Step | Hyp | Ref
| Expression |
1 | | 2ndcomap.5 |
. . . . . 6
⊢ (𝜑 → 𝐹 ∈ (𝐽 Cn 𝐾)) |
2 | | cntop2 22300 |
. . . . . 6
⊢ (𝐹 ∈ (𝐽 Cn 𝐾) → 𝐾 ∈ Top) |
3 | 1, 2 | syl 17 |
. . . . 5
⊢ (𝜑 → 𝐾 ∈ Top) |
4 | 3 | ad2antrr 722 |
. . . 4
⊢ (((𝜑 ∧ 𝑏 ∈ TopBases) ∧ (𝑏 ≼ ω ∧ (topGen‘𝑏) = 𝐽)) → 𝐾 ∈ Top) |
5 | | simplll 771 |
. . . . . . 7
⊢ ((((𝜑 ∧ 𝑏 ∈ TopBases) ∧ (𝑏 ≼ ω ∧ (topGen‘𝑏) = 𝐽)) ∧ 𝑥 ∈ 𝑏) → 𝜑) |
6 | | bastg 22024 |
. . . . . . . . . 10
⊢ (𝑏 ∈ TopBases → 𝑏 ⊆ (topGen‘𝑏)) |
7 | 6 | ad2antlr 723 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑏 ∈ TopBases) ∧ (𝑏 ≼ ω ∧ (topGen‘𝑏) = 𝐽)) → 𝑏 ⊆ (topGen‘𝑏)) |
8 | | simprr 769 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑏 ∈ TopBases) ∧ (𝑏 ≼ ω ∧ (topGen‘𝑏) = 𝐽)) → (topGen‘𝑏) = 𝐽) |
9 | 7, 8 | sseqtrd 3957 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑏 ∈ TopBases) ∧ (𝑏 ≼ ω ∧ (topGen‘𝑏) = 𝐽)) → 𝑏 ⊆ 𝐽) |
10 | 9 | sselda 3917 |
. . . . . . 7
⊢ ((((𝜑 ∧ 𝑏 ∈ TopBases) ∧ (𝑏 ≼ ω ∧ (topGen‘𝑏) = 𝐽)) ∧ 𝑥 ∈ 𝑏) → 𝑥 ∈ 𝐽) |
11 | | 2ndcomap.7 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐽) → (𝐹 “ 𝑥) ∈ 𝐾) |
12 | 5, 10, 11 | syl2anc 583 |
. . . . . 6
⊢ ((((𝜑 ∧ 𝑏 ∈ TopBases) ∧ (𝑏 ≼ ω ∧ (topGen‘𝑏) = 𝐽)) ∧ 𝑥 ∈ 𝑏) → (𝐹 “ 𝑥) ∈ 𝐾) |
13 | 12 | fmpttd 6971 |
. . . . 5
⊢ (((𝜑 ∧ 𝑏 ∈ TopBases) ∧ (𝑏 ≼ ω ∧ (topGen‘𝑏) = 𝐽)) → (𝑥 ∈ 𝑏 ↦ (𝐹 “ 𝑥)):𝑏⟶𝐾) |
14 | 13 | frnd 6592 |
. . . 4
⊢ (((𝜑 ∧ 𝑏 ∈ TopBases) ∧ (𝑏 ≼ ω ∧ (topGen‘𝑏) = 𝐽)) → ran (𝑥 ∈ 𝑏 ↦ (𝐹 “ 𝑥)) ⊆ 𝐾) |
15 | | elunii 4841 |
. . . . . . . . . . 11
⊢ ((𝑧 ∈ 𝑘 ∧ 𝑘 ∈ 𝐾) → 𝑧 ∈ ∪ 𝐾) |
16 | | 2ndcomap.2 |
. . . . . . . . . . 11
⊢ 𝑌 = ∪
𝐾 |
17 | 15, 16 | eleqtrrdi 2850 |
. . . . . . . . . 10
⊢ ((𝑧 ∈ 𝑘 ∧ 𝑘 ∈ 𝐾) → 𝑧 ∈ 𝑌) |
18 | 17 | ancoms 458 |
. . . . . . . . 9
⊢ ((𝑘 ∈ 𝐾 ∧ 𝑧 ∈ 𝑘) → 𝑧 ∈ 𝑌) |
19 | 18 | adantl 481 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑏 ∈ TopBases) ∧ (𝑏 ≼ ω ∧ (topGen‘𝑏) = 𝐽)) ∧ (𝑘 ∈ 𝐾 ∧ 𝑧 ∈ 𝑘)) → 𝑧 ∈ 𝑌) |
20 | | 2ndcomap.6 |
. . . . . . . . 9
⊢ (𝜑 → ran 𝐹 = 𝑌) |
21 | 20 | ad3antrrr 726 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑏 ∈ TopBases) ∧ (𝑏 ≼ ω ∧ (topGen‘𝑏) = 𝐽)) ∧ (𝑘 ∈ 𝐾 ∧ 𝑧 ∈ 𝑘)) → ran 𝐹 = 𝑌) |
22 | 19, 21 | eleqtrrd 2842 |
. . . . . . 7
⊢ ((((𝜑 ∧ 𝑏 ∈ TopBases) ∧ (𝑏 ≼ ω ∧ (topGen‘𝑏) = 𝐽)) ∧ (𝑘 ∈ 𝐾 ∧ 𝑧 ∈ 𝑘)) → 𝑧 ∈ ran 𝐹) |
23 | | eqid 2738 |
. . . . . . . . . . 11
⊢ ∪ 𝐽 =
∪ 𝐽 |
24 | 23, 16 | cnf 22305 |
. . . . . . . . . 10
⊢ (𝐹 ∈ (𝐽 Cn 𝐾) → 𝐹:∪ 𝐽⟶𝑌) |
25 | 1, 24 | syl 17 |
. . . . . . . . 9
⊢ (𝜑 → 𝐹:∪ 𝐽⟶𝑌) |
26 | 25 | ad3antrrr 726 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑏 ∈ TopBases) ∧ (𝑏 ≼ ω ∧ (topGen‘𝑏) = 𝐽)) ∧ (𝑘 ∈ 𝐾 ∧ 𝑧 ∈ 𝑘)) → 𝐹:∪ 𝐽⟶𝑌) |
27 | | ffn 6584 |
. . . . . . . 8
⊢ (𝐹:∪
𝐽⟶𝑌 → 𝐹 Fn ∪ 𝐽) |
28 | | fvelrnb 6812 |
. . . . . . . 8
⊢ (𝐹 Fn ∪
𝐽 → (𝑧 ∈ ran 𝐹 ↔ ∃𝑡 ∈ ∪ 𝐽(𝐹‘𝑡) = 𝑧)) |
29 | 26, 27, 28 | 3syl 18 |
. . . . . . 7
⊢ ((((𝜑 ∧ 𝑏 ∈ TopBases) ∧ (𝑏 ≼ ω ∧ (topGen‘𝑏) = 𝐽)) ∧ (𝑘 ∈ 𝐾 ∧ 𝑧 ∈ 𝑘)) → (𝑧 ∈ ran 𝐹 ↔ ∃𝑡 ∈ ∪ 𝐽(𝐹‘𝑡) = 𝑧)) |
30 | 22, 29 | mpbid 231 |
. . . . . 6
⊢ ((((𝜑 ∧ 𝑏 ∈ TopBases) ∧ (𝑏 ≼ ω ∧ (topGen‘𝑏) = 𝐽)) ∧ (𝑘 ∈ 𝐾 ∧ 𝑧 ∈ 𝑘)) → ∃𝑡 ∈ ∪ 𝐽(𝐹‘𝑡) = 𝑧) |
31 | 1 | ad3antrrr 726 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑏 ∈ TopBases) ∧ (𝑏 ≼ ω ∧ (topGen‘𝑏) = 𝐽)) ∧ ((𝑘 ∈ 𝐾 ∧ 𝑧 ∈ 𝑘) ∧ (𝑡 ∈ ∪ 𝐽 ∧ (𝐹‘𝑡) = 𝑧))) → 𝐹 ∈ (𝐽 Cn 𝐾)) |
32 | | simprll 775 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑏 ∈ TopBases) ∧ (𝑏 ≼ ω ∧ (topGen‘𝑏) = 𝐽)) ∧ ((𝑘 ∈ 𝐾 ∧ 𝑧 ∈ 𝑘) ∧ (𝑡 ∈ ∪ 𝐽 ∧ (𝐹‘𝑡) = 𝑧))) → 𝑘 ∈ 𝐾) |
33 | | cnima 22324 |
. . . . . . . . . . 11
⊢ ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝑘 ∈ 𝐾) → (◡𝐹 “ 𝑘) ∈ 𝐽) |
34 | 31, 32, 33 | syl2anc 583 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑏 ∈ TopBases) ∧ (𝑏 ≼ ω ∧ (topGen‘𝑏) = 𝐽)) ∧ ((𝑘 ∈ 𝐾 ∧ 𝑧 ∈ 𝑘) ∧ (𝑡 ∈ ∪ 𝐽 ∧ (𝐹‘𝑡) = 𝑧))) → (◡𝐹 “ 𝑘) ∈ 𝐽) |
35 | 8 | adantr 480 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑏 ∈ TopBases) ∧ (𝑏 ≼ ω ∧ (topGen‘𝑏) = 𝐽)) ∧ ((𝑘 ∈ 𝐾 ∧ 𝑧 ∈ 𝑘) ∧ (𝑡 ∈ ∪ 𝐽 ∧ (𝐹‘𝑡) = 𝑧))) → (topGen‘𝑏) = 𝐽) |
36 | 34, 35 | eleqtrrd 2842 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑏 ∈ TopBases) ∧ (𝑏 ≼ ω ∧ (topGen‘𝑏) = 𝐽)) ∧ ((𝑘 ∈ 𝐾 ∧ 𝑧 ∈ 𝑘) ∧ (𝑡 ∈ ∪ 𝐽 ∧ (𝐹‘𝑡) = 𝑧))) → (◡𝐹 “ 𝑘) ∈ (topGen‘𝑏)) |
37 | | simprrl 777 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑏 ∈ TopBases) ∧ (𝑏 ≼ ω ∧ (topGen‘𝑏) = 𝐽)) ∧ ((𝑘 ∈ 𝐾 ∧ 𝑧 ∈ 𝑘) ∧ (𝑡 ∈ ∪ 𝐽 ∧ (𝐹‘𝑡) = 𝑧))) → 𝑡 ∈ ∪ 𝐽) |
38 | | simprrr 778 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑏 ∈ TopBases) ∧ (𝑏 ≼ ω ∧ (topGen‘𝑏) = 𝐽)) ∧ ((𝑘 ∈ 𝐾 ∧ 𝑧 ∈ 𝑘) ∧ (𝑡 ∈ ∪ 𝐽 ∧ (𝐹‘𝑡) = 𝑧))) → (𝐹‘𝑡) = 𝑧) |
39 | | simprlr 776 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑏 ∈ TopBases) ∧ (𝑏 ≼ ω ∧ (topGen‘𝑏) = 𝐽)) ∧ ((𝑘 ∈ 𝐾 ∧ 𝑧 ∈ 𝑘) ∧ (𝑡 ∈ ∪ 𝐽 ∧ (𝐹‘𝑡) = 𝑧))) → 𝑧 ∈ 𝑘) |
40 | 38, 39 | eqeltrd 2839 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑏 ∈ TopBases) ∧ (𝑏 ≼ ω ∧ (topGen‘𝑏) = 𝐽)) ∧ ((𝑘 ∈ 𝐾 ∧ 𝑧 ∈ 𝑘) ∧ (𝑡 ∈ ∪ 𝐽 ∧ (𝐹‘𝑡) = 𝑧))) → (𝐹‘𝑡) ∈ 𝑘) |
41 | 26 | ffnd 6585 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑏 ∈ TopBases) ∧ (𝑏 ≼ ω ∧ (topGen‘𝑏) = 𝐽)) ∧ (𝑘 ∈ 𝐾 ∧ 𝑧 ∈ 𝑘)) → 𝐹 Fn ∪ 𝐽) |
42 | 41 | adantrr 713 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑏 ∈ TopBases) ∧ (𝑏 ≼ ω ∧ (topGen‘𝑏) = 𝐽)) ∧ ((𝑘 ∈ 𝐾 ∧ 𝑧 ∈ 𝑘) ∧ (𝑡 ∈ ∪ 𝐽 ∧ (𝐹‘𝑡) = 𝑧))) → 𝐹 Fn ∪ 𝐽) |
43 | | elpreima 6917 |
. . . . . . . . . . 11
⊢ (𝐹 Fn ∪
𝐽 → (𝑡 ∈ (◡𝐹 “ 𝑘) ↔ (𝑡 ∈ ∪ 𝐽 ∧ (𝐹‘𝑡) ∈ 𝑘))) |
44 | 42, 43 | syl 17 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑏 ∈ TopBases) ∧ (𝑏 ≼ ω ∧ (topGen‘𝑏) = 𝐽)) ∧ ((𝑘 ∈ 𝐾 ∧ 𝑧 ∈ 𝑘) ∧ (𝑡 ∈ ∪ 𝐽 ∧ (𝐹‘𝑡) = 𝑧))) → (𝑡 ∈ (◡𝐹 “ 𝑘) ↔ (𝑡 ∈ ∪ 𝐽 ∧ (𝐹‘𝑡) ∈ 𝑘))) |
45 | 37, 40, 44 | mpbir2and 709 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑏 ∈ TopBases) ∧ (𝑏 ≼ ω ∧ (topGen‘𝑏) = 𝐽)) ∧ ((𝑘 ∈ 𝐾 ∧ 𝑧 ∈ 𝑘) ∧ (𝑡 ∈ ∪ 𝐽 ∧ (𝐹‘𝑡) = 𝑧))) → 𝑡 ∈ (◡𝐹 “ 𝑘)) |
46 | | tg2 22023 |
. . . . . . . . 9
⊢ (((◡𝐹 “ 𝑘) ∈ (topGen‘𝑏) ∧ 𝑡 ∈ (◡𝐹 “ 𝑘)) → ∃𝑚 ∈ 𝑏 (𝑡 ∈ 𝑚 ∧ 𝑚 ⊆ (◡𝐹 “ 𝑘))) |
47 | 36, 45, 46 | syl2anc 583 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑏 ∈ TopBases) ∧ (𝑏 ≼ ω ∧ (topGen‘𝑏) = 𝐽)) ∧ ((𝑘 ∈ 𝐾 ∧ 𝑧 ∈ 𝑘) ∧ (𝑡 ∈ ∪ 𝐽 ∧ (𝐹‘𝑡) = 𝑧))) → ∃𝑚 ∈ 𝑏 (𝑡 ∈ 𝑚 ∧ 𝑚 ⊆ (◡𝐹 “ 𝑘))) |
48 | | simprl 767 |
. . . . . . . . . . 11
⊢
(((((𝜑 ∧ 𝑏 ∈ TopBases) ∧ (𝑏 ≼ ω ∧
(topGen‘𝑏) = 𝐽)) ∧ ((𝑘 ∈ 𝐾 ∧ 𝑧 ∈ 𝑘) ∧ (𝑡 ∈ ∪ 𝐽 ∧ (𝐹‘𝑡) = 𝑧))) ∧ (𝑚 ∈ 𝑏 ∧ (𝑡 ∈ 𝑚 ∧ 𝑚 ⊆ (◡𝐹 “ 𝑘)))) → 𝑚 ∈ 𝑏) |
49 | | eqid 2738 |
. . . . . . . . . . 11
⊢ (𝐹 “ 𝑚) = (𝐹 “ 𝑚) |
50 | | imaeq2 5954 |
. . . . . . . . . . . 12
⊢ (𝑥 = 𝑚 → (𝐹 “ 𝑥) = (𝐹 “ 𝑚)) |
51 | 50 | rspceeqv 3567 |
. . . . . . . . . . 11
⊢ ((𝑚 ∈ 𝑏 ∧ (𝐹 “ 𝑚) = (𝐹 “ 𝑚)) → ∃𝑥 ∈ 𝑏 (𝐹 “ 𝑚) = (𝐹 “ 𝑥)) |
52 | 48, 49, 51 | sylancl 585 |
. . . . . . . . . 10
⊢
(((((𝜑 ∧ 𝑏 ∈ TopBases) ∧ (𝑏 ≼ ω ∧
(topGen‘𝑏) = 𝐽)) ∧ ((𝑘 ∈ 𝐾 ∧ 𝑧 ∈ 𝑘) ∧ (𝑡 ∈ ∪ 𝐽 ∧ (𝐹‘𝑡) = 𝑧))) ∧ (𝑚 ∈ 𝑏 ∧ (𝑡 ∈ 𝑚 ∧ 𝑚 ⊆ (◡𝐹 “ 𝑘)))) → ∃𝑥 ∈ 𝑏 (𝐹 “ 𝑚) = (𝐹 “ 𝑥)) |
53 | 42 | adantr 480 |
. . . . . . . . . . . . . 14
⊢
(((((𝜑 ∧ 𝑏 ∈ TopBases) ∧ (𝑏 ≼ ω ∧
(topGen‘𝑏) = 𝐽)) ∧ ((𝑘 ∈ 𝐾 ∧ 𝑧 ∈ 𝑘) ∧ (𝑡 ∈ ∪ 𝐽 ∧ (𝐹‘𝑡) = 𝑧))) ∧ (𝑚 ∈ 𝑏 ∧ (𝑡 ∈ 𝑚 ∧ 𝑚 ⊆ (◡𝐹 “ 𝑘)))) → 𝐹 Fn ∪ 𝐽) |
54 | | fnfun 6517 |
. . . . . . . . . . . . . 14
⊢ (𝐹 Fn ∪
𝐽 → Fun 𝐹) |
55 | 53, 54 | syl 17 |
. . . . . . . . . . . . 13
⊢
(((((𝜑 ∧ 𝑏 ∈ TopBases) ∧ (𝑏 ≼ ω ∧
(topGen‘𝑏) = 𝐽)) ∧ ((𝑘 ∈ 𝐾 ∧ 𝑧 ∈ 𝑘) ∧ (𝑡 ∈ ∪ 𝐽 ∧ (𝐹‘𝑡) = 𝑧))) ∧ (𝑚 ∈ 𝑏 ∧ (𝑡 ∈ 𝑚 ∧ 𝑚 ⊆ (◡𝐹 “ 𝑘)))) → Fun 𝐹) |
56 | | simprrr 778 |
. . . . . . . . . . . . 13
⊢
(((((𝜑 ∧ 𝑏 ∈ TopBases) ∧ (𝑏 ≼ ω ∧
(topGen‘𝑏) = 𝐽)) ∧ ((𝑘 ∈ 𝐾 ∧ 𝑧 ∈ 𝑘) ∧ (𝑡 ∈ ∪ 𝐽 ∧ (𝐹‘𝑡) = 𝑧))) ∧ (𝑚 ∈ 𝑏 ∧ (𝑡 ∈ 𝑚 ∧ 𝑚 ⊆ (◡𝐹 “ 𝑘)))) → 𝑚 ⊆ (◡𝐹 “ 𝑘)) |
57 | | funimass2 6501 |
. . . . . . . . . . . . 13
⊢ ((Fun
𝐹 ∧ 𝑚 ⊆ (◡𝐹 “ 𝑘)) → (𝐹 “ 𝑚) ⊆ 𝑘) |
58 | 55, 56, 57 | syl2anc 583 |
. . . . . . . . . . . 12
⊢
(((((𝜑 ∧ 𝑏 ∈ TopBases) ∧ (𝑏 ≼ ω ∧
(topGen‘𝑏) = 𝐽)) ∧ ((𝑘 ∈ 𝐾 ∧ 𝑧 ∈ 𝑘) ∧ (𝑡 ∈ ∪ 𝐽 ∧ (𝐹‘𝑡) = 𝑧))) ∧ (𝑚 ∈ 𝑏 ∧ (𝑡 ∈ 𝑚 ∧ 𝑚 ⊆ (◡𝐹 “ 𝑘)))) → (𝐹 “ 𝑚) ⊆ 𝑘) |
59 | | vex 3426 |
. . . . . . . . . . . 12
⊢ 𝑘 ∈ V |
60 | | ssexg 5242 |
. . . . . . . . . . . 12
⊢ (((𝐹 “ 𝑚) ⊆ 𝑘 ∧ 𝑘 ∈ V) → (𝐹 “ 𝑚) ∈ V) |
61 | 58, 59, 60 | sylancl 585 |
. . . . . . . . . . 11
⊢
(((((𝜑 ∧ 𝑏 ∈ TopBases) ∧ (𝑏 ≼ ω ∧
(topGen‘𝑏) = 𝐽)) ∧ ((𝑘 ∈ 𝐾 ∧ 𝑧 ∈ 𝑘) ∧ (𝑡 ∈ ∪ 𝐽 ∧ (𝐹‘𝑡) = 𝑧))) ∧ (𝑚 ∈ 𝑏 ∧ (𝑡 ∈ 𝑚 ∧ 𝑚 ⊆ (◡𝐹 “ 𝑘)))) → (𝐹 “ 𝑚) ∈ V) |
62 | | eqid 2738 |
. . . . . . . . . . . 12
⊢ (𝑥 ∈ 𝑏 ↦ (𝐹 “ 𝑥)) = (𝑥 ∈ 𝑏 ↦ (𝐹 “ 𝑥)) |
63 | 62 | elrnmpt 5854 |
. . . . . . . . . . 11
⊢ ((𝐹 “ 𝑚) ∈ V → ((𝐹 “ 𝑚) ∈ ran (𝑥 ∈ 𝑏 ↦ (𝐹 “ 𝑥)) ↔ ∃𝑥 ∈ 𝑏 (𝐹 “ 𝑚) = (𝐹 “ 𝑥))) |
64 | 61, 63 | syl 17 |
. . . . . . . . . 10
⊢
(((((𝜑 ∧ 𝑏 ∈ TopBases) ∧ (𝑏 ≼ ω ∧
(topGen‘𝑏) = 𝐽)) ∧ ((𝑘 ∈ 𝐾 ∧ 𝑧 ∈ 𝑘) ∧ (𝑡 ∈ ∪ 𝐽 ∧ (𝐹‘𝑡) = 𝑧))) ∧ (𝑚 ∈ 𝑏 ∧ (𝑡 ∈ 𝑚 ∧ 𝑚 ⊆ (◡𝐹 “ 𝑘)))) → ((𝐹 “ 𝑚) ∈ ran (𝑥 ∈ 𝑏 ↦ (𝐹 “ 𝑥)) ↔ ∃𝑥 ∈ 𝑏 (𝐹 “ 𝑚) = (𝐹 “ 𝑥))) |
65 | 52, 64 | mpbird 256 |
. . . . . . . . 9
⊢
(((((𝜑 ∧ 𝑏 ∈ TopBases) ∧ (𝑏 ≼ ω ∧
(topGen‘𝑏) = 𝐽)) ∧ ((𝑘 ∈ 𝐾 ∧ 𝑧 ∈ 𝑘) ∧ (𝑡 ∈ ∪ 𝐽 ∧ (𝐹‘𝑡) = 𝑧))) ∧ (𝑚 ∈ 𝑏 ∧ (𝑡 ∈ 𝑚 ∧ 𝑚 ⊆ (◡𝐹 “ 𝑘)))) → (𝐹 “ 𝑚) ∈ ran (𝑥 ∈ 𝑏 ↦ (𝐹 “ 𝑥))) |
66 | 38 | adantr 480 |
. . . . . . . . . 10
⊢
(((((𝜑 ∧ 𝑏 ∈ TopBases) ∧ (𝑏 ≼ ω ∧
(topGen‘𝑏) = 𝐽)) ∧ ((𝑘 ∈ 𝐾 ∧ 𝑧 ∈ 𝑘) ∧ (𝑡 ∈ ∪ 𝐽 ∧ (𝐹‘𝑡) = 𝑧))) ∧ (𝑚 ∈ 𝑏 ∧ (𝑡 ∈ 𝑚 ∧ 𝑚 ⊆ (◡𝐹 “ 𝑘)))) → (𝐹‘𝑡) = 𝑧) |
67 | | simprrl 777 |
. . . . . . . . . . 11
⊢
(((((𝜑 ∧ 𝑏 ∈ TopBases) ∧ (𝑏 ≼ ω ∧
(topGen‘𝑏) = 𝐽)) ∧ ((𝑘 ∈ 𝐾 ∧ 𝑧 ∈ 𝑘) ∧ (𝑡 ∈ ∪ 𝐽 ∧ (𝐹‘𝑡) = 𝑧))) ∧ (𝑚 ∈ 𝑏 ∧ (𝑡 ∈ 𝑚 ∧ 𝑚 ⊆ (◡𝐹 “ 𝑘)))) → 𝑡 ∈ 𝑚) |
68 | | cnvimass 5978 |
. . . . . . . . . . . . 13
⊢ (◡𝐹 “ 𝑘) ⊆ dom 𝐹 |
69 | 56, 68 | sstrdi 3929 |
. . . . . . . . . . . 12
⊢
(((((𝜑 ∧ 𝑏 ∈ TopBases) ∧ (𝑏 ≼ ω ∧
(topGen‘𝑏) = 𝐽)) ∧ ((𝑘 ∈ 𝐾 ∧ 𝑧 ∈ 𝑘) ∧ (𝑡 ∈ ∪ 𝐽 ∧ (𝐹‘𝑡) = 𝑧))) ∧ (𝑚 ∈ 𝑏 ∧ (𝑡 ∈ 𝑚 ∧ 𝑚 ⊆ (◡𝐹 “ 𝑘)))) → 𝑚 ⊆ dom 𝐹) |
70 | | funfvima2 7089 |
. . . . . . . . . . . 12
⊢ ((Fun
𝐹 ∧ 𝑚 ⊆ dom 𝐹) → (𝑡 ∈ 𝑚 → (𝐹‘𝑡) ∈ (𝐹 “ 𝑚))) |
71 | 55, 69, 70 | syl2anc 583 |
. . . . . . . . . . 11
⊢
(((((𝜑 ∧ 𝑏 ∈ TopBases) ∧ (𝑏 ≼ ω ∧
(topGen‘𝑏) = 𝐽)) ∧ ((𝑘 ∈ 𝐾 ∧ 𝑧 ∈ 𝑘) ∧ (𝑡 ∈ ∪ 𝐽 ∧ (𝐹‘𝑡) = 𝑧))) ∧ (𝑚 ∈ 𝑏 ∧ (𝑡 ∈ 𝑚 ∧ 𝑚 ⊆ (◡𝐹 “ 𝑘)))) → (𝑡 ∈ 𝑚 → (𝐹‘𝑡) ∈ (𝐹 “ 𝑚))) |
72 | 67, 71 | mpd 15 |
. . . . . . . . . 10
⊢
(((((𝜑 ∧ 𝑏 ∈ TopBases) ∧ (𝑏 ≼ ω ∧
(topGen‘𝑏) = 𝐽)) ∧ ((𝑘 ∈ 𝐾 ∧ 𝑧 ∈ 𝑘) ∧ (𝑡 ∈ ∪ 𝐽 ∧ (𝐹‘𝑡) = 𝑧))) ∧ (𝑚 ∈ 𝑏 ∧ (𝑡 ∈ 𝑚 ∧ 𝑚 ⊆ (◡𝐹 “ 𝑘)))) → (𝐹‘𝑡) ∈ (𝐹 “ 𝑚)) |
73 | 66, 72 | eqeltrrd 2840 |
. . . . . . . . 9
⊢
(((((𝜑 ∧ 𝑏 ∈ TopBases) ∧ (𝑏 ≼ ω ∧
(topGen‘𝑏) = 𝐽)) ∧ ((𝑘 ∈ 𝐾 ∧ 𝑧 ∈ 𝑘) ∧ (𝑡 ∈ ∪ 𝐽 ∧ (𝐹‘𝑡) = 𝑧))) ∧ (𝑚 ∈ 𝑏 ∧ (𝑡 ∈ 𝑚 ∧ 𝑚 ⊆ (◡𝐹 “ 𝑘)))) → 𝑧 ∈ (𝐹 “ 𝑚)) |
74 | | eleq2 2827 |
. . . . . . . . . . 11
⊢ (𝑤 = (𝐹 “ 𝑚) → (𝑧 ∈ 𝑤 ↔ 𝑧 ∈ (𝐹 “ 𝑚))) |
75 | | sseq1 3942 |
. . . . . . . . . . 11
⊢ (𝑤 = (𝐹 “ 𝑚) → (𝑤 ⊆ 𝑘 ↔ (𝐹 “ 𝑚) ⊆ 𝑘)) |
76 | 74, 75 | anbi12d 630 |
. . . . . . . . . 10
⊢ (𝑤 = (𝐹 “ 𝑚) → ((𝑧 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑘) ↔ (𝑧 ∈ (𝐹 “ 𝑚) ∧ (𝐹 “ 𝑚) ⊆ 𝑘))) |
77 | 76 | rspcev 3552 |
. . . . . . . . 9
⊢ (((𝐹 “ 𝑚) ∈ ran (𝑥 ∈ 𝑏 ↦ (𝐹 “ 𝑥)) ∧ (𝑧 ∈ (𝐹 “ 𝑚) ∧ (𝐹 “ 𝑚) ⊆ 𝑘)) → ∃𝑤 ∈ ran (𝑥 ∈ 𝑏 ↦ (𝐹 “ 𝑥))(𝑧 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑘)) |
78 | 65, 73, 58, 77 | syl12anc 833 |
. . . . . . . 8
⊢
(((((𝜑 ∧ 𝑏 ∈ TopBases) ∧ (𝑏 ≼ ω ∧
(topGen‘𝑏) = 𝐽)) ∧ ((𝑘 ∈ 𝐾 ∧ 𝑧 ∈ 𝑘) ∧ (𝑡 ∈ ∪ 𝐽 ∧ (𝐹‘𝑡) = 𝑧))) ∧ (𝑚 ∈ 𝑏 ∧ (𝑡 ∈ 𝑚 ∧ 𝑚 ⊆ (◡𝐹 “ 𝑘)))) → ∃𝑤 ∈ ran (𝑥 ∈ 𝑏 ↦ (𝐹 “ 𝑥))(𝑧 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑘)) |
79 | 47, 78 | rexlimddv 3219 |
. . . . . . 7
⊢ ((((𝜑 ∧ 𝑏 ∈ TopBases) ∧ (𝑏 ≼ ω ∧ (topGen‘𝑏) = 𝐽)) ∧ ((𝑘 ∈ 𝐾 ∧ 𝑧 ∈ 𝑘) ∧ (𝑡 ∈ ∪ 𝐽 ∧ (𝐹‘𝑡) = 𝑧))) → ∃𝑤 ∈ ran (𝑥 ∈ 𝑏 ↦ (𝐹 “ 𝑥))(𝑧 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑘)) |
80 | 79 | anassrs 467 |
. . . . . 6
⊢
(((((𝜑 ∧ 𝑏 ∈ TopBases) ∧ (𝑏 ≼ ω ∧
(topGen‘𝑏) = 𝐽)) ∧ (𝑘 ∈ 𝐾 ∧ 𝑧 ∈ 𝑘)) ∧ (𝑡 ∈ ∪ 𝐽 ∧ (𝐹‘𝑡) = 𝑧)) → ∃𝑤 ∈ ran (𝑥 ∈ 𝑏 ↦ (𝐹 “ 𝑥))(𝑧 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑘)) |
81 | 30, 80 | rexlimddv 3219 |
. . . . 5
⊢ ((((𝜑 ∧ 𝑏 ∈ TopBases) ∧ (𝑏 ≼ ω ∧ (topGen‘𝑏) = 𝐽)) ∧ (𝑘 ∈ 𝐾 ∧ 𝑧 ∈ 𝑘)) → ∃𝑤 ∈ ran (𝑥 ∈ 𝑏 ↦ (𝐹 “ 𝑥))(𝑧 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑘)) |
82 | 81 | ralrimivva 3114 |
. . . 4
⊢ (((𝜑 ∧ 𝑏 ∈ TopBases) ∧ (𝑏 ≼ ω ∧ (topGen‘𝑏) = 𝐽)) → ∀𝑘 ∈ 𝐾 ∀𝑧 ∈ 𝑘 ∃𝑤 ∈ ran (𝑥 ∈ 𝑏 ↦ (𝐹 “ 𝑥))(𝑧 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑘)) |
83 | | basgen2 22047 |
. . . 4
⊢ ((𝐾 ∈ Top ∧ ran (𝑥 ∈ 𝑏 ↦ (𝐹 “ 𝑥)) ⊆ 𝐾 ∧ ∀𝑘 ∈ 𝐾 ∀𝑧 ∈ 𝑘 ∃𝑤 ∈ ran (𝑥 ∈ 𝑏 ↦ (𝐹 “ 𝑥))(𝑧 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑘)) → (topGen‘ran (𝑥 ∈ 𝑏 ↦ (𝐹 “ 𝑥))) = 𝐾) |
84 | 4, 14, 82, 83 | syl3anc 1369 |
. . 3
⊢ (((𝜑 ∧ 𝑏 ∈ TopBases) ∧ (𝑏 ≼ ω ∧ (topGen‘𝑏) = 𝐽)) → (topGen‘ran (𝑥 ∈ 𝑏 ↦ (𝐹 “ 𝑥))) = 𝐾) |
85 | 84, 4 | eqeltrd 2839 |
. . . . 5
⊢ (((𝜑 ∧ 𝑏 ∈ TopBases) ∧ (𝑏 ≼ ω ∧ (topGen‘𝑏) = 𝐽)) → (topGen‘ran (𝑥 ∈ 𝑏 ↦ (𝐹 “ 𝑥))) ∈ Top) |
86 | | tgclb 22028 |
. . . . 5
⊢ (ran
(𝑥 ∈ 𝑏 ↦ (𝐹 “ 𝑥)) ∈ TopBases ↔ (topGen‘ran
(𝑥 ∈ 𝑏 ↦ (𝐹 “ 𝑥))) ∈ Top) |
87 | 85, 86 | sylibr 233 |
. . . 4
⊢ (((𝜑 ∧ 𝑏 ∈ TopBases) ∧ (𝑏 ≼ ω ∧ (topGen‘𝑏) = 𝐽)) → ran (𝑥 ∈ 𝑏 ↦ (𝐹 “ 𝑥)) ∈ TopBases) |
88 | | omelon 9334 |
. . . . . . 7
⊢ ω
∈ On |
89 | | simprl 767 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑏 ∈ TopBases) ∧ (𝑏 ≼ ω ∧ (topGen‘𝑏) = 𝐽)) → 𝑏 ≼ ω) |
90 | | ondomen 9724 |
. . . . . . 7
⊢ ((ω
∈ On ∧ 𝑏 ≼
ω) → 𝑏 ∈
dom card) |
91 | 88, 89, 90 | sylancr 586 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑏 ∈ TopBases) ∧ (𝑏 ≼ ω ∧ (topGen‘𝑏) = 𝐽)) → 𝑏 ∈ dom card) |
92 | 13 | ffnd 6585 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑏 ∈ TopBases) ∧ (𝑏 ≼ ω ∧ (topGen‘𝑏) = 𝐽)) → (𝑥 ∈ 𝑏 ↦ (𝐹 “ 𝑥)) Fn 𝑏) |
93 | | dffn4 6678 |
. . . . . . 7
⊢ ((𝑥 ∈ 𝑏 ↦ (𝐹 “ 𝑥)) Fn 𝑏 ↔ (𝑥 ∈ 𝑏 ↦ (𝐹 “ 𝑥)):𝑏–onto→ran (𝑥 ∈ 𝑏 ↦ (𝐹 “ 𝑥))) |
94 | 92, 93 | sylib 217 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑏 ∈ TopBases) ∧ (𝑏 ≼ ω ∧ (topGen‘𝑏) = 𝐽)) → (𝑥 ∈ 𝑏 ↦ (𝐹 “ 𝑥)):𝑏–onto→ran (𝑥 ∈ 𝑏 ↦ (𝐹 “ 𝑥))) |
95 | | fodomnum 9744 |
. . . . . 6
⊢ (𝑏 ∈ dom card → ((𝑥 ∈ 𝑏 ↦ (𝐹 “ 𝑥)):𝑏–onto→ran (𝑥 ∈ 𝑏 ↦ (𝐹 “ 𝑥)) → ran (𝑥 ∈ 𝑏 ↦ (𝐹 “ 𝑥)) ≼ 𝑏)) |
96 | 91, 94, 95 | sylc 65 |
. . . . 5
⊢ (((𝜑 ∧ 𝑏 ∈ TopBases) ∧ (𝑏 ≼ ω ∧ (topGen‘𝑏) = 𝐽)) → ran (𝑥 ∈ 𝑏 ↦ (𝐹 “ 𝑥)) ≼ 𝑏) |
97 | | domtr 8748 |
. . . . 5
⊢ ((ran
(𝑥 ∈ 𝑏 ↦ (𝐹 “ 𝑥)) ≼ 𝑏 ∧ 𝑏 ≼ ω) → ran (𝑥 ∈ 𝑏 ↦ (𝐹 “ 𝑥)) ≼ ω) |
98 | 96, 89, 97 | syl2anc 583 |
. . . 4
⊢ (((𝜑 ∧ 𝑏 ∈ TopBases) ∧ (𝑏 ≼ ω ∧ (topGen‘𝑏) = 𝐽)) → ran (𝑥 ∈ 𝑏 ↦ (𝐹 “ 𝑥)) ≼ ω) |
99 | | 2ndci 22507 |
. . . 4
⊢ ((ran
(𝑥 ∈ 𝑏 ↦ (𝐹 “ 𝑥)) ∈ TopBases ∧ ran (𝑥 ∈ 𝑏 ↦ (𝐹 “ 𝑥)) ≼ ω) → (topGen‘ran
(𝑥 ∈ 𝑏 ↦ (𝐹 “ 𝑥))) ∈
2ndω) |
100 | 87, 98, 99 | syl2anc 583 |
. . 3
⊢ (((𝜑 ∧ 𝑏 ∈ TopBases) ∧ (𝑏 ≼ ω ∧ (topGen‘𝑏) = 𝐽)) → (topGen‘ran (𝑥 ∈ 𝑏 ↦ (𝐹 “ 𝑥))) ∈
2ndω) |
101 | 84, 100 | eqeltrrd 2840 |
. 2
⊢ (((𝜑 ∧ 𝑏 ∈ TopBases) ∧ (𝑏 ≼ ω ∧ (topGen‘𝑏) = 𝐽)) → 𝐾 ∈
2ndω) |
102 | | 2ndcomap.3 |
. . 3
⊢ (𝜑 → 𝐽 ∈
2ndω) |
103 | | is2ndc 22505 |
. . 3
⊢ (𝐽 ∈ 2ndω
↔ ∃𝑏 ∈
TopBases (𝑏 ≼ ω
∧ (topGen‘𝑏) =
𝐽)) |
104 | 102, 103 | sylib 217 |
. 2
⊢ (𝜑 → ∃𝑏 ∈ TopBases (𝑏 ≼ ω ∧ (topGen‘𝑏) = 𝐽)) |
105 | 101, 104 | r19.29a 3217 |
1
⊢ (𝜑 → 𝐾 ∈
2ndω) |