Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > is2ndc | Structured version Visualization version GIF version |
Description: The property of being second-countable. (Contributed by Jeff Hankins, 17-Jan-2010.) (Revised by Mario Carneiro, 21-Mar-2015.) |
Ref | Expression |
---|---|
is2ndc | ⊢ (𝐽 ∈ 2ndω ↔ ∃𝑥 ∈ TopBases (𝑥 ≼ ω ∧ (topGen‘𝑥) = 𝐽)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-2ndc 22591 | . . 3 ⊢ 2ndω = {𝑗 ∣ ∃𝑥 ∈ TopBases (𝑥 ≼ ω ∧ (topGen‘𝑥) = 𝑗)} | |
2 | 1 | eleq2i 2830 | . 2 ⊢ (𝐽 ∈ 2ndω ↔ 𝐽 ∈ {𝑗 ∣ ∃𝑥 ∈ TopBases (𝑥 ≼ ω ∧ (topGen‘𝑥) = 𝑗)}) |
3 | simpr 485 | . . . . 5 ⊢ ((𝑥 ≼ ω ∧ (topGen‘𝑥) = 𝐽) → (topGen‘𝑥) = 𝐽) | |
4 | fvex 6787 | . . . . 5 ⊢ (topGen‘𝑥) ∈ V | |
5 | 3, 4 | eqeltrrdi 2848 | . . . 4 ⊢ ((𝑥 ≼ ω ∧ (topGen‘𝑥) = 𝐽) → 𝐽 ∈ V) |
6 | 5 | rexlimivw 3211 | . . 3 ⊢ (∃𝑥 ∈ TopBases (𝑥 ≼ ω ∧ (topGen‘𝑥) = 𝐽) → 𝐽 ∈ V) |
7 | eqeq2 2750 | . . . . 5 ⊢ (𝑗 = 𝐽 → ((topGen‘𝑥) = 𝑗 ↔ (topGen‘𝑥) = 𝐽)) | |
8 | 7 | anbi2d 629 | . . . 4 ⊢ (𝑗 = 𝐽 → ((𝑥 ≼ ω ∧ (topGen‘𝑥) = 𝑗) ↔ (𝑥 ≼ ω ∧ (topGen‘𝑥) = 𝐽))) |
9 | 8 | rexbidv 3226 | . . 3 ⊢ (𝑗 = 𝐽 → (∃𝑥 ∈ TopBases (𝑥 ≼ ω ∧ (topGen‘𝑥) = 𝑗) ↔ ∃𝑥 ∈ TopBases (𝑥 ≼ ω ∧ (topGen‘𝑥) = 𝐽))) |
10 | 6, 9 | elab3 3617 | . 2 ⊢ (𝐽 ∈ {𝑗 ∣ ∃𝑥 ∈ TopBases (𝑥 ≼ ω ∧ (topGen‘𝑥) = 𝑗)} ↔ ∃𝑥 ∈ TopBases (𝑥 ≼ ω ∧ (topGen‘𝑥) = 𝐽)) |
11 | 2, 10 | bitri 274 | 1 ⊢ (𝐽 ∈ 2ndω ↔ ∃𝑥 ∈ TopBases (𝑥 ≼ ω ∧ (topGen‘𝑥) = 𝐽)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 396 = wceq 1539 ∈ wcel 2106 {cab 2715 ∃wrex 3065 Vcvv 3432 class class class wbr 5074 ‘cfv 6433 ωcom 7712 ≼ cdom 8731 topGenctg 17148 TopBasesctb 22095 2ndωc2ndc 22589 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-nul 5230 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-ral 3069 df-rex 3070 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-sn 4562 df-pr 4564 df-uni 4840 df-iota 6391 df-fv 6441 df-2ndc 22591 |
This theorem is referenced by: 2ndctop 22598 2ndci 22599 2ndcsb 22600 2ndcredom 22601 2ndc1stc 22602 2ndcrest 22605 2ndcctbss 22606 2ndcdisj 22607 2ndcomap 22609 2ndcsep 22610 dis2ndc 22611 tx2ndc 22802 |
Copyright terms: Public domain | W3C validator |