MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  2ndcomap Structured version   Visualization version   GIF version

Theorem 2ndcomap 22809
Description: A surjective continuous open map maps second-countable spaces to second-countable spaces. (Contributed by Mario Carneiro, 9-Apr-2015.)
Hypotheses
Ref Expression
2ndcomap.2 𝑌 = 𝐾
2ndcomap.3 (𝜑𝐽 ∈ 2ndω)
2ndcomap.5 (𝜑𝐹 ∈ (𝐽 Cn 𝐾))
2ndcomap.6 (𝜑 → ran 𝐹 = 𝑌)
2ndcomap.7 ((𝜑𝑥𝐽) → (𝐹𝑥) ∈ 𝐾)
Assertion
Ref Expression
2ndcomap (𝜑𝐾 ∈ 2ndω)
Distinct variable groups:   𝑥,𝐹   𝑥,𝐽   𝜑,𝑥   𝑥,𝐾
Allowed substitution hint:   𝑌(𝑥)

Proof of Theorem 2ndcomap
Dummy variables 𝑘 𝑚 𝑡 𝑤 𝑧 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 2ndcomap.5 . . . . . 6 (𝜑𝐹 ∈ (𝐽 Cn 𝐾))
2 cntop2 22592 . . . . . 6 (𝐹 ∈ (𝐽 Cn 𝐾) → 𝐾 ∈ Top)
31, 2syl 17 . . . . 5 (𝜑𝐾 ∈ Top)
43ad2antrr 724 . . . 4 (((𝜑𝑏 ∈ TopBases) ∧ (𝑏 ≼ ω ∧ (topGen‘𝑏) = 𝐽)) → 𝐾 ∈ Top)
5 simplll 773 . . . . . . 7 ((((𝜑𝑏 ∈ TopBases) ∧ (𝑏 ≼ ω ∧ (topGen‘𝑏) = 𝐽)) ∧ 𝑥𝑏) → 𝜑)
6 bastg 22316 . . . . . . . . . 10 (𝑏 ∈ TopBases → 𝑏 ⊆ (topGen‘𝑏))
76ad2antlr 725 . . . . . . . . 9 (((𝜑𝑏 ∈ TopBases) ∧ (𝑏 ≼ ω ∧ (topGen‘𝑏) = 𝐽)) → 𝑏 ⊆ (topGen‘𝑏))
8 simprr 771 . . . . . . . . 9 (((𝜑𝑏 ∈ TopBases) ∧ (𝑏 ≼ ω ∧ (topGen‘𝑏) = 𝐽)) → (topGen‘𝑏) = 𝐽)
97, 8sseqtrd 3984 . . . . . . . 8 (((𝜑𝑏 ∈ TopBases) ∧ (𝑏 ≼ ω ∧ (topGen‘𝑏) = 𝐽)) → 𝑏𝐽)
109sselda 3944 . . . . . . 7 ((((𝜑𝑏 ∈ TopBases) ∧ (𝑏 ≼ ω ∧ (topGen‘𝑏) = 𝐽)) ∧ 𝑥𝑏) → 𝑥𝐽)
11 2ndcomap.7 . . . . . . 7 ((𝜑𝑥𝐽) → (𝐹𝑥) ∈ 𝐾)
125, 10, 11syl2anc 584 . . . . . 6 ((((𝜑𝑏 ∈ TopBases) ∧ (𝑏 ≼ ω ∧ (topGen‘𝑏) = 𝐽)) ∧ 𝑥𝑏) → (𝐹𝑥) ∈ 𝐾)
1312fmpttd 7063 . . . . 5 (((𝜑𝑏 ∈ TopBases) ∧ (𝑏 ≼ ω ∧ (topGen‘𝑏) = 𝐽)) → (𝑥𝑏 ↦ (𝐹𝑥)):𝑏𝐾)
1413frnd 6676 . . . 4 (((𝜑𝑏 ∈ TopBases) ∧ (𝑏 ≼ ω ∧ (topGen‘𝑏) = 𝐽)) → ran (𝑥𝑏 ↦ (𝐹𝑥)) ⊆ 𝐾)
15 elunii 4870 . . . . . . . . . . 11 ((𝑧𝑘𝑘𝐾) → 𝑧 𝐾)
16 2ndcomap.2 . . . . . . . . . . 11 𝑌 = 𝐾
1715, 16eleqtrrdi 2849 . . . . . . . . . 10 ((𝑧𝑘𝑘𝐾) → 𝑧𝑌)
1817ancoms 459 . . . . . . . . 9 ((𝑘𝐾𝑧𝑘) → 𝑧𝑌)
1918adantl 482 . . . . . . . 8 ((((𝜑𝑏 ∈ TopBases) ∧ (𝑏 ≼ ω ∧ (topGen‘𝑏) = 𝐽)) ∧ (𝑘𝐾𝑧𝑘)) → 𝑧𝑌)
20 2ndcomap.6 . . . . . . . . 9 (𝜑 → ran 𝐹 = 𝑌)
2120ad3antrrr 728 . . . . . . . 8 ((((𝜑𝑏 ∈ TopBases) ∧ (𝑏 ≼ ω ∧ (topGen‘𝑏) = 𝐽)) ∧ (𝑘𝐾𝑧𝑘)) → ran 𝐹 = 𝑌)
2219, 21eleqtrrd 2841 . . . . . . 7 ((((𝜑𝑏 ∈ TopBases) ∧ (𝑏 ≼ ω ∧ (topGen‘𝑏) = 𝐽)) ∧ (𝑘𝐾𝑧𝑘)) → 𝑧 ∈ ran 𝐹)
23 eqid 2736 . . . . . . . . . . 11 𝐽 = 𝐽
2423, 16cnf 22597 . . . . . . . . . 10 (𝐹 ∈ (𝐽 Cn 𝐾) → 𝐹: 𝐽𝑌)
251, 24syl 17 . . . . . . . . 9 (𝜑𝐹: 𝐽𝑌)
2625ad3antrrr 728 . . . . . . . 8 ((((𝜑𝑏 ∈ TopBases) ∧ (𝑏 ≼ ω ∧ (topGen‘𝑏) = 𝐽)) ∧ (𝑘𝐾𝑧𝑘)) → 𝐹: 𝐽𝑌)
27 ffn 6668 . . . . . . . 8 (𝐹: 𝐽𝑌𝐹 Fn 𝐽)
28 fvelrnb 6903 . . . . . . . 8 (𝐹 Fn 𝐽 → (𝑧 ∈ ran 𝐹 ↔ ∃𝑡 𝐽(𝐹𝑡) = 𝑧))
2926, 27, 283syl 18 . . . . . . 7 ((((𝜑𝑏 ∈ TopBases) ∧ (𝑏 ≼ ω ∧ (topGen‘𝑏) = 𝐽)) ∧ (𝑘𝐾𝑧𝑘)) → (𝑧 ∈ ran 𝐹 ↔ ∃𝑡 𝐽(𝐹𝑡) = 𝑧))
3022, 29mpbid 231 . . . . . 6 ((((𝜑𝑏 ∈ TopBases) ∧ (𝑏 ≼ ω ∧ (topGen‘𝑏) = 𝐽)) ∧ (𝑘𝐾𝑧𝑘)) → ∃𝑡 𝐽(𝐹𝑡) = 𝑧)
311ad3antrrr 728 . . . . . . . . . . 11 ((((𝜑𝑏 ∈ TopBases) ∧ (𝑏 ≼ ω ∧ (topGen‘𝑏) = 𝐽)) ∧ ((𝑘𝐾𝑧𝑘) ∧ (𝑡 𝐽 ∧ (𝐹𝑡) = 𝑧))) → 𝐹 ∈ (𝐽 Cn 𝐾))
32 simprll 777 . . . . . . . . . . 11 ((((𝜑𝑏 ∈ TopBases) ∧ (𝑏 ≼ ω ∧ (topGen‘𝑏) = 𝐽)) ∧ ((𝑘𝐾𝑧𝑘) ∧ (𝑡 𝐽 ∧ (𝐹𝑡) = 𝑧))) → 𝑘𝐾)
33 cnima 22616 . . . . . . . . . . 11 ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝑘𝐾) → (𝐹𝑘) ∈ 𝐽)
3431, 32, 33syl2anc 584 . . . . . . . . . 10 ((((𝜑𝑏 ∈ TopBases) ∧ (𝑏 ≼ ω ∧ (topGen‘𝑏) = 𝐽)) ∧ ((𝑘𝐾𝑧𝑘) ∧ (𝑡 𝐽 ∧ (𝐹𝑡) = 𝑧))) → (𝐹𝑘) ∈ 𝐽)
358adantr 481 . . . . . . . . . 10 ((((𝜑𝑏 ∈ TopBases) ∧ (𝑏 ≼ ω ∧ (topGen‘𝑏) = 𝐽)) ∧ ((𝑘𝐾𝑧𝑘) ∧ (𝑡 𝐽 ∧ (𝐹𝑡) = 𝑧))) → (topGen‘𝑏) = 𝐽)
3634, 35eleqtrrd 2841 . . . . . . . . 9 ((((𝜑𝑏 ∈ TopBases) ∧ (𝑏 ≼ ω ∧ (topGen‘𝑏) = 𝐽)) ∧ ((𝑘𝐾𝑧𝑘) ∧ (𝑡 𝐽 ∧ (𝐹𝑡) = 𝑧))) → (𝐹𝑘) ∈ (topGen‘𝑏))
37 simprrl 779 . . . . . . . . . 10 ((((𝜑𝑏 ∈ TopBases) ∧ (𝑏 ≼ ω ∧ (topGen‘𝑏) = 𝐽)) ∧ ((𝑘𝐾𝑧𝑘) ∧ (𝑡 𝐽 ∧ (𝐹𝑡) = 𝑧))) → 𝑡 𝐽)
38 simprrr 780 . . . . . . . . . . 11 ((((𝜑𝑏 ∈ TopBases) ∧ (𝑏 ≼ ω ∧ (topGen‘𝑏) = 𝐽)) ∧ ((𝑘𝐾𝑧𝑘) ∧ (𝑡 𝐽 ∧ (𝐹𝑡) = 𝑧))) → (𝐹𝑡) = 𝑧)
39 simprlr 778 . . . . . . . . . . 11 ((((𝜑𝑏 ∈ TopBases) ∧ (𝑏 ≼ ω ∧ (topGen‘𝑏) = 𝐽)) ∧ ((𝑘𝐾𝑧𝑘) ∧ (𝑡 𝐽 ∧ (𝐹𝑡) = 𝑧))) → 𝑧𝑘)
4038, 39eqeltrd 2838 . . . . . . . . . 10 ((((𝜑𝑏 ∈ TopBases) ∧ (𝑏 ≼ ω ∧ (topGen‘𝑏) = 𝐽)) ∧ ((𝑘𝐾𝑧𝑘) ∧ (𝑡 𝐽 ∧ (𝐹𝑡) = 𝑧))) → (𝐹𝑡) ∈ 𝑘)
4126ffnd 6669 . . . . . . . . . . . 12 ((((𝜑𝑏 ∈ TopBases) ∧ (𝑏 ≼ ω ∧ (topGen‘𝑏) = 𝐽)) ∧ (𝑘𝐾𝑧𝑘)) → 𝐹 Fn 𝐽)
4241adantrr 715 . . . . . . . . . . 11 ((((𝜑𝑏 ∈ TopBases) ∧ (𝑏 ≼ ω ∧ (topGen‘𝑏) = 𝐽)) ∧ ((𝑘𝐾𝑧𝑘) ∧ (𝑡 𝐽 ∧ (𝐹𝑡) = 𝑧))) → 𝐹 Fn 𝐽)
43 elpreima 7008 . . . . . . . . . . 11 (𝐹 Fn 𝐽 → (𝑡 ∈ (𝐹𝑘) ↔ (𝑡 𝐽 ∧ (𝐹𝑡) ∈ 𝑘)))
4442, 43syl 17 . . . . . . . . . 10 ((((𝜑𝑏 ∈ TopBases) ∧ (𝑏 ≼ ω ∧ (topGen‘𝑏) = 𝐽)) ∧ ((𝑘𝐾𝑧𝑘) ∧ (𝑡 𝐽 ∧ (𝐹𝑡) = 𝑧))) → (𝑡 ∈ (𝐹𝑘) ↔ (𝑡 𝐽 ∧ (𝐹𝑡) ∈ 𝑘)))
4537, 40, 44mpbir2and 711 . . . . . . . . 9 ((((𝜑𝑏 ∈ TopBases) ∧ (𝑏 ≼ ω ∧ (topGen‘𝑏) = 𝐽)) ∧ ((𝑘𝐾𝑧𝑘) ∧ (𝑡 𝐽 ∧ (𝐹𝑡) = 𝑧))) → 𝑡 ∈ (𝐹𝑘))
46 tg2 22315 . . . . . . . . 9 (((𝐹𝑘) ∈ (topGen‘𝑏) ∧ 𝑡 ∈ (𝐹𝑘)) → ∃𝑚𝑏 (𝑡𝑚𝑚 ⊆ (𝐹𝑘)))
4736, 45, 46syl2anc 584 . . . . . . . 8 ((((𝜑𝑏 ∈ TopBases) ∧ (𝑏 ≼ ω ∧ (topGen‘𝑏) = 𝐽)) ∧ ((𝑘𝐾𝑧𝑘) ∧ (𝑡 𝐽 ∧ (𝐹𝑡) = 𝑧))) → ∃𝑚𝑏 (𝑡𝑚𝑚 ⊆ (𝐹𝑘)))
48 simprl 769 . . . . . . . . . . 11 (((((𝜑𝑏 ∈ TopBases) ∧ (𝑏 ≼ ω ∧ (topGen‘𝑏) = 𝐽)) ∧ ((𝑘𝐾𝑧𝑘) ∧ (𝑡 𝐽 ∧ (𝐹𝑡) = 𝑧))) ∧ (𝑚𝑏 ∧ (𝑡𝑚𝑚 ⊆ (𝐹𝑘)))) → 𝑚𝑏)
49 eqid 2736 . . . . . . . . . . 11 (𝐹𝑚) = (𝐹𝑚)
50 imaeq2 6009 . . . . . . . . . . . 12 (𝑥 = 𝑚 → (𝐹𝑥) = (𝐹𝑚))
5150rspceeqv 3595 . . . . . . . . . . 11 ((𝑚𝑏 ∧ (𝐹𝑚) = (𝐹𝑚)) → ∃𝑥𝑏 (𝐹𝑚) = (𝐹𝑥))
5248, 49, 51sylancl 586 . . . . . . . . . 10 (((((𝜑𝑏 ∈ TopBases) ∧ (𝑏 ≼ ω ∧ (topGen‘𝑏) = 𝐽)) ∧ ((𝑘𝐾𝑧𝑘) ∧ (𝑡 𝐽 ∧ (𝐹𝑡) = 𝑧))) ∧ (𝑚𝑏 ∧ (𝑡𝑚𝑚 ⊆ (𝐹𝑘)))) → ∃𝑥𝑏 (𝐹𝑚) = (𝐹𝑥))
5342adantr 481 . . . . . . . . . . . . . 14 (((((𝜑𝑏 ∈ TopBases) ∧ (𝑏 ≼ ω ∧ (topGen‘𝑏) = 𝐽)) ∧ ((𝑘𝐾𝑧𝑘) ∧ (𝑡 𝐽 ∧ (𝐹𝑡) = 𝑧))) ∧ (𝑚𝑏 ∧ (𝑡𝑚𝑚 ⊆ (𝐹𝑘)))) → 𝐹 Fn 𝐽)
54 fnfun 6602 . . . . . . . . . . . . . 14 (𝐹 Fn 𝐽 → Fun 𝐹)
5553, 54syl 17 . . . . . . . . . . . . 13 (((((𝜑𝑏 ∈ TopBases) ∧ (𝑏 ≼ ω ∧ (topGen‘𝑏) = 𝐽)) ∧ ((𝑘𝐾𝑧𝑘) ∧ (𝑡 𝐽 ∧ (𝐹𝑡) = 𝑧))) ∧ (𝑚𝑏 ∧ (𝑡𝑚𝑚 ⊆ (𝐹𝑘)))) → Fun 𝐹)
56 simprrr 780 . . . . . . . . . . . . 13 (((((𝜑𝑏 ∈ TopBases) ∧ (𝑏 ≼ ω ∧ (topGen‘𝑏) = 𝐽)) ∧ ((𝑘𝐾𝑧𝑘) ∧ (𝑡 𝐽 ∧ (𝐹𝑡) = 𝑧))) ∧ (𝑚𝑏 ∧ (𝑡𝑚𝑚 ⊆ (𝐹𝑘)))) → 𝑚 ⊆ (𝐹𝑘))
57 funimass2 6584 . . . . . . . . . . . . 13 ((Fun 𝐹𝑚 ⊆ (𝐹𝑘)) → (𝐹𝑚) ⊆ 𝑘)
5855, 56, 57syl2anc 584 . . . . . . . . . . . 12 (((((𝜑𝑏 ∈ TopBases) ∧ (𝑏 ≼ ω ∧ (topGen‘𝑏) = 𝐽)) ∧ ((𝑘𝐾𝑧𝑘) ∧ (𝑡 𝐽 ∧ (𝐹𝑡) = 𝑧))) ∧ (𝑚𝑏 ∧ (𝑡𝑚𝑚 ⊆ (𝐹𝑘)))) → (𝐹𝑚) ⊆ 𝑘)
59 vex 3449 . . . . . . . . . . . 12 𝑘 ∈ V
60 ssexg 5280 . . . . . . . . . . . 12 (((𝐹𝑚) ⊆ 𝑘𝑘 ∈ V) → (𝐹𝑚) ∈ V)
6158, 59, 60sylancl 586 . . . . . . . . . . 11 (((((𝜑𝑏 ∈ TopBases) ∧ (𝑏 ≼ ω ∧ (topGen‘𝑏) = 𝐽)) ∧ ((𝑘𝐾𝑧𝑘) ∧ (𝑡 𝐽 ∧ (𝐹𝑡) = 𝑧))) ∧ (𝑚𝑏 ∧ (𝑡𝑚𝑚 ⊆ (𝐹𝑘)))) → (𝐹𝑚) ∈ V)
62 eqid 2736 . . . . . . . . . . . 12 (𝑥𝑏 ↦ (𝐹𝑥)) = (𝑥𝑏 ↦ (𝐹𝑥))
6362elrnmpt 5911 . . . . . . . . . . 11 ((𝐹𝑚) ∈ V → ((𝐹𝑚) ∈ ran (𝑥𝑏 ↦ (𝐹𝑥)) ↔ ∃𝑥𝑏 (𝐹𝑚) = (𝐹𝑥)))
6461, 63syl 17 . . . . . . . . . 10 (((((𝜑𝑏 ∈ TopBases) ∧ (𝑏 ≼ ω ∧ (topGen‘𝑏) = 𝐽)) ∧ ((𝑘𝐾𝑧𝑘) ∧ (𝑡 𝐽 ∧ (𝐹𝑡) = 𝑧))) ∧ (𝑚𝑏 ∧ (𝑡𝑚𝑚 ⊆ (𝐹𝑘)))) → ((𝐹𝑚) ∈ ran (𝑥𝑏 ↦ (𝐹𝑥)) ↔ ∃𝑥𝑏 (𝐹𝑚) = (𝐹𝑥)))
6552, 64mpbird 256 . . . . . . . . 9 (((((𝜑𝑏 ∈ TopBases) ∧ (𝑏 ≼ ω ∧ (topGen‘𝑏) = 𝐽)) ∧ ((𝑘𝐾𝑧𝑘) ∧ (𝑡 𝐽 ∧ (𝐹𝑡) = 𝑧))) ∧ (𝑚𝑏 ∧ (𝑡𝑚𝑚 ⊆ (𝐹𝑘)))) → (𝐹𝑚) ∈ ran (𝑥𝑏 ↦ (𝐹𝑥)))
6638adantr 481 . . . . . . . . . 10 (((((𝜑𝑏 ∈ TopBases) ∧ (𝑏 ≼ ω ∧ (topGen‘𝑏) = 𝐽)) ∧ ((𝑘𝐾𝑧𝑘) ∧ (𝑡 𝐽 ∧ (𝐹𝑡) = 𝑧))) ∧ (𝑚𝑏 ∧ (𝑡𝑚𝑚 ⊆ (𝐹𝑘)))) → (𝐹𝑡) = 𝑧)
67 simprrl 779 . . . . . . . . . . 11 (((((𝜑𝑏 ∈ TopBases) ∧ (𝑏 ≼ ω ∧ (topGen‘𝑏) = 𝐽)) ∧ ((𝑘𝐾𝑧𝑘) ∧ (𝑡 𝐽 ∧ (𝐹𝑡) = 𝑧))) ∧ (𝑚𝑏 ∧ (𝑡𝑚𝑚 ⊆ (𝐹𝑘)))) → 𝑡𝑚)
68 cnvimass 6033 . . . . . . . . . . . . 13 (𝐹𝑘) ⊆ dom 𝐹
6956, 68sstrdi 3956 . . . . . . . . . . . 12 (((((𝜑𝑏 ∈ TopBases) ∧ (𝑏 ≼ ω ∧ (topGen‘𝑏) = 𝐽)) ∧ ((𝑘𝐾𝑧𝑘) ∧ (𝑡 𝐽 ∧ (𝐹𝑡) = 𝑧))) ∧ (𝑚𝑏 ∧ (𝑡𝑚𝑚 ⊆ (𝐹𝑘)))) → 𝑚 ⊆ dom 𝐹)
70 funfvima2 7181 . . . . . . . . . . . 12 ((Fun 𝐹𝑚 ⊆ dom 𝐹) → (𝑡𝑚 → (𝐹𝑡) ∈ (𝐹𝑚)))
7155, 69, 70syl2anc 584 . . . . . . . . . . 11 (((((𝜑𝑏 ∈ TopBases) ∧ (𝑏 ≼ ω ∧ (topGen‘𝑏) = 𝐽)) ∧ ((𝑘𝐾𝑧𝑘) ∧ (𝑡 𝐽 ∧ (𝐹𝑡) = 𝑧))) ∧ (𝑚𝑏 ∧ (𝑡𝑚𝑚 ⊆ (𝐹𝑘)))) → (𝑡𝑚 → (𝐹𝑡) ∈ (𝐹𝑚)))
7267, 71mpd 15 . . . . . . . . . 10 (((((𝜑𝑏 ∈ TopBases) ∧ (𝑏 ≼ ω ∧ (topGen‘𝑏) = 𝐽)) ∧ ((𝑘𝐾𝑧𝑘) ∧ (𝑡 𝐽 ∧ (𝐹𝑡) = 𝑧))) ∧ (𝑚𝑏 ∧ (𝑡𝑚𝑚 ⊆ (𝐹𝑘)))) → (𝐹𝑡) ∈ (𝐹𝑚))
7366, 72eqeltrrd 2839 . . . . . . . . 9 (((((𝜑𝑏 ∈ TopBases) ∧ (𝑏 ≼ ω ∧ (topGen‘𝑏) = 𝐽)) ∧ ((𝑘𝐾𝑧𝑘) ∧ (𝑡 𝐽 ∧ (𝐹𝑡) = 𝑧))) ∧ (𝑚𝑏 ∧ (𝑡𝑚𝑚 ⊆ (𝐹𝑘)))) → 𝑧 ∈ (𝐹𝑚))
74 eleq2 2826 . . . . . . . . . . 11 (𝑤 = (𝐹𝑚) → (𝑧𝑤𝑧 ∈ (𝐹𝑚)))
75 sseq1 3969 . . . . . . . . . . 11 (𝑤 = (𝐹𝑚) → (𝑤𝑘 ↔ (𝐹𝑚) ⊆ 𝑘))
7674, 75anbi12d 631 . . . . . . . . . 10 (𝑤 = (𝐹𝑚) → ((𝑧𝑤𝑤𝑘) ↔ (𝑧 ∈ (𝐹𝑚) ∧ (𝐹𝑚) ⊆ 𝑘)))
7776rspcev 3581 . . . . . . . . 9 (((𝐹𝑚) ∈ ran (𝑥𝑏 ↦ (𝐹𝑥)) ∧ (𝑧 ∈ (𝐹𝑚) ∧ (𝐹𝑚) ⊆ 𝑘)) → ∃𝑤 ∈ ran (𝑥𝑏 ↦ (𝐹𝑥))(𝑧𝑤𝑤𝑘))
7865, 73, 58, 77syl12anc 835 . . . . . . . 8 (((((𝜑𝑏 ∈ TopBases) ∧ (𝑏 ≼ ω ∧ (topGen‘𝑏) = 𝐽)) ∧ ((𝑘𝐾𝑧𝑘) ∧ (𝑡 𝐽 ∧ (𝐹𝑡) = 𝑧))) ∧ (𝑚𝑏 ∧ (𝑡𝑚𝑚 ⊆ (𝐹𝑘)))) → ∃𝑤 ∈ ran (𝑥𝑏 ↦ (𝐹𝑥))(𝑧𝑤𝑤𝑘))
7947, 78rexlimddv 3158 . . . . . . 7 ((((𝜑𝑏 ∈ TopBases) ∧ (𝑏 ≼ ω ∧ (topGen‘𝑏) = 𝐽)) ∧ ((𝑘𝐾𝑧𝑘) ∧ (𝑡 𝐽 ∧ (𝐹𝑡) = 𝑧))) → ∃𝑤 ∈ ran (𝑥𝑏 ↦ (𝐹𝑥))(𝑧𝑤𝑤𝑘))
8079anassrs 468 . . . . . 6 (((((𝜑𝑏 ∈ TopBases) ∧ (𝑏 ≼ ω ∧ (topGen‘𝑏) = 𝐽)) ∧ (𝑘𝐾𝑧𝑘)) ∧ (𝑡 𝐽 ∧ (𝐹𝑡) = 𝑧)) → ∃𝑤 ∈ ran (𝑥𝑏 ↦ (𝐹𝑥))(𝑧𝑤𝑤𝑘))
8130, 80rexlimddv 3158 . . . . 5 ((((𝜑𝑏 ∈ TopBases) ∧ (𝑏 ≼ ω ∧ (topGen‘𝑏) = 𝐽)) ∧ (𝑘𝐾𝑧𝑘)) → ∃𝑤 ∈ ran (𝑥𝑏 ↦ (𝐹𝑥))(𝑧𝑤𝑤𝑘))
8281ralrimivva 3197 . . . 4 (((𝜑𝑏 ∈ TopBases) ∧ (𝑏 ≼ ω ∧ (topGen‘𝑏) = 𝐽)) → ∀𝑘𝐾𝑧𝑘𝑤 ∈ ran (𝑥𝑏 ↦ (𝐹𝑥))(𝑧𝑤𝑤𝑘))
83 basgen2 22339 . . . 4 ((𝐾 ∈ Top ∧ ran (𝑥𝑏 ↦ (𝐹𝑥)) ⊆ 𝐾 ∧ ∀𝑘𝐾𝑧𝑘𝑤 ∈ ran (𝑥𝑏 ↦ (𝐹𝑥))(𝑧𝑤𝑤𝑘)) → (topGen‘ran (𝑥𝑏 ↦ (𝐹𝑥))) = 𝐾)
844, 14, 82, 83syl3anc 1371 . . 3 (((𝜑𝑏 ∈ TopBases) ∧ (𝑏 ≼ ω ∧ (topGen‘𝑏) = 𝐽)) → (topGen‘ran (𝑥𝑏 ↦ (𝐹𝑥))) = 𝐾)
8584, 4eqeltrd 2838 . . . . 5 (((𝜑𝑏 ∈ TopBases) ∧ (𝑏 ≼ ω ∧ (topGen‘𝑏) = 𝐽)) → (topGen‘ran (𝑥𝑏 ↦ (𝐹𝑥))) ∈ Top)
86 tgclb 22320 . . . . 5 (ran (𝑥𝑏 ↦ (𝐹𝑥)) ∈ TopBases ↔ (topGen‘ran (𝑥𝑏 ↦ (𝐹𝑥))) ∈ Top)
8785, 86sylibr 233 . . . 4 (((𝜑𝑏 ∈ TopBases) ∧ (𝑏 ≼ ω ∧ (topGen‘𝑏) = 𝐽)) → ran (𝑥𝑏 ↦ (𝐹𝑥)) ∈ TopBases)
88 omelon 9582 . . . . . . 7 ω ∈ On
89 simprl 769 . . . . . . 7 (((𝜑𝑏 ∈ TopBases) ∧ (𝑏 ≼ ω ∧ (topGen‘𝑏) = 𝐽)) → 𝑏 ≼ ω)
90 ondomen 9973 . . . . . . 7 ((ω ∈ On ∧ 𝑏 ≼ ω) → 𝑏 ∈ dom card)
9188, 89, 90sylancr 587 . . . . . 6 (((𝜑𝑏 ∈ TopBases) ∧ (𝑏 ≼ ω ∧ (topGen‘𝑏) = 𝐽)) → 𝑏 ∈ dom card)
9213ffnd 6669 . . . . . . 7 (((𝜑𝑏 ∈ TopBases) ∧ (𝑏 ≼ ω ∧ (topGen‘𝑏) = 𝐽)) → (𝑥𝑏 ↦ (𝐹𝑥)) Fn 𝑏)
93 dffn4 6762 . . . . . . 7 ((𝑥𝑏 ↦ (𝐹𝑥)) Fn 𝑏 ↔ (𝑥𝑏 ↦ (𝐹𝑥)):𝑏onto→ran (𝑥𝑏 ↦ (𝐹𝑥)))
9492, 93sylib 217 . . . . . 6 (((𝜑𝑏 ∈ TopBases) ∧ (𝑏 ≼ ω ∧ (topGen‘𝑏) = 𝐽)) → (𝑥𝑏 ↦ (𝐹𝑥)):𝑏onto→ran (𝑥𝑏 ↦ (𝐹𝑥)))
95 fodomnum 9993 . . . . . 6 (𝑏 ∈ dom card → ((𝑥𝑏 ↦ (𝐹𝑥)):𝑏onto→ran (𝑥𝑏 ↦ (𝐹𝑥)) → ran (𝑥𝑏 ↦ (𝐹𝑥)) ≼ 𝑏))
9691, 94, 95sylc 65 . . . . 5 (((𝜑𝑏 ∈ TopBases) ∧ (𝑏 ≼ ω ∧ (topGen‘𝑏) = 𝐽)) → ran (𝑥𝑏 ↦ (𝐹𝑥)) ≼ 𝑏)
97 domtr 8947 . . . . 5 ((ran (𝑥𝑏 ↦ (𝐹𝑥)) ≼ 𝑏𝑏 ≼ ω) → ran (𝑥𝑏 ↦ (𝐹𝑥)) ≼ ω)
9896, 89, 97syl2anc 584 . . . 4 (((𝜑𝑏 ∈ TopBases) ∧ (𝑏 ≼ ω ∧ (topGen‘𝑏) = 𝐽)) → ran (𝑥𝑏 ↦ (𝐹𝑥)) ≼ ω)
99 2ndci 22799 . . . 4 ((ran (𝑥𝑏 ↦ (𝐹𝑥)) ∈ TopBases ∧ ran (𝑥𝑏 ↦ (𝐹𝑥)) ≼ ω) → (topGen‘ran (𝑥𝑏 ↦ (𝐹𝑥))) ∈ 2ndω)
10087, 98, 99syl2anc 584 . . 3 (((𝜑𝑏 ∈ TopBases) ∧ (𝑏 ≼ ω ∧ (topGen‘𝑏) = 𝐽)) → (topGen‘ran (𝑥𝑏 ↦ (𝐹𝑥))) ∈ 2ndω)
10184, 100eqeltrrd 2839 . 2 (((𝜑𝑏 ∈ TopBases) ∧ (𝑏 ≼ ω ∧ (topGen‘𝑏) = 𝐽)) → 𝐾 ∈ 2ndω)
102 2ndcomap.3 . . 3 (𝜑𝐽 ∈ 2ndω)
103 is2ndc 22797 . . 3 (𝐽 ∈ 2ndω ↔ ∃𝑏 ∈ TopBases (𝑏 ≼ ω ∧ (topGen‘𝑏) = 𝐽))
104102, 103sylib 217 . 2 (𝜑 → ∃𝑏 ∈ TopBases (𝑏 ≼ ω ∧ (topGen‘𝑏) = 𝐽))
105101, 104r19.29a 3159 1 (𝜑𝐾 ∈ 2ndω)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1541  wcel 2106  wral 3064  wrex 3073  Vcvv 3445  wss 3910   cuni 4865   class class class wbr 5105  cmpt 5188  ccnv 5632  dom cdm 5633  ran crn 5634  cima 5636  Oncon0 6317  Fun wfun 6490   Fn wfn 6491  wf 6492  ontowfo 6494  cfv 6496  (class class class)co 7357  ωcom 7802  cdom 8881  cardccrd 9871  topGenctg 17319  Topctop 22242  TopBasesctb 22295   Cn ccn 22575  2ndωc2ndc 22789
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5242  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-inf2 9577
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-ral 3065  df-rex 3074  df-rmo 3353  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-op 4593  df-uni 4866  df-int 4908  df-iun 4956  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-se 5589  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-isom 6505  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-om 7803  df-1st 7921  df-2nd 7922  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-er 8648  df-map 8767  df-en 8884  df-dom 8885  df-card 9875  df-acn 9878  df-topgen 17325  df-top 22243  df-topon 22260  df-bases 22296  df-cn 22578  df-2ndc 22791
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator