MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  2ndcomap Structured version   Visualization version   GIF version

Theorem 2ndcomap 21541
Description: A surjective continuous open map maps second-countable spaces to second-countable spaces. (Contributed by Mario Carneiro, 9-Apr-2015.)
Hypotheses
Ref Expression
2ndcomap.2 𝑌 = 𝐾
2ndcomap.3 (𝜑𝐽 ∈ 2nd𝜔)
2ndcomap.5 (𝜑𝐹 ∈ (𝐽 Cn 𝐾))
2ndcomap.6 (𝜑 → ran 𝐹 = 𝑌)
2ndcomap.7 ((𝜑𝑥𝐽) → (𝐹𝑥) ∈ 𝐾)
Assertion
Ref Expression
2ndcomap (𝜑𝐾 ∈ 2nd𝜔)
Distinct variable groups:   𝑥,𝐹   𝑥,𝐽   𝜑,𝑥   𝑥,𝐾
Allowed substitution hint:   𝑌(𝑥)

Proof of Theorem 2ndcomap
Dummy variables 𝑘 𝑚 𝑡 𝑤 𝑧 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 2ndcomap.5 . . . . . 6 (𝜑𝐹 ∈ (𝐽 Cn 𝐾))
2 cntop2 21325 . . . . . 6 (𝐹 ∈ (𝐽 Cn 𝐾) → 𝐾 ∈ Top)
31, 2syl 17 . . . . 5 (𝜑𝐾 ∈ Top)
43ad2antrr 717 . . . 4 (((𝜑𝑏 ∈ TopBases) ∧ (𝑏 ≼ ω ∧ (topGen‘𝑏) = 𝐽)) → 𝐾 ∈ Top)
5 simplll 791 . . . . . . 7 ((((𝜑𝑏 ∈ TopBases) ∧ (𝑏 ≼ ω ∧ (topGen‘𝑏) = 𝐽)) ∧ 𝑥𝑏) → 𝜑)
6 bastg 21050 . . . . . . . . . 10 (𝑏 ∈ TopBases → 𝑏 ⊆ (topGen‘𝑏))
76ad2antlr 718 . . . . . . . . 9 (((𝜑𝑏 ∈ TopBases) ∧ (𝑏 ≼ ω ∧ (topGen‘𝑏) = 𝐽)) → 𝑏 ⊆ (topGen‘𝑏))
8 simprr 789 . . . . . . . . 9 (((𝜑𝑏 ∈ TopBases) ∧ (𝑏 ≼ ω ∧ (topGen‘𝑏) = 𝐽)) → (topGen‘𝑏) = 𝐽)
97, 8sseqtrd 3801 . . . . . . . 8 (((𝜑𝑏 ∈ TopBases) ∧ (𝑏 ≼ ω ∧ (topGen‘𝑏) = 𝐽)) → 𝑏𝐽)
109sselda 3761 . . . . . . 7 ((((𝜑𝑏 ∈ TopBases) ∧ (𝑏 ≼ ω ∧ (topGen‘𝑏) = 𝐽)) ∧ 𝑥𝑏) → 𝑥𝐽)
11 2ndcomap.7 . . . . . . 7 ((𝜑𝑥𝐽) → (𝐹𝑥) ∈ 𝐾)
125, 10, 11syl2anc 579 . . . . . 6 ((((𝜑𝑏 ∈ TopBases) ∧ (𝑏 ≼ ω ∧ (topGen‘𝑏) = 𝐽)) ∧ 𝑥𝑏) → (𝐹𝑥) ∈ 𝐾)
1312fmpttd 6575 . . . . 5 (((𝜑𝑏 ∈ TopBases) ∧ (𝑏 ≼ ω ∧ (topGen‘𝑏) = 𝐽)) → (𝑥𝑏 ↦ (𝐹𝑥)):𝑏𝐾)
1413frnd 6230 . . . 4 (((𝜑𝑏 ∈ TopBases) ∧ (𝑏 ≼ ω ∧ (topGen‘𝑏) = 𝐽)) → ran (𝑥𝑏 ↦ (𝐹𝑥)) ⊆ 𝐾)
15 elunii 4599 . . . . . . . . . . 11 ((𝑧𝑘𝑘𝐾) → 𝑧 𝐾)
16 2ndcomap.2 . . . . . . . . . . 11 𝑌 = 𝐾
1715, 16syl6eleqr 2855 . . . . . . . . . 10 ((𝑧𝑘𝑘𝐾) → 𝑧𝑌)
1817ancoms 450 . . . . . . . . 9 ((𝑘𝐾𝑧𝑘) → 𝑧𝑌)
1918adantl 473 . . . . . . . 8 ((((𝜑𝑏 ∈ TopBases) ∧ (𝑏 ≼ ω ∧ (topGen‘𝑏) = 𝐽)) ∧ (𝑘𝐾𝑧𝑘)) → 𝑧𝑌)
20 2ndcomap.6 . . . . . . . . 9 (𝜑 → ran 𝐹 = 𝑌)
2120ad3antrrr 721 . . . . . . . 8 ((((𝜑𝑏 ∈ TopBases) ∧ (𝑏 ≼ ω ∧ (topGen‘𝑏) = 𝐽)) ∧ (𝑘𝐾𝑧𝑘)) → ran 𝐹 = 𝑌)
2219, 21eleqtrrd 2847 . . . . . . 7 ((((𝜑𝑏 ∈ TopBases) ∧ (𝑏 ≼ ω ∧ (topGen‘𝑏) = 𝐽)) ∧ (𝑘𝐾𝑧𝑘)) → 𝑧 ∈ ran 𝐹)
23 eqid 2765 . . . . . . . . . . 11 𝐽 = 𝐽
2423, 16cnf 21330 . . . . . . . . . 10 (𝐹 ∈ (𝐽 Cn 𝐾) → 𝐹: 𝐽𝑌)
251, 24syl 17 . . . . . . . . 9 (𝜑𝐹: 𝐽𝑌)
2625ad3antrrr 721 . . . . . . . 8 ((((𝜑𝑏 ∈ TopBases) ∧ (𝑏 ≼ ω ∧ (topGen‘𝑏) = 𝐽)) ∧ (𝑘𝐾𝑧𝑘)) → 𝐹: 𝐽𝑌)
27 ffn 6223 . . . . . . . 8 (𝐹: 𝐽𝑌𝐹 Fn 𝐽)
28 fvelrnb 6432 . . . . . . . 8 (𝐹 Fn 𝐽 → (𝑧 ∈ ran 𝐹 ↔ ∃𝑡 𝐽(𝐹𝑡) = 𝑧))
2926, 27, 283syl 18 . . . . . . 7 ((((𝜑𝑏 ∈ TopBases) ∧ (𝑏 ≼ ω ∧ (topGen‘𝑏) = 𝐽)) ∧ (𝑘𝐾𝑧𝑘)) → (𝑧 ∈ ran 𝐹 ↔ ∃𝑡 𝐽(𝐹𝑡) = 𝑧))
3022, 29mpbid 223 . . . . . 6 ((((𝜑𝑏 ∈ TopBases) ∧ (𝑏 ≼ ω ∧ (topGen‘𝑏) = 𝐽)) ∧ (𝑘𝐾𝑧𝑘)) → ∃𝑡 𝐽(𝐹𝑡) = 𝑧)
311ad3antrrr 721 . . . . . . . . . . 11 ((((𝜑𝑏 ∈ TopBases) ∧ (𝑏 ≼ ω ∧ (topGen‘𝑏) = 𝐽)) ∧ ((𝑘𝐾𝑧𝑘) ∧ (𝑡 𝐽 ∧ (𝐹𝑡) = 𝑧))) → 𝐹 ∈ (𝐽 Cn 𝐾))
32 simprll 797 . . . . . . . . . . 11 ((((𝜑𝑏 ∈ TopBases) ∧ (𝑏 ≼ ω ∧ (topGen‘𝑏) = 𝐽)) ∧ ((𝑘𝐾𝑧𝑘) ∧ (𝑡 𝐽 ∧ (𝐹𝑡) = 𝑧))) → 𝑘𝐾)
33 cnima 21349 . . . . . . . . . . 11 ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝑘𝐾) → (𝐹𝑘) ∈ 𝐽)
3431, 32, 33syl2anc 579 . . . . . . . . . 10 ((((𝜑𝑏 ∈ TopBases) ∧ (𝑏 ≼ ω ∧ (topGen‘𝑏) = 𝐽)) ∧ ((𝑘𝐾𝑧𝑘) ∧ (𝑡 𝐽 ∧ (𝐹𝑡) = 𝑧))) → (𝐹𝑘) ∈ 𝐽)
358adantr 472 . . . . . . . . . 10 ((((𝜑𝑏 ∈ TopBases) ∧ (𝑏 ≼ ω ∧ (topGen‘𝑏) = 𝐽)) ∧ ((𝑘𝐾𝑧𝑘) ∧ (𝑡 𝐽 ∧ (𝐹𝑡) = 𝑧))) → (topGen‘𝑏) = 𝐽)
3634, 35eleqtrrd 2847 . . . . . . . . 9 ((((𝜑𝑏 ∈ TopBases) ∧ (𝑏 ≼ ω ∧ (topGen‘𝑏) = 𝐽)) ∧ ((𝑘𝐾𝑧𝑘) ∧ (𝑡 𝐽 ∧ (𝐹𝑡) = 𝑧))) → (𝐹𝑘) ∈ (topGen‘𝑏))
37 simprrl 799 . . . . . . . . . 10 ((((𝜑𝑏 ∈ TopBases) ∧ (𝑏 ≼ ω ∧ (topGen‘𝑏) = 𝐽)) ∧ ((𝑘𝐾𝑧𝑘) ∧ (𝑡 𝐽 ∧ (𝐹𝑡) = 𝑧))) → 𝑡 𝐽)
38 simprrr 800 . . . . . . . . . . 11 ((((𝜑𝑏 ∈ TopBases) ∧ (𝑏 ≼ ω ∧ (topGen‘𝑏) = 𝐽)) ∧ ((𝑘𝐾𝑧𝑘) ∧ (𝑡 𝐽 ∧ (𝐹𝑡) = 𝑧))) → (𝐹𝑡) = 𝑧)
39 simprlr 798 . . . . . . . . . . 11 ((((𝜑𝑏 ∈ TopBases) ∧ (𝑏 ≼ ω ∧ (topGen‘𝑏) = 𝐽)) ∧ ((𝑘𝐾𝑧𝑘) ∧ (𝑡 𝐽 ∧ (𝐹𝑡) = 𝑧))) → 𝑧𝑘)
4038, 39eqeltrd 2844 . . . . . . . . . 10 ((((𝜑𝑏 ∈ TopBases) ∧ (𝑏 ≼ ω ∧ (topGen‘𝑏) = 𝐽)) ∧ ((𝑘𝐾𝑧𝑘) ∧ (𝑡 𝐽 ∧ (𝐹𝑡) = 𝑧))) → (𝐹𝑡) ∈ 𝑘)
4126ffnd 6224 . . . . . . . . . . . 12 ((((𝜑𝑏 ∈ TopBases) ∧ (𝑏 ≼ ω ∧ (topGen‘𝑏) = 𝐽)) ∧ (𝑘𝐾𝑧𝑘)) → 𝐹 Fn 𝐽)
4241adantrr 708 . . . . . . . . . . 11 ((((𝜑𝑏 ∈ TopBases) ∧ (𝑏 ≼ ω ∧ (topGen‘𝑏) = 𝐽)) ∧ ((𝑘𝐾𝑧𝑘) ∧ (𝑡 𝐽 ∧ (𝐹𝑡) = 𝑧))) → 𝐹 Fn 𝐽)
43 elpreima 6527 . . . . . . . . . . 11 (𝐹 Fn 𝐽 → (𝑡 ∈ (𝐹𝑘) ↔ (𝑡 𝐽 ∧ (𝐹𝑡) ∈ 𝑘)))
4442, 43syl 17 . . . . . . . . . 10 ((((𝜑𝑏 ∈ TopBases) ∧ (𝑏 ≼ ω ∧ (topGen‘𝑏) = 𝐽)) ∧ ((𝑘𝐾𝑧𝑘) ∧ (𝑡 𝐽 ∧ (𝐹𝑡) = 𝑧))) → (𝑡 ∈ (𝐹𝑘) ↔ (𝑡 𝐽 ∧ (𝐹𝑡) ∈ 𝑘)))
4537, 40, 44mpbir2and 704 . . . . . . . . 9 ((((𝜑𝑏 ∈ TopBases) ∧ (𝑏 ≼ ω ∧ (topGen‘𝑏) = 𝐽)) ∧ ((𝑘𝐾𝑧𝑘) ∧ (𝑡 𝐽 ∧ (𝐹𝑡) = 𝑧))) → 𝑡 ∈ (𝐹𝑘))
46 tg2 21049 . . . . . . . . 9 (((𝐹𝑘) ∈ (topGen‘𝑏) ∧ 𝑡 ∈ (𝐹𝑘)) → ∃𝑚𝑏 (𝑡𝑚𝑚 ⊆ (𝐹𝑘)))
4736, 45, 46syl2anc 579 . . . . . . . 8 ((((𝜑𝑏 ∈ TopBases) ∧ (𝑏 ≼ ω ∧ (topGen‘𝑏) = 𝐽)) ∧ ((𝑘𝐾𝑧𝑘) ∧ (𝑡 𝐽 ∧ (𝐹𝑡) = 𝑧))) → ∃𝑚𝑏 (𝑡𝑚𝑚 ⊆ (𝐹𝑘)))
48 simprl 787 . . . . . . . . . . 11 (((((𝜑𝑏 ∈ TopBases) ∧ (𝑏 ≼ ω ∧ (topGen‘𝑏) = 𝐽)) ∧ ((𝑘𝐾𝑧𝑘) ∧ (𝑡 𝐽 ∧ (𝐹𝑡) = 𝑧))) ∧ (𝑚𝑏 ∧ (𝑡𝑚𝑚 ⊆ (𝐹𝑘)))) → 𝑚𝑏)
49 eqid 2765 . . . . . . . . . . 11 (𝐹𝑚) = (𝐹𝑚)
50 imaeq2 5644 . . . . . . . . . . . 12 (𝑥 = 𝑚 → (𝐹𝑥) = (𝐹𝑚))
5150rspceeqv 3479 . . . . . . . . . . 11 ((𝑚𝑏 ∧ (𝐹𝑚) = (𝐹𝑚)) → ∃𝑥𝑏 (𝐹𝑚) = (𝐹𝑥))
5248, 49, 51sylancl 580 . . . . . . . . . 10 (((((𝜑𝑏 ∈ TopBases) ∧ (𝑏 ≼ ω ∧ (topGen‘𝑏) = 𝐽)) ∧ ((𝑘𝐾𝑧𝑘) ∧ (𝑡 𝐽 ∧ (𝐹𝑡) = 𝑧))) ∧ (𝑚𝑏 ∧ (𝑡𝑚𝑚 ⊆ (𝐹𝑘)))) → ∃𝑥𝑏 (𝐹𝑚) = (𝐹𝑥))
5342adantr 472 . . . . . . . . . . . . . 14 (((((𝜑𝑏 ∈ TopBases) ∧ (𝑏 ≼ ω ∧ (topGen‘𝑏) = 𝐽)) ∧ ((𝑘𝐾𝑧𝑘) ∧ (𝑡 𝐽 ∧ (𝐹𝑡) = 𝑧))) ∧ (𝑚𝑏 ∧ (𝑡𝑚𝑚 ⊆ (𝐹𝑘)))) → 𝐹 Fn 𝐽)
54 fnfun 6166 . . . . . . . . . . . . . 14 (𝐹 Fn 𝐽 → Fun 𝐹)
5553, 54syl 17 . . . . . . . . . . . . 13 (((((𝜑𝑏 ∈ TopBases) ∧ (𝑏 ≼ ω ∧ (topGen‘𝑏) = 𝐽)) ∧ ((𝑘𝐾𝑧𝑘) ∧ (𝑡 𝐽 ∧ (𝐹𝑡) = 𝑧))) ∧ (𝑚𝑏 ∧ (𝑡𝑚𝑚 ⊆ (𝐹𝑘)))) → Fun 𝐹)
56 simprrr 800 . . . . . . . . . . . . 13 (((((𝜑𝑏 ∈ TopBases) ∧ (𝑏 ≼ ω ∧ (topGen‘𝑏) = 𝐽)) ∧ ((𝑘𝐾𝑧𝑘) ∧ (𝑡 𝐽 ∧ (𝐹𝑡) = 𝑧))) ∧ (𝑚𝑏 ∧ (𝑡𝑚𝑚 ⊆ (𝐹𝑘)))) → 𝑚 ⊆ (𝐹𝑘))
57 funimass2 6150 . . . . . . . . . . . . 13 ((Fun 𝐹𝑚 ⊆ (𝐹𝑘)) → (𝐹𝑚) ⊆ 𝑘)
5855, 56, 57syl2anc 579 . . . . . . . . . . . 12 (((((𝜑𝑏 ∈ TopBases) ∧ (𝑏 ≼ ω ∧ (topGen‘𝑏) = 𝐽)) ∧ ((𝑘𝐾𝑧𝑘) ∧ (𝑡 𝐽 ∧ (𝐹𝑡) = 𝑧))) ∧ (𝑚𝑏 ∧ (𝑡𝑚𝑚 ⊆ (𝐹𝑘)))) → (𝐹𝑚) ⊆ 𝑘)
59 vex 3353 . . . . . . . . . . . 12 𝑘 ∈ V
60 ssexg 4965 . . . . . . . . . . . 12 (((𝐹𝑚) ⊆ 𝑘𝑘 ∈ V) → (𝐹𝑚) ∈ V)
6158, 59, 60sylancl 580 . . . . . . . . . . 11 (((((𝜑𝑏 ∈ TopBases) ∧ (𝑏 ≼ ω ∧ (topGen‘𝑏) = 𝐽)) ∧ ((𝑘𝐾𝑧𝑘) ∧ (𝑡 𝐽 ∧ (𝐹𝑡) = 𝑧))) ∧ (𝑚𝑏 ∧ (𝑡𝑚𝑚 ⊆ (𝐹𝑘)))) → (𝐹𝑚) ∈ V)
62 eqid 2765 . . . . . . . . . . . 12 (𝑥𝑏 ↦ (𝐹𝑥)) = (𝑥𝑏 ↦ (𝐹𝑥))
6362elrnmpt 5541 . . . . . . . . . . 11 ((𝐹𝑚) ∈ V → ((𝐹𝑚) ∈ ran (𝑥𝑏 ↦ (𝐹𝑥)) ↔ ∃𝑥𝑏 (𝐹𝑚) = (𝐹𝑥)))
6461, 63syl 17 . . . . . . . . . 10 (((((𝜑𝑏 ∈ TopBases) ∧ (𝑏 ≼ ω ∧ (topGen‘𝑏) = 𝐽)) ∧ ((𝑘𝐾𝑧𝑘) ∧ (𝑡 𝐽 ∧ (𝐹𝑡) = 𝑧))) ∧ (𝑚𝑏 ∧ (𝑡𝑚𝑚 ⊆ (𝐹𝑘)))) → ((𝐹𝑚) ∈ ran (𝑥𝑏 ↦ (𝐹𝑥)) ↔ ∃𝑥𝑏 (𝐹𝑚) = (𝐹𝑥)))
6552, 64mpbird 248 . . . . . . . . 9 (((((𝜑𝑏 ∈ TopBases) ∧ (𝑏 ≼ ω ∧ (topGen‘𝑏) = 𝐽)) ∧ ((𝑘𝐾𝑧𝑘) ∧ (𝑡 𝐽 ∧ (𝐹𝑡) = 𝑧))) ∧ (𝑚𝑏 ∧ (𝑡𝑚𝑚 ⊆ (𝐹𝑘)))) → (𝐹𝑚) ∈ ran (𝑥𝑏 ↦ (𝐹𝑥)))
6638adantr 472 . . . . . . . . . 10 (((((𝜑𝑏 ∈ TopBases) ∧ (𝑏 ≼ ω ∧ (topGen‘𝑏) = 𝐽)) ∧ ((𝑘𝐾𝑧𝑘) ∧ (𝑡 𝐽 ∧ (𝐹𝑡) = 𝑧))) ∧ (𝑚𝑏 ∧ (𝑡𝑚𝑚 ⊆ (𝐹𝑘)))) → (𝐹𝑡) = 𝑧)
67 simprrl 799 . . . . . . . . . . 11 (((((𝜑𝑏 ∈ TopBases) ∧ (𝑏 ≼ ω ∧ (topGen‘𝑏) = 𝐽)) ∧ ((𝑘𝐾𝑧𝑘) ∧ (𝑡 𝐽 ∧ (𝐹𝑡) = 𝑧))) ∧ (𝑚𝑏 ∧ (𝑡𝑚𝑚 ⊆ (𝐹𝑘)))) → 𝑡𝑚)
68 cnvimass 5667 . . . . . . . . . . . . 13 (𝐹𝑘) ⊆ dom 𝐹
6956, 68syl6ss 3773 . . . . . . . . . . . 12 (((((𝜑𝑏 ∈ TopBases) ∧ (𝑏 ≼ ω ∧ (topGen‘𝑏) = 𝐽)) ∧ ((𝑘𝐾𝑧𝑘) ∧ (𝑡 𝐽 ∧ (𝐹𝑡) = 𝑧))) ∧ (𝑚𝑏 ∧ (𝑡𝑚𝑚 ⊆ (𝐹𝑘)))) → 𝑚 ⊆ dom 𝐹)
70 funfvima2 6686 . . . . . . . . . . . 12 ((Fun 𝐹𝑚 ⊆ dom 𝐹) → (𝑡𝑚 → (𝐹𝑡) ∈ (𝐹𝑚)))
7155, 69, 70syl2anc 579 . . . . . . . . . . 11 (((((𝜑𝑏 ∈ TopBases) ∧ (𝑏 ≼ ω ∧ (topGen‘𝑏) = 𝐽)) ∧ ((𝑘𝐾𝑧𝑘) ∧ (𝑡 𝐽 ∧ (𝐹𝑡) = 𝑧))) ∧ (𝑚𝑏 ∧ (𝑡𝑚𝑚 ⊆ (𝐹𝑘)))) → (𝑡𝑚 → (𝐹𝑡) ∈ (𝐹𝑚)))
7267, 71mpd 15 . . . . . . . . . 10 (((((𝜑𝑏 ∈ TopBases) ∧ (𝑏 ≼ ω ∧ (topGen‘𝑏) = 𝐽)) ∧ ((𝑘𝐾𝑧𝑘) ∧ (𝑡 𝐽 ∧ (𝐹𝑡) = 𝑧))) ∧ (𝑚𝑏 ∧ (𝑡𝑚𝑚 ⊆ (𝐹𝑘)))) → (𝐹𝑡) ∈ (𝐹𝑚))
7366, 72eqeltrrd 2845 . . . . . . . . 9 (((((𝜑𝑏 ∈ TopBases) ∧ (𝑏 ≼ ω ∧ (topGen‘𝑏) = 𝐽)) ∧ ((𝑘𝐾𝑧𝑘) ∧ (𝑡 𝐽 ∧ (𝐹𝑡) = 𝑧))) ∧ (𝑚𝑏 ∧ (𝑡𝑚𝑚 ⊆ (𝐹𝑘)))) → 𝑧 ∈ (𝐹𝑚))
74 eleq2 2833 . . . . . . . . . . 11 (𝑤 = (𝐹𝑚) → (𝑧𝑤𝑧 ∈ (𝐹𝑚)))
75 sseq1 3786 . . . . . . . . . . 11 (𝑤 = (𝐹𝑚) → (𝑤𝑘 ↔ (𝐹𝑚) ⊆ 𝑘))
7674, 75anbi12d 624 . . . . . . . . . 10 (𝑤 = (𝐹𝑚) → ((𝑧𝑤𝑤𝑘) ↔ (𝑧 ∈ (𝐹𝑚) ∧ (𝐹𝑚) ⊆ 𝑘)))
7776rspcev 3461 . . . . . . . . 9 (((𝐹𝑚) ∈ ran (𝑥𝑏 ↦ (𝐹𝑥)) ∧ (𝑧 ∈ (𝐹𝑚) ∧ (𝐹𝑚) ⊆ 𝑘)) → ∃𝑤 ∈ ran (𝑥𝑏 ↦ (𝐹𝑥))(𝑧𝑤𝑤𝑘))
7865, 73, 58, 77syl12anc 865 . . . . . . . 8 (((((𝜑𝑏 ∈ TopBases) ∧ (𝑏 ≼ ω ∧ (topGen‘𝑏) = 𝐽)) ∧ ((𝑘𝐾𝑧𝑘) ∧ (𝑡 𝐽 ∧ (𝐹𝑡) = 𝑧))) ∧ (𝑚𝑏 ∧ (𝑡𝑚𝑚 ⊆ (𝐹𝑘)))) → ∃𝑤 ∈ ran (𝑥𝑏 ↦ (𝐹𝑥))(𝑧𝑤𝑤𝑘))
7947, 78rexlimddv 3182 . . . . . . 7 ((((𝜑𝑏 ∈ TopBases) ∧ (𝑏 ≼ ω ∧ (topGen‘𝑏) = 𝐽)) ∧ ((𝑘𝐾𝑧𝑘) ∧ (𝑡 𝐽 ∧ (𝐹𝑡) = 𝑧))) → ∃𝑤 ∈ ran (𝑥𝑏 ↦ (𝐹𝑥))(𝑧𝑤𝑤𝑘))
8079anassrs 459 . . . . . 6 (((((𝜑𝑏 ∈ TopBases) ∧ (𝑏 ≼ ω ∧ (topGen‘𝑏) = 𝐽)) ∧ (𝑘𝐾𝑧𝑘)) ∧ (𝑡 𝐽 ∧ (𝐹𝑡) = 𝑧)) → ∃𝑤 ∈ ran (𝑥𝑏 ↦ (𝐹𝑥))(𝑧𝑤𝑤𝑘))
8130, 80rexlimddv 3182 . . . . 5 ((((𝜑𝑏 ∈ TopBases) ∧ (𝑏 ≼ ω ∧ (topGen‘𝑏) = 𝐽)) ∧ (𝑘𝐾𝑧𝑘)) → ∃𝑤 ∈ ran (𝑥𝑏 ↦ (𝐹𝑥))(𝑧𝑤𝑤𝑘))
8281ralrimivva 3118 . . . 4 (((𝜑𝑏 ∈ TopBases) ∧ (𝑏 ≼ ω ∧ (topGen‘𝑏) = 𝐽)) → ∀𝑘𝐾𝑧𝑘𝑤 ∈ ran (𝑥𝑏 ↦ (𝐹𝑥))(𝑧𝑤𝑤𝑘))
83 basgen2 21073 . . . 4 ((𝐾 ∈ Top ∧ ran (𝑥𝑏 ↦ (𝐹𝑥)) ⊆ 𝐾 ∧ ∀𝑘𝐾𝑧𝑘𝑤 ∈ ran (𝑥𝑏 ↦ (𝐹𝑥))(𝑧𝑤𝑤𝑘)) → (topGen‘ran (𝑥𝑏 ↦ (𝐹𝑥))) = 𝐾)
844, 14, 82, 83syl3anc 1490 . . 3 (((𝜑𝑏 ∈ TopBases) ∧ (𝑏 ≼ ω ∧ (topGen‘𝑏) = 𝐽)) → (topGen‘ran (𝑥𝑏 ↦ (𝐹𝑥))) = 𝐾)
8584, 4eqeltrd 2844 . . . . 5 (((𝜑𝑏 ∈ TopBases) ∧ (𝑏 ≼ ω ∧ (topGen‘𝑏) = 𝐽)) → (topGen‘ran (𝑥𝑏 ↦ (𝐹𝑥))) ∈ Top)
86 tgclb 21054 . . . . 5 (ran (𝑥𝑏 ↦ (𝐹𝑥)) ∈ TopBases ↔ (topGen‘ran (𝑥𝑏 ↦ (𝐹𝑥))) ∈ Top)
8785, 86sylibr 225 . . . 4 (((𝜑𝑏 ∈ TopBases) ∧ (𝑏 ≼ ω ∧ (topGen‘𝑏) = 𝐽)) → ran (𝑥𝑏 ↦ (𝐹𝑥)) ∈ TopBases)
88 omelon 8758 . . . . . . 7 ω ∈ On
89 simprl 787 . . . . . . 7 (((𝜑𝑏 ∈ TopBases) ∧ (𝑏 ≼ ω ∧ (topGen‘𝑏) = 𝐽)) → 𝑏 ≼ ω)
90 ondomen 9111 . . . . . . 7 ((ω ∈ On ∧ 𝑏 ≼ ω) → 𝑏 ∈ dom card)
9188, 89, 90sylancr 581 . . . . . 6 (((𝜑𝑏 ∈ TopBases) ∧ (𝑏 ≼ ω ∧ (topGen‘𝑏) = 𝐽)) → 𝑏 ∈ dom card)
9213ffnd 6224 . . . . . . 7 (((𝜑𝑏 ∈ TopBases) ∧ (𝑏 ≼ ω ∧ (topGen‘𝑏) = 𝐽)) → (𝑥𝑏 ↦ (𝐹𝑥)) Fn 𝑏)
93 dffn4 6304 . . . . . . 7 ((𝑥𝑏 ↦ (𝐹𝑥)) Fn 𝑏 ↔ (𝑥𝑏 ↦ (𝐹𝑥)):𝑏onto→ran (𝑥𝑏 ↦ (𝐹𝑥)))
9492, 93sylib 209 . . . . . 6 (((𝜑𝑏 ∈ TopBases) ∧ (𝑏 ≼ ω ∧ (topGen‘𝑏) = 𝐽)) → (𝑥𝑏 ↦ (𝐹𝑥)):𝑏onto→ran (𝑥𝑏 ↦ (𝐹𝑥)))
95 fodomnum 9131 . . . . . 6 (𝑏 ∈ dom card → ((𝑥𝑏 ↦ (𝐹𝑥)):𝑏onto→ran (𝑥𝑏 ↦ (𝐹𝑥)) → ran (𝑥𝑏 ↦ (𝐹𝑥)) ≼ 𝑏))
9691, 94, 95sylc 65 . . . . 5 (((𝜑𝑏 ∈ TopBases) ∧ (𝑏 ≼ ω ∧ (topGen‘𝑏) = 𝐽)) → ran (𝑥𝑏 ↦ (𝐹𝑥)) ≼ 𝑏)
97 domtr 8213 . . . . 5 ((ran (𝑥𝑏 ↦ (𝐹𝑥)) ≼ 𝑏𝑏 ≼ ω) → ran (𝑥𝑏 ↦ (𝐹𝑥)) ≼ ω)
9896, 89, 97syl2anc 579 . . . 4 (((𝜑𝑏 ∈ TopBases) ∧ (𝑏 ≼ ω ∧ (topGen‘𝑏) = 𝐽)) → ran (𝑥𝑏 ↦ (𝐹𝑥)) ≼ ω)
99 2ndci 21531 . . . 4 ((ran (𝑥𝑏 ↦ (𝐹𝑥)) ∈ TopBases ∧ ran (𝑥𝑏 ↦ (𝐹𝑥)) ≼ ω) → (topGen‘ran (𝑥𝑏 ↦ (𝐹𝑥))) ∈ 2nd𝜔)
10087, 98, 99syl2anc 579 . . 3 (((𝜑𝑏 ∈ TopBases) ∧ (𝑏 ≼ ω ∧ (topGen‘𝑏) = 𝐽)) → (topGen‘ran (𝑥𝑏 ↦ (𝐹𝑥))) ∈ 2nd𝜔)
10184, 100eqeltrrd 2845 . 2 (((𝜑𝑏 ∈ TopBases) ∧ (𝑏 ≼ ω ∧ (topGen‘𝑏) = 𝐽)) → 𝐾 ∈ 2nd𝜔)
102 2ndcomap.3 . . 3 (𝜑𝐽 ∈ 2nd𝜔)
103 is2ndc 21529 . . 3 (𝐽 ∈ 2nd𝜔 ↔ ∃𝑏 ∈ TopBases (𝑏 ≼ ω ∧ (topGen‘𝑏) = 𝐽))
104102, 103sylib 209 . 2 (𝜑 → ∃𝑏 ∈ TopBases (𝑏 ≼ ω ∧ (topGen‘𝑏) = 𝐽))
105101, 104r19.29a 3225 1 (𝜑𝐾 ∈ 2nd𝜔)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 197  wa 384   = wceq 1652  wcel 2155  wral 3055  wrex 3056  Vcvv 3350  wss 3732   cuni 4594   class class class wbr 4809  cmpt 4888  ccnv 5276  dom cdm 5277  ran crn 5278  cima 5280  Oncon0 5908  Fun wfun 6062   Fn wfn 6063  wf 6064  ontowfo 6066  cfv 6068  (class class class)co 6842  ωcom 7263  cdom 8158  cardccrd 9012  topGenctg 16366  Topctop 20977  TopBasesctb 21029   Cn ccn 21308  2nd𝜔c2ndc 21521
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1890  ax-4 1904  ax-5 2005  ax-6 2070  ax-7 2105  ax-8 2157  ax-9 2164  ax-10 2183  ax-11 2198  ax-12 2211  ax-13 2352  ax-ext 2743  ax-rep 4930  ax-sep 4941  ax-nul 4949  ax-pow 5001  ax-pr 5062  ax-un 7147  ax-inf2 8753
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 874  df-3or 1108  df-3an 1109  df-tru 1656  df-ex 1875  df-nf 1879  df-sb 2063  df-mo 2565  df-eu 2582  df-clab 2752  df-cleq 2758  df-clel 2761  df-nfc 2896  df-ne 2938  df-ral 3060  df-rex 3061  df-reu 3062  df-rmo 3063  df-rab 3064  df-v 3352  df-sbc 3597  df-csb 3692  df-dif 3735  df-un 3737  df-in 3739  df-ss 3746  df-pss 3748  df-nul 4080  df-if 4244  df-pw 4317  df-sn 4335  df-pr 4337  df-tp 4339  df-op 4341  df-uni 4595  df-int 4634  df-iun 4678  df-br 4810  df-opab 4872  df-mpt 4889  df-tr 4912  df-id 5185  df-eprel 5190  df-po 5198  df-so 5199  df-fr 5236  df-se 5237  df-we 5238  df-xp 5283  df-rel 5284  df-cnv 5285  df-co 5286  df-dm 5287  df-rn 5288  df-res 5289  df-ima 5290  df-pred 5865  df-ord 5911  df-on 5912  df-lim 5913  df-suc 5914  df-iota 6031  df-fun 6070  df-fn 6071  df-f 6072  df-f1 6073  df-fo 6074  df-f1o 6075  df-fv 6076  df-isom 6077  df-riota 6803  df-ov 6845  df-oprab 6846  df-mpt2 6847  df-om 7264  df-1st 7366  df-2nd 7367  df-wrecs 7610  df-recs 7672  df-er 7947  df-map 8062  df-en 8161  df-dom 8162  df-card 9016  df-acn 9019  df-topgen 16372  df-top 20978  df-topon 20995  df-bases 21030  df-cn 21311  df-2ndc 21523
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator