| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > is2ndc | Structured version Visualization version GIF version | ||
| Description: The property of being second-countable. (Contributed by Jeff Hankins, 17-Jan-2010.) (Revised by Mario Carneiro, 21-Mar-2015.) |
| Ref | Expression |
|---|---|
| is2ndc | ⊢ (𝐽 ∈ 2ndω ↔ ∃𝑥 ∈ TopBases (𝑥 ≼ ω ∧ (topGen‘𝑥) = 𝐽)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-2ndc 23327 | . . 3 ⊢ 2ndω = {𝑗 ∣ ∃𝑥 ∈ TopBases (𝑥 ≼ ω ∧ (topGen‘𝑥) = 𝑗)} | |
| 2 | 1 | eleq2i 2820 | . 2 ⊢ (𝐽 ∈ 2ndω ↔ 𝐽 ∈ {𝑗 ∣ ∃𝑥 ∈ TopBases (𝑥 ≼ ω ∧ (topGen‘𝑥) = 𝑗)}) |
| 3 | simpr 484 | . . . . 5 ⊢ ((𝑥 ≼ ω ∧ (topGen‘𝑥) = 𝐽) → (topGen‘𝑥) = 𝐽) | |
| 4 | fvex 6871 | . . . . 5 ⊢ (topGen‘𝑥) ∈ V | |
| 5 | 3, 4 | eqeltrrdi 2837 | . . . 4 ⊢ ((𝑥 ≼ ω ∧ (topGen‘𝑥) = 𝐽) → 𝐽 ∈ V) |
| 6 | 5 | rexlimivw 3130 | . . 3 ⊢ (∃𝑥 ∈ TopBases (𝑥 ≼ ω ∧ (topGen‘𝑥) = 𝐽) → 𝐽 ∈ V) |
| 7 | eqeq2 2741 | . . . . 5 ⊢ (𝑗 = 𝐽 → ((topGen‘𝑥) = 𝑗 ↔ (topGen‘𝑥) = 𝐽)) | |
| 8 | 7 | anbi2d 630 | . . . 4 ⊢ (𝑗 = 𝐽 → ((𝑥 ≼ ω ∧ (topGen‘𝑥) = 𝑗) ↔ (𝑥 ≼ ω ∧ (topGen‘𝑥) = 𝐽))) |
| 9 | 8 | rexbidv 3157 | . . 3 ⊢ (𝑗 = 𝐽 → (∃𝑥 ∈ TopBases (𝑥 ≼ ω ∧ (topGen‘𝑥) = 𝑗) ↔ ∃𝑥 ∈ TopBases (𝑥 ≼ ω ∧ (topGen‘𝑥) = 𝐽))) |
| 10 | 6, 9 | elab3 3653 | . 2 ⊢ (𝐽 ∈ {𝑗 ∣ ∃𝑥 ∈ TopBases (𝑥 ≼ ω ∧ (topGen‘𝑥) = 𝑗)} ↔ ∃𝑥 ∈ TopBases (𝑥 ≼ ω ∧ (topGen‘𝑥) = 𝐽)) |
| 11 | 2, 10 | bitri 275 | 1 ⊢ (𝐽 ∈ 2ndω ↔ ∃𝑥 ∈ TopBases (𝑥 ≼ ω ∧ (topGen‘𝑥) = 𝐽)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 {cab 2707 ∃wrex 3053 Vcvv 3447 class class class wbr 5107 ‘cfv 6511 ωcom 7842 ≼ cdom 8916 topGenctg 17400 TopBasesctb 22832 2ndωc2ndc 23325 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-nul 5261 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ne 2926 df-rex 3054 df-v 3449 df-dif 3917 df-un 3919 df-ss 3931 df-nul 4297 df-sn 4590 df-pr 4592 df-uni 4872 df-iota 6464 df-fv 6519 df-2ndc 23327 |
| This theorem is referenced by: 2ndctop 23334 2ndci 23335 2ndcsb 23336 2ndcredom 23337 2ndc1stc 23338 2ndcrest 23341 2ndcctbss 23342 2ndcdisj 23343 2ndcomap 23345 2ndcsep 23346 dis2ndc 23347 tx2ndc 23538 |
| Copyright terms: Public domain | W3C validator |