| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 2ndctop | Structured version Visualization version GIF version | ||
| Description: A second-countable topology is a topology. (Contributed by Jeff Hankins, 17-Jan-2010.) (Revised by Mario Carneiro, 21-Mar-2015.) |
| Ref | Expression |
|---|---|
| 2ndctop | ⊢ (𝐽 ∈ 2ndω → 𝐽 ∈ Top) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | is2ndc 23349 | . 2 ⊢ (𝐽 ∈ 2ndω ↔ ∃𝑥 ∈ TopBases (𝑥 ≼ ω ∧ (topGen‘𝑥) = 𝐽)) | |
| 2 | simprr 772 | . . . 4 ⊢ ((𝑥 ∈ TopBases ∧ (𝑥 ≼ ω ∧ (topGen‘𝑥) = 𝐽)) → (topGen‘𝑥) = 𝐽) | |
| 3 | tgcl 22872 | . . . . 5 ⊢ (𝑥 ∈ TopBases → (topGen‘𝑥) ∈ Top) | |
| 4 | 3 | adantr 480 | . . . 4 ⊢ ((𝑥 ∈ TopBases ∧ (𝑥 ≼ ω ∧ (topGen‘𝑥) = 𝐽)) → (topGen‘𝑥) ∈ Top) |
| 5 | 2, 4 | eqeltrrd 2829 | . . 3 ⊢ ((𝑥 ∈ TopBases ∧ (𝑥 ≼ ω ∧ (topGen‘𝑥) = 𝐽)) → 𝐽 ∈ Top) |
| 6 | 5 | rexlimiva 3122 | . 2 ⊢ (∃𝑥 ∈ TopBases (𝑥 ≼ ω ∧ (topGen‘𝑥) = 𝐽) → 𝐽 ∈ Top) |
| 7 | 1, 6 | sylbi 217 | 1 ⊢ (𝐽 ∈ 2ndω → 𝐽 ∈ Top) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∃wrex 3053 class class class wbr 5095 ‘cfv 6486 ωcom 7806 ≼ cdom 8877 topGenctg 17359 Topctop 22796 TopBasesctb 22848 2ndωc2ndc 23341 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3397 df-v 3440 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5518 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-iota 6442 df-fun 6488 df-fv 6494 df-topgen 17365 df-top 22797 df-bases 22849 df-2ndc 23343 |
| This theorem is referenced by: 2ndc1stc 23354 2ndcctbss 23358 |
| Copyright terms: Public domain | W3C validator |