MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  2ndctop Structured version   Visualization version   GIF version

Theorem 2ndctop 22950
Description: A second-countable topology is a topology. (Contributed by Jeff Hankins, 17-Jan-2010.) (Revised by Mario Carneiro, 21-Mar-2015.)
Assertion
Ref Expression
2ndctop (𝐽 ∈ 2ndΟ‰ β†’ 𝐽 ∈ Top)

Proof of Theorem 2ndctop
Dummy variable π‘₯ is distinct from all other variables.
StepHypRef Expression
1 is2ndc 22949 . 2 (𝐽 ∈ 2ndΟ‰ ↔ βˆƒπ‘₯ ∈ TopBases (π‘₯ β‰Ό Ο‰ ∧ (topGenβ€˜π‘₯) = 𝐽))
2 simprr 771 . . . 4 ((π‘₯ ∈ TopBases ∧ (π‘₯ β‰Ό Ο‰ ∧ (topGenβ€˜π‘₯) = 𝐽)) β†’ (topGenβ€˜π‘₯) = 𝐽)
3 tgcl 22471 . . . . 5 (π‘₯ ∈ TopBases β†’ (topGenβ€˜π‘₯) ∈ Top)
43adantr 481 . . . 4 ((π‘₯ ∈ TopBases ∧ (π‘₯ β‰Ό Ο‰ ∧ (topGenβ€˜π‘₯) = 𝐽)) β†’ (topGenβ€˜π‘₯) ∈ Top)
52, 4eqeltrrd 2834 . . 3 ((π‘₯ ∈ TopBases ∧ (π‘₯ β‰Ό Ο‰ ∧ (topGenβ€˜π‘₯) = 𝐽)) β†’ 𝐽 ∈ Top)
65rexlimiva 3147 . 2 (βˆƒπ‘₯ ∈ TopBases (π‘₯ β‰Ό Ο‰ ∧ (topGenβ€˜π‘₯) = 𝐽) β†’ 𝐽 ∈ Top)
71, 6sylbi 216 1 (𝐽 ∈ 2ndΟ‰ β†’ 𝐽 ∈ Top)
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∧ wa 396   = wceq 1541   ∈ wcel 2106  βˆƒwrex 3070   class class class wbr 5148  β€˜cfv 6543  Ο‰com 7854   β‰Ό cdom 8936  topGenctg 17382  Topctop 22394  TopBasesctb 22447  2ndΟ‰c2ndc 22941
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7724
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3433  df-v 3476  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5574  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-iota 6495  df-fun 6545  df-fv 6551  df-topgen 17388  df-top 22395  df-bases 22448  df-2ndc 22943
This theorem is referenced by:  2ndc1stc  22954  2ndcctbss  22958
  Copyright terms: Public domain W3C validator