MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  2ndcomap Structured version   Visualization version   GIF version

Theorem 2ndcomap 23482
Description: A surjective continuous open map maps second-countable spaces to second-countable spaces. (Contributed by Mario Carneiro, 9-Apr-2015.)
Hypotheses
Ref Expression
2ndcomap.2 𝑌 = 𝐾
2ndcomap.3 (𝜑𝐽 ∈ 2ndω)
2ndcomap.5 (𝜑𝐹 ∈ (𝐽 Cn 𝐾))
2ndcomap.6 (𝜑 → ran 𝐹 = 𝑌)
2ndcomap.7 ((𝜑𝑥𝐽) → (𝐹𝑥) ∈ 𝐾)
Assertion
Ref Expression
2ndcomap (𝜑𝐾 ∈ 2ndω)
Distinct variable groups:   𝑥,𝐹   𝑥,𝐽   𝜑,𝑥   𝑥,𝐾
Allowed substitution hint:   𝑌(𝑥)

Proof of Theorem 2ndcomap
Dummy variables 𝑘 𝑚 𝑡 𝑤 𝑧 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 2ndcomap.5 . . . . . 6 (𝜑𝐹 ∈ (𝐽 Cn 𝐾))
2 cntop2 23265 . . . . . 6 (𝐹 ∈ (𝐽 Cn 𝐾) → 𝐾 ∈ Top)
31, 2syl 17 . . . . 5 (𝜑𝐾 ∈ Top)
43ad2antrr 726 . . . 4 (((𝜑𝑏 ∈ TopBases) ∧ (𝑏 ≼ ω ∧ (topGen‘𝑏) = 𝐽)) → 𝐾 ∈ Top)
5 simplll 775 . . . . . . 7 ((((𝜑𝑏 ∈ TopBases) ∧ (𝑏 ≼ ω ∧ (topGen‘𝑏) = 𝐽)) ∧ 𝑥𝑏) → 𝜑)
6 bastg 22989 . . . . . . . . . 10 (𝑏 ∈ TopBases → 𝑏 ⊆ (topGen‘𝑏))
76ad2antlr 727 . . . . . . . . 9 (((𝜑𝑏 ∈ TopBases) ∧ (𝑏 ≼ ω ∧ (topGen‘𝑏) = 𝐽)) → 𝑏 ⊆ (topGen‘𝑏))
8 simprr 773 . . . . . . . . 9 (((𝜑𝑏 ∈ TopBases) ∧ (𝑏 ≼ ω ∧ (topGen‘𝑏) = 𝐽)) → (topGen‘𝑏) = 𝐽)
97, 8sseqtrd 4036 . . . . . . . 8 (((𝜑𝑏 ∈ TopBases) ∧ (𝑏 ≼ ω ∧ (topGen‘𝑏) = 𝐽)) → 𝑏𝐽)
109sselda 3995 . . . . . . 7 ((((𝜑𝑏 ∈ TopBases) ∧ (𝑏 ≼ ω ∧ (topGen‘𝑏) = 𝐽)) ∧ 𝑥𝑏) → 𝑥𝐽)
11 2ndcomap.7 . . . . . . 7 ((𝜑𝑥𝐽) → (𝐹𝑥) ∈ 𝐾)
125, 10, 11syl2anc 584 . . . . . 6 ((((𝜑𝑏 ∈ TopBases) ∧ (𝑏 ≼ ω ∧ (topGen‘𝑏) = 𝐽)) ∧ 𝑥𝑏) → (𝐹𝑥) ∈ 𝐾)
1312fmpttd 7135 . . . . 5 (((𝜑𝑏 ∈ TopBases) ∧ (𝑏 ≼ ω ∧ (topGen‘𝑏) = 𝐽)) → (𝑥𝑏 ↦ (𝐹𝑥)):𝑏𝐾)
1413frnd 6745 . . . 4 (((𝜑𝑏 ∈ TopBases) ∧ (𝑏 ≼ ω ∧ (topGen‘𝑏) = 𝐽)) → ran (𝑥𝑏 ↦ (𝐹𝑥)) ⊆ 𝐾)
15 elunii 4917 . . . . . . . . . . 11 ((𝑧𝑘𝑘𝐾) → 𝑧 𝐾)
16 2ndcomap.2 . . . . . . . . . . 11 𝑌 = 𝐾
1715, 16eleqtrrdi 2850 . . . . . . . . . 10 ((𝑧𝑘𝑘𝐾) → 𝑧𝑌)
1817ancoms 458 . . . . . . . . 9 ((𝑘𝐾𝑧𝑘) → 𝑧𝑌)
1918adantl 481 . . . . . . . 8 ((((𝜑𝑏 ∈ TopBases) ∧ (𝑏 ≼ ω ∧ (topGen‘𝑏) = 𝐽)) ∧ (𝑘𝐾𝑧𝑘)) → 𝑧𝑌)
20 2ndcomap.6 . . . . . . . . 9 (𝜑 → ran 𝐹 = 𝑌)
2120ad3antrrr 730 . . . . . . . 8 ((((𝜑𝑏 ∈ TopBases) ∧ (𝑏 ≼ ω ∧ (topGen‘𝑏) = 𝐽)) ∧ (𝑘𝐾𝑧𝑘)) → ran 𝐹 = 𝑌)
2219, 21eleqtrrd 2842 . . . . . . 7 ((((𝜑𝑏 ∈ TopBases) ∧ (𝑏 ≼ ω ∧ (topGen‘𝑏) = 𝐽)) ∧ (𝑘𝐾𝑧𝑘)) → 𝑧 ∈ ran 𝐹)
23 eqid 2735 . . . . . . . . . . 11 𝐽 = 𝐽
2423, 16cnf 23270 . . . . . . . . . 10 (𝐹 ∈ (𝐽 Cn 𝐾) → 𝐹: 𝐽𝑌)
251, 24syl 17 . . . . . . . . 9 (𝜑𝐹: 𝐽𝑌)
2625ad3antrrr 730 . . . . . . . 8 ((((𝜑𝑏 ∈ TopBases) ∧ (𝑏 ≼ ω ∧ (topGen‘𝑏) = 𝐽)) ∧ (𝑘𝐾𝑧𝑘)) → 𝐹: 𝐽𝑌)
27 ffn 6737 . . . . . . . 8 (𝐹: 𝐽𝑌𝐹 Fn 𝐽)
28 fvelrnb 6969 . . . . . . . 8 (𝐹 Fn 𝐽 → (𝑧 ∈ ran 𝐹 ↔ ∃𝑡 𝐽(𝐹𝑡) = 𝑧))
2926, 27, 283syl 18 . . . . . . 7 ((((𝜑𝑏 ∈ TopBases) ∧ (𝑏 ≼ ω ∧ (topGen‘𝑏) = 𝐽)) ∧ (𝑘𝐾𝑧𝑘)) → (𝑧 ∈ ran 𝐹 ↔ ∃𝑡 𝐽(𝐹𝑡) = 𝑧))
3022, 29mpbid 232 . . . . . 6 ((((𝜑𝑏 ∈ TopBases) ∧ (𝑏 ≼ ω ∧ (topGen‘𝑏) = 𝐽)) ∧ (𝑘𝐾𝑧𝑘)) → ∃𝑡 𝐽(𝐹𝑡) = 𝑧)
311ad3antrrr 730 . . . . . . . . . . 11 ((((𝜑𝑏 ∈ TopBases) ∧ (𝑏 ≼ ω ∧ (topGen‘𝑏) = 𝐽)) ∧ ((𝑘𝐾𝑧𝑘) ∧ (𝑡 𝐽 ∧ (𝐹𝑡) = 𝑧))) → 𝐹 ∈ (𝐽 Cn 𝐾))
32 simprll 779 . . . . . . . . . . 11 ((((𝜑𝑏 ∈ TopBases) ∧ (𝑏 ≼ ω ∧ (topGen‘𝑏) = 𝐽)) ∧ ((𝑘𝐾𝑧𝑘) ∧ (𝑡 𝐽 ∧ (𝐹𝑡) = 𝑧))) → 𝑘𝐾)
33 cnima 23289 . . . . . . . . . . 11 ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝑘𝐾) → (𝐹𝑘) ∈ 𝐽)
3431, 32, 33syl2anc 584 . . . . . . . . . 10 ((((𝜑𝑏 ∈ TopBases) ∧ (𝑏 ≼ ω ∧ (topGen‘𝑏) = 𝐽)) ∧ ((𝑘𝐾𝑧𝑘) ∧ (𝑡 𝐽 ∧ (𝐹𝑡) = 𝑧))) → (𝐹𝑘) ∈ 𝐽)
358adantr 480 . . . . . . . . . 10 ((((𝜑𝑏 ∈ TopBases) ∧ (𝑏 ≼ ω ∧ (topGen‘𝑏) = 𝐽)) ∧ ((𝑘𝐾𝑧𝑘) ∧ (𝑡 𝐽 ∧ (𝐹𝑡) = 𝑧))) → (topGen‘𝑏) = 𝐽)
3634, 35eleqtrrd 2842 . . . . . . . . 9 ((((𝜑𝑏 ∈ TopBases) ∧ (𝑏 ≼ ω ∧ (topGen‘𝑏) = 𝐽)) ∧ ((𝑘𝐾𝑧𝑘) ∧ (𝑡 𝐽 ∧ (𝐹𝑡) = 𝑧))) → (𝐹𝑘) ∈ (topGen‘𝑏))
37 simprrl 781 . . . . . . . . . 10 ((((𝜑𝑏 ∈ TopBases) ∧ (𝑏 ≼ ω ∧ (topGen‘𝑏) = 𝐽)) ∧ ((𝑘𝐾𝑧𝑘) ∧ (𝑡 𝐽 ∧ (𝐹𝑡) = 𝑧))) → 𝑡 𝐽)
38 simprrr 782 . . . . . . . . . . 11 ((((𝜑𝑏 ∈ TopBases) ∧ (𝑏 ≼ ω ∧ (topGen‘𝑏) = 𝐽)) ∧ ((𝑘𝐾𝑧𝑘) ∧ (𝑡 𝐽 ∧ (𝐹𝑡) = 𝑧))) → (𝐹𝑡) = 𝑧)
39 simprlr 780 . . . . . . . . . . 11 ((((𝜑𝑏 ∈ TopBases) ∧ (𝑏 ≼ ω ∧ (topGen‘𝑏) = 𝐽)) ∧ ((𝑘𝐾𝑧𝑘) ∧ (𝑡 𝐽 ∧ (𝐹𝑡) = 𝑧))) → 𝑧𝑘)
4038, 39eqeltrd 2839 . . . . . . . . . 10 ((((𝜑𝑏 ∈ TopBases) ∧ (𝑏 ≼ ω ∧ (topGen‘𝑏) = 𝐽)) ∧ ((𝑘𝐾𝑧𝑘) ∧ (𝑡 𝐽 ∧ (𝐹𝑡) = 𝑧))) → (𝐹𝑡) ∈ 𝑘)
4126ffnd 6738 . . . . . . . . . . . 12 ((((𝜑𝑏 ∈ TopBases) ∧ (𝑏 ≼ ω ∧ (topGen‘𝑏) = 𝐽)) ∧ (𝑘𝐾𝑧𝑘)) → 𝐹 Fn 𝐽)
4241adantrr 717 . . . . . . . . . . 11 ((((𝜑𝑏 ∈ TopBases) ∧ (𝑏 ≼ ω ∧ (topGen‘𝑏) = 𝐽)) ∧ ((𝑘𝐾𝑧𝑘) ∧ (𝑡 𝐽 ∧ (𝐹𝑡) = 𝑧))) → 𝐹 Fn 𝐽)
43 elpreima 7078 . . . . . . . . . . 11 (𝐹 Fn 𝐽 → (𝑡 ∈ (𝐹𝑘) ↔ (𝑡 𝐽 ∧ (𝐹𝑡) ∈ 𝑘)))
4442, 43syl 17 . . . . . . . . . 10 ((((𝜑𝑏 ∈ TopBases) ∧ (𝑏 ≼ ω ∧ (topGen‘𝑏) = 𝐽)) ∧ ((𝑘𝐾𝑧𝑘) ∧ (𝑡 𝐽 ∧ (𝐹𝑡) = 𝑧))) → (𝑡 ∈ (𝐹𝑘) ↔ (𝑡 𝐽 ∧ (𝐹𝑡) ∈ 𝑘)))
4537, 40, 44mpbir2and 713 . . . . . . . . 9 ((((𝜑𝑏 ∈ TopBases) ∧ (𝑏 ≼ ω ∧ (topGen‘𝑏) = 𝐽)) ∧ ((𝑘𝐾𝑧𝑘) ∧ (𝑡 𝐽 ∧ (𝐹𝑡) = 𝑧))) → 𝑡 ∈ (𝐹𝑘))
46 tg2 22988 . . . . . . . . 9 (((𝐹𝑘) ∈ (topGen‘𝑏) ∧ 𝑡 ∈ (𝐹𝑘)) → ∃𝑚𝑏 (𝑡𝑚𝑚 ⊆ (𝐹𝑘)))
4736, 45, 46syl2anc 584 . . . . . . . 8 ((((𝜑𝑏 ∈ TopBases) ∧ (𝑏 ≼ ω ∧ (topGen‘𝑏) = 𝐽)) ∧ ((𝑘𝐾𝑧𝑘) ∧ (𝑡 𝐽 ∧ (𝐹𝑡) = 𝑧))) → ∃𝑚𝑏 (𝑡𝑚𝑚 ⊆ (𝐹𝑘)))
48 simprl 771 . . . . . . . . . . 11 (((((𝜑𝑏 ∈ TopBases) ∧ (𝑏 ≼ ω ∧ (topGen‘𝑏) = 𝐽)) ∧ ((𝑘𝐾𝑧𝑘) ∧ (𝑡 𝐽 ∧ (𝐹𝑡) = 𝑧))) ∧ (𝑚𝑏 ∧ (𝑡𝑚𝑚 ⊆ (𝐹𝑘)))) → 𝑚𝑏)
49 eqid 2735 . . . . . . . . . . 11 (𝐹𝑚) = (𝐹𝑚)
50 imaeq2 6076 . . . . . . . . . . . 12 (𝑥 = 𝑚 → (𝐹𝑥) = (𝐹𝑚))
5150rspceeqv 3645 . . . . . . . . . . 11 ((𝑚𝑏 ∧ (𝐹𝑚) = (𝐹𝑚)) → ∃𝑥𝑏 (𝐹𝑚) = (𝐹𝑥))
5248, 49, 51sylancl 586 . . . . . . . . . 10 (((((𝜑𝑏 ∈ TopBases) ∧ (𝑏 ≼ ω ∧ (topGen‘𝑏) = 𝐽)) ∧ ((𝑘𝐾𝑧𝑘) ∧ (𝑡 𝐽 ∧ (𝐹𝑡) = 𝑧))) ∧ (𝑚𝑏 ∧ (𝑡𝑚𝑚 ⊆ (𝐹𝑘)))) → ∃𝑥𝑏 (𝐹𝑚) = (𝐹𝑥))
5342adantr 480 . . . . . . . . . . . . . 14 (((((𝜑𝑏 ∈ TopBases) ∧ (𝑏 ≼ ω ∧ (topGen‘𝑏) = 𝐽)) ∧ ((𝑘𝐾𝑧𝑘) ∧ (𝑡 𝐽 ∧ (𝐹𝑡) = 𝑧))) ∧ (𝑚𝑏 ∧ (𝑡𝑚𝑚 ⊆ (𝐹𝑘)))) → 𝐹 Fn 𝐽)
54 fnfun 6669 . . . . . . . . . . . . . 14 (𝐹 Fn 𝐽 → Fun 𝐹)
5553, 54syl 17 . . . . . . . . . . . . 13 (((((𝜑𝑏 ∈ TopBases) ∧ (𝑏 ≼ ω ∧ (topGen‘𝑏) = 𝐽)) ∧ ((𝑘𝐾𝑧𝑘) ∧ (𝑡 𝐽 ∧ (𝐹𝑡) = 𝑧))) ∧ (𝑚𝑏 ∧ (𝑡𝑚𝑚 ⊆ (𝐹𝑘)))) → Fun 𝐹)
56 simprrr 782 . . . . . . . . . . . . 13 (((((𝜑𝑏 ∈ TopBases) ∧ (𝑏 ≼ ω ∧ (topGen‘𝑏) = 𝐽)) ∧ ((𝑘𝐾𝑧𝑘) ∧ (𝑡 𝐽 ∧ (𝐹𝑡) = 𝑧))) ∧ (𝑚𝑏 ∧ (𝑡𝑚𝑚 ⊆ (𝐹𝑘)))) → 𝑚 ⊆ (𝐹𝑘))
57 funimass2 6651 . . . . . . . . . . . . 13 ((Fun 𝐹𝑚 ⊆ (𝐹𝑘)) → (𝐹𝑚) ⊆ 𝑘)
5855, 56, 57syl2anc 584 . . . . . . . . . . . 12 (((((𝜑𝑏 ∈ TopBases) ∧ (𝑏 ≼ ω ∧ (topGen‘𝑏) = 𝐽)) ∧ ((𝑘𝐾𝑧𝑘) ∧ (𝑡 𝐽 ∧ (𝐹𝑡) = 𝑧))) ∧ (𝑚𝑏 ∧ (𝑡𝑚𝑚 ⊆ (𝐹𝑘)))) → (𝐹𝑚) ⊆ 𝑘)
59 vex 3482 . . . . . . . . . . . 12 𝑘 ∈ V
60 ssexg 5329 . . . . . . . . . . . 12 (((𝐹𝑚) ⊆ 𝑘𝑘 ∈ V) → (𝐹𝑚) ∈ V)
6158, 59, 60sylancl 586 . . . . . . . . . . 11 (((((𝜑𝑏 ∈ TopBases) ∧ (𝑏 ≼ ω ∧ (topGen‘𝑏) = 𝐽)) ∧ ((𝑘𝐾𝑧𝑘) ∧ (𝑡 𝐽 ∧ (𝐹𝑡) = 𝑧))) ∧ (𝑚𝑏 ∧ (𝑡𝑚𝑚 ⊆ (𝐹𝑘)))) → (𝐹𝑚) ∈ V)
62 eqid 2735 . . . . . . . . . . . 12 (𝑥𝑏 ↦ (𝐹𝑥)) = (𝑥𝑏 ↦ (𝐹𝑥))
6362elrnmpt 5972 . . . . . . . . . . 11 ((𝐹𝑚) ∈ V → ((𝐹𝑚) ∈ ran (𝑥𝑏 ↦ (𝐹𝑥)) ↔ ∃𝑥𝑏 (𝐹𝑚) = (𝐹𝑥)))
6461, 63syl 17 . . . . . . . . . 10 (((((𝜑𝑏 ∈ TopBases) ∧ (𝑏 ≼ ω ∧ (topGen‘𝑏) = 𝐽)) ∧ ((𝑘𝐾𝑧𝑘) ∧ (𝑡 𝐽 ∧ (𝐹𝑡) = 𝑧))) ∧ (𝑚𝑏 ∧ (𝑡𝑚𝑚 ⊆ (𝐹𝑘)))) → ((𝐹𝑚) ∈ ran (𝑥𝑏 ↦ (𝐹𝑥)) ↔ ∃𝑥𝑏 (𝐹𝑚) = (𝐹𝑥)))
6552, 64mpbird 257 . . . . . . . . 9 (((((𝜑𝑏 ∈ TopBases) ∧ (𝑏 ≼ ω ∧ (topGen‘𝑏) = 𝐽)) ∧ ((𝑘𝐾𝑧𝑘) ∧ (𝑡 𝐽 ∧ (𝐹𝑡) = 𝑧))) ∧ (𝑚𝑏 ∧ (𝑡𝑚𝑚 ⊆ (𝐹𝑘)))) → (𝐹𝑚) ∈ ran (𝑥𝑏 ↦ (𝐹𝑥)))
6638adantr 480 . . . . . . . . . 10 (((((𝜑𝑏 ∈ TopBases) ∧ (𝑏 ≼ ω ∧ (topGen‘𝑏) = 𝐽)) ∧ ((𝑘𝐾𝑧𝑘) ∧ (𝑡 𝐽 ∧ (𝐹𝑡) = 𝑧))) ∧ (𝑚𝑏 ∧ (𝑡𝑚𝑚 ⊆ (𝐹𝑘)))) → (𝐹𝑡) = 𝑧)
67 simprrl 781 . . . . . . . . . . 11 (((((𝜑𝑏 ∈ TopBases) ∧ (𝑏 ≼ ω ∧ (topGen‘𝑏) = 𝐽)) ∧ ((𝑘𝐾𝑧𝑘) ∧ (𝑡 𝐽 ∧ (𝐹𝑡) = 𝑧))) ∧ (𝑚𝑏 ∧ (𝑡𝑚𝑚 ⊆ (𝐹𝑘)))) → 𝑡𝑚)
68 cnvimass 6102 . . . . . . . . . . . . 13 (𝐹𝑘) ⊆ dom 𝐹
6956, 68sstrdi 4008 . . . . . . . . . . . 12 (((((𝜑𝑏 ∈ TopBases) ∧ (𝑏 ≼ ω ∧ (topGen‘𝑏) = 𝐽)) ∧ ((𝑘𝐾𝑧𝑘) ∧ (𝑡 𝐽 ∧ (𝐹𝑡) = 𝑧))) ∧ (𝑚𝑏 ∧ (𝑡𝑚𝑚 ⊆ (𝐹𝑘)))) → 𝑚 ⊆ dom 𝐹)
70 funfvima2 7251 . . . . . . . . . . . 12 ((Fun 𝐹𝑚 ⊆ dom 𝐹) → (𝑡𝑚 → (𝐹𝑡) ∈ (𝐹𝑚)))
7155, 69, 70syl2anc 584 . . . . . . . . . . 11 (((((𝜑𝑏 ∈ TopBases) ∧ (𝑏 ≼ ω ∧ (topGen‘𝑏) = 𝐽)) ∧ ((𝑘𝐾𝑧𝑘) ∧ (𝑡 𝐽 ∧ (𝐹𝑡) = 𝑧))) ∧ (𝑚𝑏 ∧ (𝑡𝑚𝑚 ⊆ (𝐹𝑘)))) → (𝑡𝑚 → (𝐹𝑡) ∈ (𝐹𝑚)))
7267, 71mpd 15 . . . . . . . . . 10 (((((𝜑𝑏 ∈ TopBases) ∧ (𝑏 ≼ ω ∧ (topGen‘𝑏) = 𝐽)) ∧ ((𝑘𝐾𝑧𝑘) ∧ (𝑡 𝐽 ∧ (𝐹𝑡) = 𝑧))) ∧ (𝑚𝑏 ∧ (𝑡𝑚𝑚 ⊆ (𝐹𝑘)))) → (𝐹𝑡) ∈ (𝐹𝑚))
7366, 72eqeltrrd 2840 . . . . . . . . 9 (((((𝜑𝑏 ∈ TopBases) ∧ (𝑏 ≼ ω ∧ (topGen‘𝑏) = 𝐽)) ∧ ((𝑘𝐾𝑧𝑘) ∧ (𝑡 𝐽 ∧ (𝐹𝑡) = 𝑧))) ∧ (𝑚𝑏 ∧ (𝑡𝑚𝑚 ⊆ (𝐹𝑘)))) → 𝑧 ∈ (𝐹𝑚))
74 eleq2 2828 . . . . . . . . . . 11 (𝑤 = (𝐹𝑚) → (𝑧𝑤𝑧 ∈ (𝐹𝑚)))
75 sseq1 4021 . . . . . . . . . . 11 (𝑤 = (𝐹𝑚) → (𝑤𝑘 ↔ (𝐹𝑚) ⊆ 𝑘))
7674, 75anbi12d 632 . . . . . . . . . 10 (𝑤 = (𝐹𝑚) → ((𝑧𝑤𝑤𝑘) ↔ (𝑧 ∈ (𝐹𝑚) ∧ (𝐹𝑚) ⊆ 𝑘)))
7776rspcev 3622 . . . . . . . . 9 (((𝐹𝑚) ∈ ran (𝑥𝑏 ↦ (𝐹𝑥)) ∧ (𝑧 ∈ (𝐹𝑚) ∧ (𝐹𝑚) ⊆ 𝑘)) → ∃𝑤 ∈ ran (𝑥𝑏 ↦ (𝐹𝑥))(𝑧𝑤𝑤𝑘))
7865, 73, 58, 77syl12anc 837 . . . . . . . 8 (((((𝜑𝑏 ∈ TopBases) ∧ (𝑏 ≼ ω ∧ (topGen‘𝑏) = 𝐽)) ∧ ((𝑘𝐾𝑧𝑘) ∧ (𝑡 𝐽 ∧ (𝐹𝑡) = 𝑧))) ∧ (𝑚𝑏 ∧ (𝑡𝑚𝑚 ⊆ (𝐹𝑘)))) → ∃𝑤 ∈ ran (𝑥𝑏 ↦ (𝐹𝑥))(𝑧𝑤𝑤𝑘))
7947, 78rexlimddv 3159 . . . . . . 7 ((((𝜑𝑏 ∈ TopBases) ∧ (𝑏 ≼ ω ∧ (topGen‘𝑏) = 𝐽)) ∧ ((𝑘𝐾𝑧𝑘) ∧ (𝑡 𝐽 ∧ (𝐹𝑡) = 𝑧))) → ∃𝑤 ∈ ran (𝑥𝑏 ↦ (𝐹𝑥))(𝑧𝑤𝑤𝑘))
8079anassrs 467 . . . . . 6 (((((𝜑𝑏 ∈ TopBases) ∧ (𝑏 ≼ ω ∧ (topGen‘𝑏) = 𝐽)) ∧ (𝑘𝐾𝑧𝑘)) ∧ (𝑡 𝐽 ∧ (𝐹𝑡) = 𝑧)) → ∃𝑤 ∈ ran (𝑥𝑏 ↦ (𝐹𝑥))(𝑧𝑤𝑤𝑘))
8130, 80rexlimddv 3159 . . . . 5 ((((𝜑𝑏 ∈ TopBases) ∧ (𝑏 ≼ ω ∧ (topGen‘𝑏) = 𝐽)) ∧ (𝑘𝐾𝑧𝑘)) → ∃𝑤 ∈ ran (𝑥𝑏 ↦ (𝐹𝑥))(𝑧𝑤𝑤𝑘))
8281ralrimivva 3200 . . . 4 (((𝜑𝑏 ∈ TopBases) ∧ (𝑏 ≼ ω ∧ (topGen‘𝑏) = 𝐽)) → ∀𝑘𝐾𝑧𝑘𝑤 ∈ ran (𝑥𝑏 ↦ (𝐹𝑥))(𝑧𝑤𝑤𝑘))
83 basgen2 23012 . . . 4 ((𝐾 ∈ Top ∧ ran (𝑥𝑏 ↦ (𝐹𝑥)) ⊆ 𝐾 ∧ ∀𝑘𝐾𝑧𝑘𝑤 ∈ ran (𝑥𝑏 ↦ (𝐹𝑥))(𝑧𝑤𝑤𝑘)) → (topGen‘ran (𝑥𝑏 ↦ (𝐹𝑥))) = 𝐾)
844, 14, 82, 83syl3anc 1370 . . 3 (((𝜑𝑏 ∈ TopBases) ∧ (𝑏 ≼ ω ∧ (topGen‘𝑏) = 𝐽)) → (topGen‘ran (𝑥𝑏 ↦ (𝐹𝑥))) = 𝐾)
8584, 4eqeltrd 2839 . . . . 5 (((𝜑𝑏 ∈ TopBases) ∧ (𝑏 ≼ ω ∧ (topGen‘𝑏) = 𝐽)) → (topGen‘ran (𝑥𝑏 ↦ (𝐹𝑥))) ∈ Top)
86 tgclb 22993 . . . . 5 (ran (𝑥𝑏 ↦ (𝐹𝑥)) ∈ TopBases ↔ (topGen‘ran (𝑥𝑏 ↦ (𝐹𝑥))) ∈ Top)
8785, 86sylibr 234 . . . 4 (((𝜑𝑏 ∈ TopBases) ∧ (𝑏 ≼ ω ∧ (topGen‘𝑏) = 𝐽)) → ran (𝑥𝑏 ↦ (𝐹𝑥)) ∈ TopBases)
88 omelon 9684 . . . . . . 7 ω ∈ On
89 simprl 771 . . . . . . 7 (((𝜑𝑏 ∈ TopBases) ∧ (𝑏 ≼ ω ∧ (topGen‘𝑏) = 𝐽)) → 𝑏 ≼ ω)
90 ondomen 10075 . . . . . . 7 ((ω ∈ On ∧ 𝑏 ≼ ω) → 𝑏 ∈ dom card)
9188, 89, 90sylancr 587 . . . . . 6 (((𝜑𝑏 ∈ TopBases) ∧ (𝑏 ≼ ω ∧ (topGen‘𝑏) = 𝐽)) → 𝑏 ∈ dom card)
9213ffnd 6738 . . . . . . 7 (((𝜑𝑏 ∈ TopBases) ∧ (𝑏 ≼ ω ∧ (topGen‘𝑏) = 𝐽)) → (𝑥𝑏 ↦ (𝐹𝑥)) Fn 𝑏)
93 dffn4 6827 . . . . . . 7 ((𝑥𝑏 ↦ (𝐹𝑥)) Fn 𝑏 ↔ (𝑥𝑏 ↦ (𝐹𝑥)):𝑏onto→ran (𝑥𝑏 ↦ (𝐹𝑥)))
9492, 93sylib 218 . . . . . 6 (((𝜑𝑏 ∈ TopBases) ∧ (𝑏 ≼ ω ∧ (topGen‘𝑏) = 𝐽)) → (𝑥𝑏 ↦ (𝐹𝑥)):𝑏onto→ran (𝑥𝑏 ↦ (𝐹𝑥)))
95 fodomnum 10095 . . . . . 6 (𝑏 ∈ dom card → ((𝑥𝑏 ↦ (𝐹𝑥)):𝑏onto→ran (𝑥𝑏 ↦ (𝐹𝑥)) → ran (𝑥𝑏 ↦ (𝐹𝑥)) ≼ 𝑏))
9691, 94, 95sylc 65 . . . . 5 (((𝜑𝑏 ∈ TopBases) ∧ (𝑏 ≼ ω ∧ (topGen‘𝑏) = 𝐽)) → ran (𝑥𝑏 ↦ (𝐹𝑥)) ≼ 𝑏)
97 domtr 9046 . . . . 5 ((ran (𝑥𝑏 ↦ (𝐹𝑥)) ≼ 𝑏𝑏 ≼ ω) → ran (𝑥𝑏 ↦ (𝐹𝑥)) ≼ ω)
9896, 89, 97syl2anc 584 . . . 4 (((𝜑𝑏 ∈ TopBases) ∧ (𝑏 ≼ ω ∧ (topGen‘𝑏) = 𝐽)) → ran (𝑥𝑏 ↦ (𝐹𝑥)) ≼ ω)
99 2ndci 23472 . . . 4 ((ran (𝑥𝑏 ↦ (𝐹𝑥)) ∈ TopBases ∧ ran (𝑥𝑏 ↦ (𝐹𝑥)) ≼ ω) → (topGen‘ran (𝑥𝑏 ↦ (𝐹𝑥))) ∈ 2ndω)
10087, 98, 99syl2anc 584 . . 3 (((𝜑𝑏 ∈ TopBases) ∧ (𝑏 ≼ ω ∧ (topGen‘𝑏) = 𝐽)) → (topGen‘ran (𝑥𝑏 ↦ (𝐹𝑥))) ∈ 2ndω)
10184, 100eqeltrrd 2840 . 2 (((𝜑𝑏 ∈ TopBases) ∧ (𝑏 ≼ ω ∧ (topGen‘𝑏) = 𝐽)) → 𝐾 ∈ 2ndω)
102 2ndcomap.3 . . 3 (𝜑𝐽 ∈ 2ndω)
103 is2ndc 23470 . . 3 (𝐽 ∈ 2ndω ↔ ∃𝑏 ∈ TopBases (𝑏 ≼ ω ∧ (topGen‘𝑏) = 𝐽))
104102, 103sylib 218 . 2 (𝜑 → ∃𝑏 ∈ TopBases (𝑏 ≼ ω ∧ (topGen‘𝑏) = 𝐽))
105101, 104r19.29a 3160 1 (𝜑𝐾 ∈ 2ndω)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1537  wcel 2106  wral 3059  wrex 3068  Vcvv 3478  wss 3963   cuni 4912   class class class wbr 5148  cmpt 5231  ccnv 5688  dom cdm 5689  ran crn 5690  cima 5692  Oncon0 6386  Fun wfun 6557   Fn wfn 6558  wf 6559  ontowfo 6561  cfv 6563  (class class class)co 7431  ωcom 7887  cdom 8982  cardccrd 9973  topGenctg 17484  Topctop 22915  TopBasesctb 22968   Cn ccn 23248  2ndωc2ndc 23462
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-inf2 9679
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-int 4952  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-se 5642  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-isom 6572  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8013  df-2nd 8014  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-er 8744  df-map 8867  df-en 8985  df-dom 8986  df-card 9977  df-acn 9980  df-topgen 17490  df-top 22916  df-topon 22933  df-bases 22969  df-cn 23251  df-2ndc 23464
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator