MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  is2ndc Structured version   Visualization version   GIF version

Theorem is2ndc 22949
Description: The property of being second-countable. (Contributed by Jeff Hankins, 17-Jan-2010.) (Revised by Mario Carneiro, 21-Mar-2015.)
Assertion
Ref Expression
is2ndc (𝐽 ∈ 2ndΟ‰ ↔ βˆƒπ‘₯ ∈ TopBases (π‘₯ β‰Ό Ο‰ ∧ (topGenβ€˜π‘₯) = 𝐽))
Distinct variable group:   π‘₯,𝐽

Proof of Theorem is2ndc
Dummy variable 𝑗 is distinct from all other variables.
StepHypRef Expression
1 df-2ndc 22943 . . 3 2ndΟ‰ = {𝑗 ∣ βˆƒπ‘₯ ∈ TopBases (π‘₯ β‰Ό Ο‰ ∧ (topGenβ€˜π‘₯) = 𝑗)}
21eleq2i 2825 . 2 (𝐽 ∈ 2ndΟ‰ ↔ 𝐽 ∈ {𝑗 ∣ βˆƒπ‘₯ ∈ TopBases (π‘₯ β‰Ό Ο‰ ∧ (topGenβ€˜π‘₯) = 𝑗)})
3 simpr 485 . . . . 5 ((π‘₯ β‰Ό Ο‰ ∧ (topGenβ€˜π‘₯) = 𝐽) β†’ (topGenβ€˜π‘₯) = 𝐽)
4 fvex 6904 . . . . 5 (topGenβ€˜π‘₯) ∈ V
53, 4eqeltrrdi 2842 . . . 4 ((π‘₯ β‰Ό Ο‰ ∧ (topGenβ€˜π‘₯) = 𝐽) β†’ 𝐽 ∈ V)
65rexlimivw 3151 . . 3 (βˆƒπ‘₯ ∈ TopBases (π‘₯ β‰Ό Ο‰ ∧ (topGenβ€˜π‘₯) = 𝐽) β†’ 𝐽 ∈ V)
7 eqeq2 2744 . . . . 5 (𝑗 = 𝐽 β†’ ((topGenβ€˜π‘₯) = 𝑗 ↔ (topGenβ€˜π‘₯) = 𝐽))
87anbi2d 629 . . . 4 (𝑗 = 𝐽 β†’ ((π‘₯ β‰Ό Ο‰ ∧ (topGenβ€˜π‘₯) = 𝑗) ↔ (π‘₯ β‰Ό Ο‰ ∧ (topGenβ€˜π‘₯) = 𝐽)))
98rexbidv 3178 . . 3 (𝑗 = 𝐽 β†’ (βˆƒπ‘₯ ∈ TopBases (π‘₯ β‰Ό Ο‰ ∧ (topGenβ€˜π‘₯) = 𝑗) ↔ βˆƒπ‘₯ ∈ TopBases (π‘₯ β‰Ό Ο‰ ∧ (topGenβ€˜π‘₯) = 𝐽)))
106, 9elab3 3676 . 2 (𝐽 ∈ {𝑗 ∣ βˆƒπ‘₯ ∈ TopBases (π‘₯ β‰Ό Ο‰ ∧ (topGenβ€˜π‘₯) = 𝑗)} ↔ βˆƒπ‘₯ ∈ TopBases (π‘₯ β‰Ό Ο‰ ∧ (topGenβ€˜π‘₯) = 𝐽))
112, 10bitri 274 1 (𝐽 ∈ 2ndΟ‰ ↔ βˆƒπ‘₯ ∈ TopBases (π‘₯ β‰Ό Ο‰ ∧ (topGenβ€˜π‘₯) = 𝐽))
Colors of variables: wff setvar class
Syntax hints:   ↔ wb 205   ∧ wa 396   = wceq 1541   ∈ wcel 2106  {cab 2709  βˆƒwrex 3070  Vcvv 3474   class class class wbr 5148  β€˜cfv 6543  Ο‰com 7854   β‰Ό cdom 8936  topGenctg 17382  TopBasesctb 22447  2ndΟ‰c2ndc 22941
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2703  ax-nul 5306
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-tru 1544  df-fal 1554  df-ex 1782  df-sb 2068  df-clab 2710  df-cleq 2724  df-clel 2810  df-ne 2941  df-rex 3071  df-v 3476  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-sn 4629  df-pr 4631  df-uni 4909  df-iota 6495  df-fv 6551  df-2ndc 22943
This theorem is referenced by:  2ndctop  22950  2ndci  22951  2ndcsb  22952  2ndcredom  22953  2ndc1stc  22954  2ndcrest  22957  2ndcctbss  22958  2ndcdisj  22959  2ndcomap  22961  2ndcsep  22962  dis2ndc  22963  tx2ndc  23154
  Copyright terms: Public domain W3C validator