| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > is2ndc | Structured version Visualization version GIF version | ||
| Description: The property of being second-countable. (Contributed by Jeff Hankins, 17-Jan-2010.) (Revised by Mario Carneiro, 21-Mar-2015.) |
| Ref | Expression |
|---|---|
| is2ndc | ⊢ (𝐽 ∈ 2ndω ↔ ∃𝑥 ∈ TopBases (𝑥 ≼ ω ∧ (topGen‘𝑥) = 𝐽)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-2ndc 23383 | . . 3 ⊢ 2ndω = {𝑗 ∣ ∃𝑥 ∈ TopBases (𝑥 ≼ ω ∧ (topGen‘𝑥) = 𝑗)} | |
| 2 | 1 | eleq2i 2827 | . 2 ⊢ (𝐽 ∈ 2ndω ↔ 𝐽 ∈ {𝑗 ∣ ∃𝑥 ∈ TopBases (𝑥 ≼ ω ∧ (topGen‘𝑥) = 𝑗)}) |
| 3 | simpr 484 | . . . . 5 ⊢ ((𝑥 ≼ ω ∧ (topGen‘𝑥) = 𝐽) → (topGen‘𝑥) = 𝐽) | |
| 4 | fvex 6894 | . . . . 5 ⊢ (topGen‘𝑥) ∈ V | |
| 5 | 3, 4 | eqeltrrdi 2844 | . . . 4 ⊢ ((𝑥 ≼ ω ∧ (topGen‘𝑥) = 𝐽) → 𝐽 ∈ V) |
| 6 | 5 | rexlimivw 3138 | . . 3 ⊢ (∃𝑥 ∈ TopBases (𝑥 ≼ ω ∧ (topGen‘𝑥) = 𝐽) → 𝐽 ∈ V) |
| 7 | eqeq2 2748 | . . . . 5 ⊢ (𝑗 = 𝐽 → ((topGen‘𝑥) = 𝑗 ↔ (topGen‘𝑥) = 𝐽)) | |
| 8 | 7 | anbi2d 630 | . . . 4 ⊢ (𝑗 = 𝐽 → ((𝑥 ≼ ω ∧ (topGen‘𝑥) = 𝑗) ↔ (𝑥 ≼ ω ∧ (topGen‘𝑥) = 𝐽))) |
| 9 | 8 | rexbidv 3165 | . . 3 ⊢ (𝑗 = 𝐽 → (∃𝑥 ∈ TopBases (𝑥 ≼ ω ∧ (topGen‘𝑥) = 𝑗) ↔ ∃𝑥 ∈ TopBases (𝑥 ≼ ω ∧ (topGen‘𝑥) = 𝐽))) |
| 10 | 6, 9 | elab3 3670 | . 2 ⊢ (𝐽 ∈ {𝑗 ∣ ∃𝑥 ∈ TopBases (𝑥 ≼ ω ∧ (topGen‘𝑥) = 𝑗)} ↔ ∃𝑥 ∈ TopBases (𝑥 ≼ ω ∧ (topGen‘𝑥) = 𝐽)) |
| 11 | 2, 10 | bitri 275 | 1 ⊢ (𝐽 ∈ 2ndω ↔ ∃𝑥 ∈ TopBases (𝑥 ≼ ω ∧ (topGen‘𝑥) = 𝐽)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 {cab 2714 ∃wrex 3061 Vcvv 3464 class class class wbr 5124 ‘cfv 6536 ωcom 7866 ≼ cdom 8962 topGenctg 17456 TopBasesctb 22888 2ndωc2ndc 23381 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2708 ax-nul 5281 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2715 df-cleq 2728 df-clel 2810 df-ne 2934 df-rex 3062 df-v 3466 df-dif 3934 df-un 3936 df-ss 3948 df-nul 4314 df-sn 4607 df-pr 4609 df-uni 4889 df-iota 6489 df-fv 6544 df-2ndc 23383 |
| This theorem is referenced by: 2ndctop 23390 2ndci 23391 2ndcsb 23392 2ndcredom 23393 2ndc1stc 23394 2ndcrest 23397 2ndcctbss 23398 2ndcdisj 23399 2ndcomap 23401 2ndcsep 23402 dis2ndc 23403 tx2ndc 23594 |
| Copyright terms: Public domain | W3C validator |