MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  2ndctop Structured version   Visualization version   GIF version

Theorem 2ndctop 23363
Description: A second-countable topology is a topology. (Contributed by Jeff Hankins, 17-Jan-2010.) (Revised by Mario Carneiro, 21-Mar-2015.)
Assertion
Ref Expression
2ndctop (𝐽 ∈ 2ndω → 𝐽 ∈ Top)

Proof of Theorem 2ndctop
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 is2ndc 23362 . 2 (𝐽 ∈ 2ndω ↔ ∃𝑥 ∈ TopBases (𝑥 ≼ ω ∧ (topGen‘𝑥) = 𝐽))
2 simprr 772 . . . 4 ((𝑥 ∈ TopBases ∧ (𝑥 ≼ ω ∧ (topGen‘𝑥) = 𝐽)) → (topGen‘𝑥) = 𝐽)
3 tgcl 22885 . . . . 5 (𝑥 ∈ TopBases → (topGen‘𝑥) ∈ Top)
43adantr 480 . . . 4 ((𝑥 ∈ TopBases ∧ (𝑥 ≼ ω ∧ (topGen‘𝑥) = 𝐽)) → (topGen‘𝑥) ∈ Top)
52, 4eqeltrrd 2834 . . 3 ((𝑥 ∈ TopBases ∧ (𝑥 ≼ ω ∧ (topGen‘𝑥) = 𝐽)) → 𝐽 ∈ Top)
65rexlimiva 3126 . 2 (∃𝑥 ∈ TopBases (𝑥 ≼ ω ∧ (topGen‘𝑥) = 𝐽) → 𝐽 ∈ Top)
71, 6sylbi 217 1 (𝐽 ∈ 2ndω → 𝐽 ∈ Top)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2113  wrex 3057   class class class wbr 5093  cfv 6486  ωcom 7802  cdom 8873  topGenctg 17343  Topctop 22809  TopBasesctb 22861  2ndωc2ndc 23354
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-rab 3397  df-v 3439  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-br 5094  df-opab 5156  df-mpt 5175  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-iota 6442  df-fun 6488  df-fv 6494  df-topgen 17349  df-top 22810  df-bases 22862  df-2ndc 23356
This theorem is referenced by:  2ndc1stc  23367  2ndcctbss  23371
  Copyright terms: Public domain W3C validator