![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 2ndctop | Structured version Visualization version GIF version |
Description: A second-countable topology is a topology. (Contributed by Jeff Hankins, 17-Jan-2010.) (Revised by Mario Carneiro, 21-Mar-2015.) |
Ref | Expression |
---|---|
2ndctop | ⊢ (𝐽 ∈ 2ndω → 𝐽 ∈ Top) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | is2ndc 23270 | . 2 ⊢ (𝐽 ∈ 2ndω ↔ ∃𝑥 ∈ TopBases (𝑥 ≼ ω ∧ (topGen‘𝑥) = 𝐽)) | |
2 | simprr 770 | . . . 4 ⊢ ((𝑥 ∈ TopBases ∧ (𝑥 ≼ ω ∧ (topGen‘𝑥) = 𝐽)) → (topGen‘𝑥) = 𝐽) | |
3 | tgcl 22792 | . . . . 5 ⊢ (𝑥 ∈ TopBases → (topGen‘𝑥) ∈ Top) | |
4 | 3 | adantr 480 | . . . 4 ⊢ ((𝑥 ∈ TopBases ∧ (𝑥 ≼ ω ∧ (topGen‘𝑥) = 𝐽)) → (topGen‘𝑥) ∈ Top) |
5 | 2, 4 | eqeltrrd 2833 | . . 3 ⊢ ((𝑥 ∈ TopBases ∧ (𝑥 ≼ ω ∧ (topGen‘𝑥) = 𝐽)) → 𝐽 ∈ Top) |
6 | 5 | rexlimiva 3146 | . 2 ⊢ (∃𝑥 ∈ TopBases (𝑥 ≼ ω ∧ (topGen‘𝑥) = 𝐽) → 𝐽 ∈ Top) |
7 | 1, 6 | sylbi 216 | 1 ⊢ (𝐽 ∈ 2ndω → 𝐽 ∈ Top) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2105 ∃wrex 3069 class class class wbr 5148 ‘cfv 6543 ωcom 7859 ≼ cdom 8943 topGenctg 17390 Topctop 22715 TopBasesctb 22768 2ndωc2ndc 23262 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7729 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-ral 3061 df-rex 3070 df-rab 3432 df-v 3475 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5574 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-iota 6495 df-fun 6545 df-fv 6551 df-topgen 17396 df-top 22716 df-bases 22769 df-2ndc 23264 |
This theorem is referenced by: 2ndc1stc 23275 2ndcctbss 23279 |
Copyright terms: Public domain | W3C validator |