β§ (topGenβπ₯) = π½)) |
11 | 2, 10 | bitri 275 | 1 β’ (π½ β 2ndΟ β βπ₯ β TopBases (π₯ βΌ Ο β§ (topGenβπ₯) = π½)) |
Colors of variables: wff setvar class |
Syntax hints: β wb 205 β§ wa 395 = wceq 1533 β wcel 2098 {cab 2703 βwrex 3064 Vcvv 3468 class class class wbr 5141 βcfv 6536 Οcom 7851 βΌ cdom 8936 topGenctg 17390 TopBasesctb 22799 2ndΟc2ndc 23293 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-ext 2697 ax-nul 5299 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-tru 1536 df-fal 1546 df-ex 1774 df-sb 2060 df-clab 2704 df-cleq 2718 df-clel 2804 df-ne 2935 df-rex 3065 df-v 3470 df-dif 3946 df-un 3948 df-in 3950 df-ss 3960 df-nul 4318 df-sn 4624 df-pr 4626 df-uni 4903 df-iota 6488 df-fv 6544 df-2ndc 23295 |
This theorem is referenced by: 2ndctop 23302 2ndci 23303 2ndcsb 23304 2ndcredom 23305 2ndc1stc 23306 2ndcrest 23309 2ndcctbss 23310 2ndcdisj 23311 2ndcomap 23313 2ndcsep 23314 dis2ndc 23315 tx2ndc 23506 |
Copyright terms: Public domain | W3C validator |