![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 2ndctop | Structured version Visualization version GIF version |
Description: A second-countable topology is a topology. (Contributed by Jeff Hankins, 17-Jan-2010.) (Revised by Mario Carneiro, 21-Mar-2015.) |
Ref | Expression |
---|---|
2ndctop | β’ (π½ β 2ndΟ β π½ β Top) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | is2ndc 22949 | . 2 β’ (π½ β 2ndΟ β βπ₯ β TopBases (π₯ βΌ Ο β§ (topGenβπ₯) = π½)) | |
2 | simprr 771 | . . . 4 β’ ((π₯ β TopBases β§ (π₯ βΌ Ο β§ (topGenβπ₯) = π½)) β (topGenβπ₯) = π½) | |
3 | tgcl 22471 | . . . . 5 β’ (π₯ β TopBases β (topGenβπ₯) β Top) | |
4 | 3 | adantr 481 | . . . 4 β’ ((π₯ β TopBases β§ (π₯ βΌ Ο β§ (topGenβπ₯) = π½)) β (topGenβπ₯) β Top) |
5 | 2, 4 | eqeltrrd 2834 | . . 3 β’ ((π₯ β TopBases β§ (π₯ βΌ Ο β§ (topGenβπ₯) = π½)) β π½ β Top) |
6 | 5 | rexlimiva 3147 | . 2 β’ (βπ₯ β TopBases (π₯ βΌ Ο β§ (topGenβπ₯) = π½) β π½ β Top) |
7 | 1, 6 | sylbi 216 | 1 β’ (π½ β 2ndΟ β π½ β Top) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 396 = wceq 1541 β wcel 2106 βwrex 3070 class class class wbr 5148 βcfv 6543 Οcom 7854 βΌ cdom 8936 topGenctg 17382 Topctop 22394 TopBasesctb 22447 2ndΟc2ndc 22941 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7724 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3433 df-v 3476 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5574 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-iota 6495 df-fun 6545 df-fv 6551 df-topgen 17388 df-top 22395 df-bases 22448 df-2ndc 22943 |
This theorem is referenced by: 2ndc1stc 22954 2ndcctbss 22958 |
Copyright terms: Public domain | W3C validator |